Citation: Zhang, D. X.; Ding, L.; Yang, F.; Lan, F.; Cao, Y.; Xiang, M. Comparison of the structural evolution of β polypropylene during the sequential and simultaneous biaxial stretching process. Chinese J. Polym. Sci. 2021, 39, 620–631 doi: 10.1007/s10118-021-2534-y shu

Comparison of the Structural Evolution of β Polypropylene during the Sequential and Simultaneous Biaxial Stretching Process

  • Corresponding author: Feng Yang, E-mail:
  • Received Date: 2020-10-14
    Available Online: 2021-01-06

Figures(15) / Tables(2)

  • In this work, the lamellar structural evolution and microvoids variations of β polypropylene (β-PP) during the processing of two different stretching methods, sequential biaxial stretching and simultaneous biaxial stretching, were investigated in detail. It was found that different stretching methods led to significantly different lamellae deformation modes, and the microporous membranes obtained from the simultaneous biaxial stretching exhibited better mechanical properties. For the sequential biaxial stretching, abundant coarse fibers originated from the tight accumulation of the lamellae parallel to the longitudinal stretching direction, whereas the lamellae perpendicular to the stretching direction were easily deformed and separated. Those coarse fibers were difficult to be separated to form micropores during the subsequent transverse stretching process, resulting in a poor micropores distribution. However, for the simultaneous biaxial stretching, the β crystal had the same deformation mode, that is, the lamellae distributed in different directions were all destroyed, forming abundant microvoids and little coarse fibers.
    1. [1]

      Costa, C. M.; Lee, Y. H.; Kim, J. H.; Lee, S. Y.; Lanceros-Méndez, S. Recent advances on separator membranes for lithium-ion battery applications: from porous membranes to solid electrolytes. Energy Storage Mater. 2019, 22, 346−375. doi: 10.1016/j.ensm.2019.07.024

    2. [2]

      Li, Y.; Pan, G.; Wang, J.; Zhang, Y.; Shi, H.; Yu, H.; Liu, Y. Tailoring the polyamide active layer of thin-film composite forward osmosis membranes with combined cosolvents during interfacial polymerization. Ind. Eng. Chem. Res. 2020, 59, 8230−8242. doi: 10.1021/acs.iecr.0c00682

    3. [3]

      Pan, L.; Wang, H.; Wu, C.; Liao, C.; Li, L. Tannic-acid-coated polypropylene membrane as a separator for lithium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 16003−16010. doi: 10.1021/acsami.5b04245

    4. [4]

      Park, S. H.; Kwon, S. J.; Shin, M. G.; Park, M. S.; Lee, J. S.; Park, C. H.; Park, H.; Lee, J. H. Polyethylene-supported high performance reverse osmosis membranes with enhanced mechanical and chemical durability. Desalination 2018, 436, 28−38. doi: 10.1016/j.desal.2018.02.007

    5. [5]

      Zhu, X.; Tang, X.; Luo, X.; Cheng, X.; Xu, D.; Gan, Z.; Wang, W.; Bai, L.; Li, G.; Liang, H. Toward enhancing the separation and antifouling performance of thin-film composite nanofiltration membranes: a novel carbonate-based preoccupation strategy. J. Colloid Interface Sci. 2020, 571, 155−165. doi: 10.1016/j.jcis.2020.03.044

    6. [6]

      Lu, W.; Yuan, Z.; Zhao, Y.; Zhang, H.; Zhang, H.; Li, X. Porous membranes in secondary battery technologies. Chem. Soc. Rev. 2017, 46, 2199−2236. doi: 10.1039/C6CS00823B

    7. [7]

      Chu, F.; Kimura, Y. Structure and gas permeability of microporous films prepared by biaxial drawing of β-form polypropylene. Polymer 1996, 37, 573−579. doi: 10.1016/0032-3861(96)83143-0

    8. [8]

      Luo, B.; Li, Z.; Zhang, J.; Wang, X. Formation of anisotropic microporous isotactic polypropylene (iPP) membrane via thermally induced phase separation. Desalination 2008, 233, 19−31. doi: 10.1016/j.desal.2007.09.023

    9. [9]

      Wu, T.; Xiang, M.; Cao, Y.; Kang, J.; Yang, F. Pore formation mechanism of β nucleated polypropylene stretched membranes. RSC Adv. 2014, 4, 36689−36701. doi: 10.1039/C4RA03589E

    10. [10]

