Citation: Cai, W. B.; Liu, D. D.; Chen, Y.; Zhang, L.; Tan, J. B. Enzyme-assisted photoinitiated polymerization-induced self-assembly in continuous flow reactors with oxygen tolerance. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-021-2533-z doi: 10.1007/s10118-021-2533-z shu

Enzyme-assisted Photoinitiated Polymerization-induced Self-assembly in Continuous Flow Reactors with Oxygen Tolerance

  • Corresponding author: Jian-Bo Tan, E-mail: tanjianbo@gdut.edu.cn
  • Received Date: 2020-11-03
    Available Online: 2021-02-01

Figures(11)

  • Polymerization-induced self-assembly (PISA) is an emerging method for the preparation of block copolymer nano-objects at high concentrations. However, most PISA formulations have oxygen inhibition problems and inert atmospheres (e.g. argon, nitrogen) are usually required. Moreover, the large-scale preparation of block copolymer nano-objects at room temperature is challenging. Herein, we report an enzyme-assisted photoinitiated polymerization-induced self-assembly (photo-PISA) in continuous flow reactors with oxygen tolerance. The addition of glucose oxidase (GOx) and glucose into the reaction mixture can consume oxygen efficiently and constantly, allow the flow photo-PISA to be performed under open-air conditions. Polymerization kinetics indicated that only a small amount of GOx (0.5 μmol/L) was needed to achieve the oxygen tolerance. Block copolymer nano-objects with different morphologies can be prepared by varying reaction conditions including the degree of polymerization (DP) of core-forming block, monomer concentration, reaction temperature, and solvent composition. We expect this study will provide a facile platform for the large-scale production of block copolymer nano-objects with different morphologies at room temperature.
  • 加载中
    1. [1]

      Zhu, Y.; Yang, B.; Chen, S.; Du, J. Polymer vesicles: mechanism, preparation, application, and responsive behavior. Prog. Polym. Sci. 2017, 64, 1−22. doi: 10.1016/j.progpolymsci.2015.05.001

    2. [2]

      Zhang, W. J.; Hong, C. Y.; Pan, C. Y. Polymerization-induced self-assembly of functionalized block copolymer nanoparticles and their application in drug delivery. Macromol. Rapid Commun. 2019, 40, 1800279. doi: 10.1002/marc.201800279

    3. [3]

      He, J.; Cao, J.; Chen, Y.; Zhang, L.; Tan, J. Thermoresponsive block copolymer vesicles by visible light-initiated seeded polymerization-induced self-assembly for temperature-regulated enzymatic nanoreactors. ACS Macro Lett. 2020, 9, 533−539. doi: 10.1021/acsmacrolett.0c00151

    4. [4]

      Jin, X. H.; Price, M. B.; Finnegan, J. R.; Boott, C. E.; Richter, J. M.; Rao, A.; Menke, S. M.; Friend, R. H.; Whittell, G. R.; Manners, I. Long-range exciton transport in conjugated polymer nanofibers prepared by seeded growth. Science 2018, 360, 897−900. doi: 10.1126/science.aar8104

    5. [5]

      Ning, Y.; Fielding, L. A.; Ratcliffe, L. P. D.; Wang, Y. W.; Meldrum, F. C.; Armes, S. P. Occlusion of sulfate-based diblock copolymer nanoparticles within calcite: effect of varying the surface density of anionic stabilizer chains. J. Am. Chem. Soc. 2016, 138, 11734−11742. doi: 10.1021/jacs.6b05563

    6. [6]

      Nguyen, D.; Such, C.; Hawkett, B. Polymer-TiO2 composite nanorattles via RAFT-mediated emulsion polymerization. J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 346−352. doi: 10.1002/pola.25038

    7. [7]

      He, J.; Xu, Q.; Tan, J.; Zhang, L. Ketone-functionalized polymer nano-objects prepared via photoinitiated polymerization-induced self-assembly (photo-PISA) using a poly(diacetone acrylamide)-based macro-RAFT agent. Macromol. Rapid Commun. 2019, 40, 1800296. doi: 10.1002/marc.201800296

    8. [8]

      Tian, H.; Qin, J.; Hou, D.; Li, Q.; Li, C.; Wu, Z. S.; Mai, Y. General interfacial self-assembly engineering for patterning two-dimensional polymers with cylindrical mesopores on graphene. Angew. Chem. Int. Ed. 2019, 58, 10173−10178. doi: 10.1002/anie.201903684

    9. [9]

      Mai, Y.; Eisenberg, A. Self-assembly of block copolymers. Chem. Soc. Rev. 2012, 41, 5969−5985. doi: 10.1039/c2cs35115c

    10. [10]

      Wan, W. M.; Hong, C. Y.; Pan, C. Y. One-pot synthesis of nanomaterials via RAFT polymerization induced self-assembly and morphology transition. Chem. Commun. 2009, 5883−5885.