      Wu, G. G.; Chen, W. B.; Ding, C.; Xu, L. Y.; Liu, Z. Y.; Yang, W.; Yang, M. B. Pore formation mechanism of oriented β polypropylene cast films during stretching and optimization of stretching methods: in situ SAXS and WAXD studies. Polymer 2019, 163, 86−95. doi: 10.1016/j.polymer.2018.12.051

    11. [11]

      Li, J. X.; Cheung, W. L.; Chan, C. M. On deformation mechanisms of β-polypropylene 2. Changes of lamellar structure caused by tensile load. Polymer 1999, 40, 2089−2102. doi: 10.1016/S0032-3861(98)00412-1

    12. [12]

      Xu, R. J.; Chen, X. D.; Xie, J. Y.; Cai, Q.; Lei, C. H. Influence of melt-draw ratio on the crystalline structure and properties of polypropylene cast film and stretched microporous membrane. Ind. Eng. Chem. Res. 2015, 54, 2991−2999. doi: 10.1021/acs.iecr.5b00215

    13. [13]

      Zeng, F.; Xu, R.; Ye, L.; Xiong, B.; Kang, J.; Xiang, M.; Li, L.; Sheng, X.; Hao, Z. Effects of heat setting on the morphology and performance of polypropylene separator for lithium ion batteries. Ind. Eng. Chem. Res. 2019, 58, 2217−2224. doi: 10.1021/acs.iecr.8b05782

    14. [14]

      Lee, H.; Yanilmaz, M.; Toprakci, O.; Fu, K.; Zhang, X. A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ. Sci. 2014, 7, 3857−3886. doi: 10.1039/C4EE01432D

    15. [15]

      Wu, G. G.; Ding, C.; Chen, W. B.; Zhang, Y.; Yang, W.; Yang, M. B. Effect of the content of β form crystals on biaxially stretched polypropylene microporous membranes and the tuning of pore structures. Polymer 2019, 175, 177−185. doi: 10.1016/j.polymer.2019.05.003

    16. [16]

      Zhang, D.; Ding, L.; Yang, F.; Lan, F.; Cao, Y.; Xiang, M. Effect of annealing on the microvoid formation and evolution during biaxial stretching of β nucleated isotactic polypropylene. Polym-plast. Tech. Mater. 2020, 59, 1595−1607. doi: 10.1080/25740881.2020.1758136

    17. [17]

      Zhang, C.; Liu, G.; Song, Y.; Zhao, Y.; Wang, D. Structural evolution of β-iPP during uniaxial stretching studied by in situ WAXS and SAXS. Polymer 2014, 55, 6915−6923. doi: 10.1016/j.polymer.2014.10.049

    18. [18]

      Xiande, C.; Ruijie, X.; Jiayi, X.; Yuanfei, L.; Caihong, L.; Liangbin, L. The study of room-temperature stretching of annealed polypropylene cast film with row-nucleated crystalline structure. Polymer 2016, 94, 31−42. doi: 10.1016/j.polymer.2016.04.054

    19. [19]

      Wu, G. G.; Xu, L. Y.; Chen, W. B.; Ding, C.; Liu, Z. Y.; Yang, W.; Yang, M. B. Oriented polypropylene cast films consisted of β-transcrystals induced by the nucleating agent self-assembly and its homogeneous membranes with high porosity. Polymer 2018, 151, 136−144. doi: 10.1016/j.polymer.2018.07.066

    20. [20]

      Sadeghi, F.; Ajji, A.; Carreau, P. J. Analysis of microporous membranes obtained from polypropylene films by stretching. J. Membr. Sci. 2007, 292, 62−71. doi: 10.1016/j.memsci.2007.01.023

    21. [21]

      Lyu, D.; Chen, R.; Lu, Y.; Men, Y. Subsequent but independent cavitation processes in isotactic polypropylene during stretching at small- and large-strain regimes. Ind. Eng. Chem. Res. 2018, 57, 8927−8937. doi: 10.1021/acs.iecr.8b01650

    22. [22]

      Lin, Y.; Chen, W.; Meng, L.; Wang, D.; Li, L. Recent advances in post-stretching processing of polymer films with in situ synchrotron radiation X-ray scattering. Soft Matter 2020, 16, 3599−3612. doi: 10.1039/C9SM02554E

    23. [23]

      Li, S.; Zheng, G.; Jia, Z.; Zhang, Z.; Liu, C.; Chen, J.; Li, Q.; Shen, C.; Peng, X. Effect of stretching on β-phase content of isotactic polypropylene melt containing β-nucleating agent. J. Macromol. Sci. B 2011, 51, 828−838.