    11. [11]

      Wan, W. M.; Pan, C. Y. One-pot synthesis of polymeric nanomaterials via RAFT dispersion polymerization induced self-assembly and re-organization. Polym. Chem. 2010, 1, 1475−1484. doi: 10.1039/c0py00124d

    12. [12]

      He, W. D.; Sun, X. L.; Wan, W. M.; Pan, C. Y. Multiple morphologies of PAA-b-PSt assemblies throughout RAFT dispersion polymerization of styrene with PAA macro-CTA. Macromolecules 2011, 44, 3358−3365. doi: 10.1021/ma2000674

    13. [13]

      Boissé, S.; Rieger, J.; Belal, K.; Di-Cicco, A.; Beaunier, P.; Li, M. H.; Charleux, B. Amphiphilic block copolymer nano-fibers via RAFT-mediated polymerization in aqueous dispersed system. Chem. Commun. 2010, 46, 1950−1952. doi: 10.1039/b923667h

    14. [14]

      Charleux, B.; Delaittre, G.; Rieger, J.; D’Agosto, F. Polymerization-induced self-assembly: from soluble macromolecules to block copolymer nano-objects in one step. Macromolecules 2012, 45, 6753−6765. doi: 10.1021/ma300713f

    15. [15]

      Li, Y.; Armes, S. P. RAFT synthesis of sterically stabilized methacrylic nanolatexes and vesicles by aqueous dispersion polymerization. Angew. Chem. Int. Ed. 2010, 49, 4042−4046. doi: 10.1002/anie.201001461

    16. [16]

      Blanazs, A.; Madsen, J.; Battaglia, G.; Ryan, A. J.; Armes, S. P. Mechanistic insights for block copolymer morphologies: how do worms form vesicles? J. Am. Chem. Soc. 2011, 133, 16581−16587. doi: 10.1021/ja206301a

    17. [17]

      Ding, Z.; Ding, M.; Gao, C.; Boyer, C.; Zhang, W. In situ synthesis of coil-coil diblock copolymer nanotubes and tubular Ag/polymer nanocomposites by RAFT dispersion polymerization in poly(ethylene glycol). Macromolecules 2017, 50, 7593−7602. doi: 10.1021/acs.macromol.7b01363

    18. [18]

      Huang, J.; Guo, Y.; Gu, S.; Han, G.; Duan, W.; Gao, C.; Zhang, W. Multicompartment block copolymer nanoparticles: recent advances and future perspectives. Polym. Chem. 2019, 10, 3426−3435. doi: 10.1039/C9PY00452A

    19. [19]

      Li, S.; Nie, H.; Gu, S.; Han, Z.; Han, G.; Zhang, W. Synthesis of multicompartment nanoparticles of ABC miktoarm star polymers by seeded RAFT dispersion polymerization. ACS Macro Lett. 2019, 8, 783−788. doi: 10.1021/acsmacrolett.9b00371

    20. [20]

      Li, S.; Han, G.; Zhang, W. Cross-linking approaches for block copolymer nano-assemblies via RAFT-mediated polymerization-induced self-assembly. Polym. Chem. 2020, 11, 4681−4692. doi: 10.1039/D0PY00627K

    21. [21]

      Wang, X.; Shen, L.; An, Z. Dispersion polymerization in environmentally benign solvents via reversible deactivation radical polymerization. Prog. Polym. Sci. 2018, 83, 1−27. doi: 10.1016/j.progpolymsci.2018.05.003

    22. [22]

      Wang, X.; Man, S.; Zheng, J.; An, Z. Alkyl α-hydroxymethyl acrylate monomers for aqueous dispersion polymerization-induced self-assembly. ACS Macro Lett. 2018, 7, 1461−1467. doi: 10.1021/acsmacrolett.8b00839

    23. [23]

      Lv, F.; An, Z.; Wu, P. What determines the formation of block copolymer nanotubes? Macromolecules 2020, 53, 367−373. doi: 10.1021/acs.macromol.9b01868

    24. [24]

      Chen, X.; Liu, L.; Huo, M.; Zeng, M.; Peng, L.; Feng, A.; Wang, X.; Yuan, J. Direct synthesis of polymer nanotubes by aqueous dispersion polymerization of a cyclodextrin/styrene complex. Angew. Chem. Int. Ed. 2017, 56, 16541−16545. doi: 10.1002/anie.201709129

    25. [25]

      Huo, M.; Zeng, M.; Wu, D.; Wei, Y.; Yuan, J. Topological engineering of amphiphilic copolymers via RAFT dispersion copolymerization of benzyl methacrylate and 2-(perfluorooctyl)ethyl methacrylate for polymeric assemblies with tunable nanostructures. Polym. Chem. 2018, 9, 912−919. doi: 10.1039/C8PY00029H

    26. [26]