    24. [24]

      Offord, G. T.; Armstrong, S. R.; Freeman, B. D.; Baer, E.; Hiltner, A.; Swinnea, J. S.; Paul, D. R. Porosity enhancement in β nucleated isotactic polypropylene stretched films by thermal annealing. Polymer 2013, 54, 2577−2589. doi: 10.1016/j.polymer.2013.03.026

    25. [25]

      Wu, T.; Xiang, M.; Cao, Y.; Yang, F. Influence of annealing on stress-strain behaviors and performances of β nucleated polypropylene stretched membranes. J. Polym. Res. 2014, 21, 598.

    26. [26]

      Yang, S.; Gu, J.; Yin, Y. A biaxial stretched β-isotactic polypropylene microporous membrane for lithium-ion batteries. J. Appl. Polym. Sci. 2018, 135, 45825.

    27. [27]

      Yang, F.; Wu, T.; Xiang, M.; Cao, Y. Deformation and pore formation mechanism of β nucleated polypropylene with different supermolecular structures. Eur. Polym. J. 2017, 91, 134−148. doi: 10.1016/j.eurpolymj.2017.03.059

    28. [28]

      Ding, L.; Ge, Q.; Xu, G.; Wu, T.; Yang, F.; Xiang, M. Influence of oriented β-lamellae on deformation and pore formation in β-nucleated polypropylene. J. Polym. Sci., Part B: Polym. Phys. 2017, 55, 1745−1759. doi: 10.1002/polb.24423

    29. [29]

      Zhu, Y.; Zhao, Y.; Fu, Q. Toward uniform pore-size distribution and high porosity of isotactic polypropylene microporous membrane by adding a small amount of ultrafine full-vulcanized powder rubber. Polymer 2016, 103, 405−414. doi: 10.1016/j.polymer.2016.09.023

    30. [30]

      Bao, R.; Ding, Z.; Zhong, G.; Yang, W.; Xie, B.; Yang, M. Deformation-induced morphology evolution during uniaxial stretching of isotactic polypropylene: effect of temperature. Colloid Polym. Sci. 2012, 290, 261−274.

    31. [31]

      Bao, R. Y.; Ding, Z. T.; Liu, Z. Y.; Yang, W.; Xie, B. H.; Yang, M. B. Deformation-induced structure evolution of oriented β-polypropylene during uniaxial stretching. Polymer 2013, 54, 1259−1268. doi: 10.1016/j.polymer.2012.12.050

    32. [32]

      Kurihara, H.; Kitade, S.; Ichino, K.; Akiba, I.; Sakurai, K. Elongation induced β- to α-crystalline transformation and microvoid formation in isotactic polypropylene as revealed by time-resolved WAXS/SAXS. Polym. J. 2018, 51, 199−209.

    33. [33]

      Chen, Q.; Wang, Z.; Zhang, S.; Cao, Y.; Chen, J. Structure evolution and deformation behavior of polyethylene film during biaxial stretching. ACS Omega 2020, 5, 655−666. doi: 10.1021/acsomega.9b03250

    34. [34]

      Jariyasakoolroj, P.; Tashiro, K.; Wang, H.; Yamamoto, H.; Chinsirikul, W.; Kerddonfag, N.; Chirachanchai, S. Isotropically small crystalline lamellae induced by high biaxial-stretching rate as a key microstructure for super-tough polylactide film. Polymer 2015, 68, 234−245. doi: 10.1016/j.polymer.2015.05.006

    35. [35]

      Zhang, D.; Ding, L.; Yang, F.; Lan, F.; Cao, Y.; Xiang, M. Structural evolution of β-iPP with different supermolecular structures during the simultaneous biaxial stretching process. Polym. J. 2021, 53, 331−344. doi: 10.1038/s41428-020-00430-6

    36. [36]

      Chen, Z.; Kang, W.; Kang, J.; Chen, J.; Yang, F.; Cao, Y.; Xiang, M. Non-isothermal crystallization behavior and melting behavior of Ziegler-Natta isotactic polypropylene with different stereo-defect distribution nucleated with bi-component β-nucleation agent. Polym. Bull. 2015, 72, 3283−3303. doi: 10.1007/s00289-015-1466-5

    37. [37]

      Chen, X.; Lv, F.; Su, F.; Ji, Y.; Meng, L.; Wan, C.; Lin, Y.; Li, X.; Li, L. Deformation mechanism of iPP under uniaxial stretching over a wide temperature range: an in situ synchrotron radiation SAXS/WAXS study. Polymer 2017, 118, 12−21. doi: 10.1016/j.polymer.2017.04.054

    38. [38]

      Bai, H.; Wang, Y.; Zhang, Z.; Han, L.; Li, Y.; Liu, L.; Zhou, Z.; Men, Y. Influence of annealing on microstructure and mechanical properties of isotactic polypropylene with β-phase nucleating agent. Macromolecules 2009, 42, 6647−6655. doi: 10.1021/ma9001269

    39. [39]

      Xiong, B.; Kang, J.; Chen, R.; Men, Y. Initiation of cavitation upon drawing of pre-oriented polypropylene film: in situ SAXS and WAXD studies. Polymer 2017, 128, 57−64. doi: 10.1016/j.polymer.2017.09.017

    40. [40]

      Jones, A. T.; Aizlewood, J. M.; Beckett, D. R. Crystalline forms of isotactic polypropylene. Makromol. Chem. 1964, 75, 134−158. doi: 10.1002/macp.1964.020750113

    41. [41]

      Hermans, P. H.; Platzek, P. Beitrge zur Kenntnis des Deformationsmechanismus und der Feinstruktur der Hydratzellulose. Kolloid-Zeitschrift 1939, 88, 68−72. doi: 10.1007/BF01518890

    42. [42]

      Lu, X.; Li, X. Preparation of polyvinylidene fluoride membrane via a thermally induced phase separation using a mixed diluent. J. Appl. Polym. Sci. 2009, 114, 1213−1219. doi: 10.1002/app.30184

    43. [43]

      Chen, Q.; Chen, D.; Kang, J.; Cao, Y.; Chen, J. Structure evolution of polyethylene in sequential biaxial stretching along the first tensile direction. Ind. Eng. Chem. Res. 2019, 58, 12419−12430. doi: 10.1021/acs.iecr.9b01733

    44. [44]

      Fischer, S.; Diesner, T.; Rieger, B.; Marti, O. Simulating and evaluating small-angle X-ray scattering of micro-voids in polypropylene during mechanical deformation. J. Appl. Crystallogr. 2010, 43, 603−610. doi: 10.1107/S0021889810006163

    45. [45]

      Thomas, C.; Ferreiro, V.; Coulon, G.; Seguela, R. In situ AFM investigation of crazing in polybutene spherulites under tensile drawing. Polymer 2007, 48, 6041−6048. doi: 10.1016/j.polymer.2007.07.062

    46. [46]

      Sun, W.; Chen, T.; Chen, C.; Li, J. A study on membrane morphology by digital image processing. J. Membr. Sci. 2007, 305, 93−102. doi: 10.1016/j.memsci.2007.07.040

  • 加载中
    1. [1]

      Fa-sheng ZouXia DongWei LiuDu-jin WangCharles C. Han . Phase Behavior Actuating Morphology and Rheological Response of Polybutadiene/Polyisoprene Blends under Small Amplitude Oscillatory Shear. Chinese J. Polym. Sci, 2014, 32(6): 718-730. doi: 10.1007/s10118-014-1443-8

    2. [2]

      Rui ZhangYou-xin JiQian-lei ZhangJian-zhu JuAli SarmadLi-fu LiHao-yuan ZhaoLiang-bin Li . A Universal Blown Film Apparatus for in Situ X-ray Measurements. Chinese J. Polym. Sci, 2017, 35(12): 1508-1516. doi: 10.1007/s10118-017-2000-z

    3. [3]

      Ling-pu MengYuan-fei LinJia-li XuXiao-wei ChenXue-yu LiQian-lei ZhangRui ZhangNan TianLiang-bin Li . A Universal Equipment for Biaxial Stretching of Polymer Films. Chinese J. Polym. Sci, 2015, 33(5): 754-762. doi: 10.1007/s10118-015-1623-1

    4. [4]

      Yao GaoGui-ying ZongHong-wei BaiQiang Fu . Combined Effects of Stretching and Nanofillers on the Crystalline Structure and Mechanical Properties of Polypropylene and Single-walled Carbon Nanotube Composite Fibers. Chinese J. Polym. Sci, 2014, 32(2): 245-254. doi: 10.1007/s10118-014-1397-x

    5. [5]


    6. [6]


    7. [7]

      Shan WangAmir SaffarAbdellah AjjiHong WuShao-yun Guo . Fabrication of Microporous Membranes from Melt Extruded Polypropylene Precursor Films via Stretching: Effect of Annealing. Chinese J. Polym. Sci, 2015, 33(7): 1028-1037. doi: 10.1007/s10118-015-1643-x

    8. [8]

      Ying LuYing-ying SunRan ChenXiu-hong LiYong-feng Men . Deformation Temperature and Lamellar Thickness Dependency of Form Ⅰ to Form Ⅲ Phase Transition in Syndiotactic Polypropylene during Tensile Stretching. Chinese J. Polym. Sci, 2014, 32(9): 1210-1217. doi: 10.1007/s10118-014-1494-x

    9. [9]

      QIAN RenyuanWANG TianguiSHEN Jingshu . ACOUSTIC EMISSION DURING STRETCHING OF POLYMERS. Chinese J. Polym. Sci, 1983, 1(2): 168-175.

    10. [10]


    11. [11]

      Qi LiuHui-hui LiShou-ke Yan . Structure and Properties of -Polypropylene Reinforced by Polypropylene Fiber and Polyamide Fiber. Chinese J. Polym. Sci, 2014, 32(4): 509-518. doi: 10.1007/s10118-014-1417-x

    12. [12]

      Hai-yan WuXiao-xi LiFang-ming XiangTing HuangYun-yun ShiYong Wang . MICROSTRUCTURE EVOLUTION OF ISOTACTIC POLYPROPYLENE DURING ANNEALING: EFFECT OF POLY(ETHYLENE OXIDE). Chinese J. Polym. Sci, 2012, 30(2): 199-208. doi: 10.1007/s10118-012-1121-7

    13. [13]

      Hong-ge Tan aZi-yu Wang bWen-fang Zhu aQing-gong Song aHui Li cCui-qin Bai a . STRUCTURE EVOLUTION OF THE CYLINDRICAL PHASE OF DIBLOCK COPOLYMERS IN FILMS. Chinese J. Polym. Sci, 2008, 26(6): 759-766.

    14. [14]

      Zhe Wang abRong-jun Song acXiao-hua Du abXiao-yu Meng abZhi-wei Jiang aTao Tang a . STRUCTURAL EVOLUTION AND COMPOSITION CHANGE IN THE SURFACE REGION OF POLYPROPYLENE/CLAY NANOCOMPOSITES ANNEALED AT HIGH TEMPERATURES. Chinese J. Polym. Sci, 2009, 27(6): 879-888.

    15. [15]

      Ding-ding HuShi-bing YeFei YuJia-chun Feng . Further Understanding on the Three Domains of Isotactic Polypropylene by Investigating the Crystalline Morphologies Evolution after Treatment at Different Domains. Chinese J. Polym. Sci, 2016, 34(3): 344-358. doi: 10.1007/s10118-016-1745-0

    16. [16]

      Xiu-qin ZhangBao-quan XieRong-bo LiLei KongDu-jin Wang . ANNEALING INDUCED VARIATION OF CRYSTALLINE STRUCTURE AND MECHANICAL PROPERTIES OF SYNDIOTACTIC POLYPROPYLENE FIBERS. Chinese J. Polym. Sci, 2010, 28(3): 377-384. doi: 10.1007/s10118-010-9033-x

    17. [17]


    18. [18]

      Gui-qiu MaXiong-wu DengDing-hao ZhangJing Sheng . Investigations on Structure and Properties of Blends of Polypropylene with Polyamide 1010 by Rayleigh Scattering. Chinese J. Polym. Sci, 2014, 32(4): 411-423. doi: 10.1007/s10118-014-1400-6

    19. [19]

      Ya-Ping MaNing ZhangWei-Ping ZhengAi-Hua HeChen-Guang Liu . Structure and Properties of Isotactic Polypropylene/Polybutene-1 In-reactor Alloys. Chinese J. Polym. Sci, 2020, 38(12): 1382-1391. doi: 10.1007/s10118-020-2468-9

    20. [20]

      QIAN RenyuanSHEN Jingshu . ON THE ORIGIN OF STRESS PEAK IN UNI-AXIAL STRETCHING OF AMORPHOUS POLYMERS. Chinese J. Polym. Sci, 1997, 15(4): 332-337.

Article Metrics
  • PDF Downloads(0)
  • Abstract views(431)
  • HTML views(207)
  • Cited By(0)

通讯作者: 陈斌,
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索


DownLoad:  Full-Size Img  PowerPoint