      Huo, M.; Ye, Q.; Che, H.; Wang, X.; Wei, Y.; Yuan, J. Polymer assemblies with nanostructure-correlated aggregation-induced emission. Macromolecules 2017, 50, 1126−1133. doi: 10.1021/acs.macromol.6b02499

    27. [27]

      Zeng, R.; Chen, Y.; Zhang, L.; Tan, J. R-RAFT or Z-RAFT? Well-defined star block copolymer nano-objects prepared by RAFT-mediated polymerization-induced self-assembly. Macromolecules 2020, 53, 1557−1566. doi: 10.1021/acs.macromol.0c00123

    28. [28]

      Tan, J.; Sun, H.; Yu, M.; Sumerlin, B. S.; Zhang, L. Photo-PISA: shedding light on polymerization-induced self-assembly. ACS Macro Lett. 2015, 4, 1249−1253. doi: 10.1021/acsmacrolett.5b00748

    29. [29]

      Dai, X.; Zhang, Y.; Yu, L.; Li, X.; Zhang, L.; Tan, J. Seeded photoinitiated polymerization-induced self-assembly: cylindrical micelles with patchy structures prepared via the chain extension of a third block. ACS Macro Lett. 2019, 8, 955−961. doi: 10.1021/acsmacrolett.9b00427

    30. [30]

      Liu, D.; He, J.; Zhang, L.; Tan, J. 100th Anniversary of macromolecular science viewpoint: heterogenous reversible deactivation radical polymerization at room temperature. Recent advances and future opportunities. ACS Macro Lett. 2019, 8, 1660−1669. doi: 10.1021/acsmacrolett.9b00870

    31. [31]

      Zhang, Y.; Yu, L.; Dai, X.; Zhang, L.; Tan, J. Structural difference in macro-RAFT agents redirects polymerization-induced self-assembly. ACS Macro Lett. 2019, 8, 1102−1109. doi: 10.1021/acsmacrolett.9b00509

    32. [32]

      Yu, L.; Dai, X.; Zhang, Y.; Zeng, Z.; Zhang, L.; Tan, J. Better RAFT control is better? Insights into the preparation of monodisperse surface-functional polymeric microspheres by photoinitiated RAFT dispersion polymerization Macromolecules 2019, 52, 7267−7277. doi: 10.1021/acs.macromol.9b01295

    33. [33]

      Yu, L.; Zhang, Y.; Dai, X.; Xu, Q.; Zhang, L.; Tan, J. Open-air preparation of cross-linked CO2-responsive polymer vesicles by enzyme-assisted photoinitiated polymerization-induced self-assembly. Chem. Commun. 2019, 55, 11920−11923. doi: 10.1039/C9CC05812E

    34. [34]

      Liu, D.; Cai, W.; Zhang, L.; Boyer, C.; Tan, J. Efficient photoinitiated polymerization-induced self-assembly with oxygen tolerance through dual-wavelength type I photoinitiation and photoinduced deoxygenation. Macromolecules 2020, 53, 1212−1223. doi: 10.1021/acs.macromol.9b02710

    35. [35]

      Zeng, R.; Chen, Y.; Zhang, L.; Tan, J. Uncontrolled polymerization that occurred during photoinitiated RAFT dispersion polymerization of acrylic monomers promotes the formation of uniform raspberry-like polymer particles. Polym. Chem. 2020, 11, 4591−4603. doi: 10.1039/D0PY00678E

    36. [36]

      Jiang, Y.; Xu, N.; Han, J.; Yu, Q.; Guo, L.; Gao, P.; Lu, X.; Cai, Y. The direct synthesis of interface-decorated reactive block copolymer nanoparticles via polymerisation-induced self-assembly. Polym. Chem. 2015, 6, 4955−4965. doi: 10.1039/C5PY00656B

    37. [37]

      Yu, Q.; Ding, Y.; Cao, H.; Lu, X.; Cai, Y. Use of polyion complexation for polymerization-induced self-assembly in water under visible light irradiation at 25 °C. ACS Macro Lett. 2015, 4, 1293−1296. doi: 10.1021/acsmacrolett.5b00699

    38. [38]

      Huang, L.; Ding, Y.; Ma, Y.; Wang, L.; Liu, Q.; Lu, X.; Cai, Y. Colloidal stable PIC vesicles and lamellae enabled by wavelength-orthogonal disulfide exchange and polymerization-induced electrostatic self-assembly. Macromolecules 2019, 52, 4703−4712. doi: 10.1021/acs.macromol.9b00571

    39. [39]

      Ding, Y.; Cai, M.; Cui, Z.; Huang, L.; Wang, L.; Lu, X.; Cai, Y. Synthesis of low-dimensional polyion complex nanomaterials via polymerization-induced electrostatic self-assembly. Angew. Chem. Int. Ed. 2018, 57, 1053−1056. doi: 10.1002/anie.201710811

    40. [40]

      Gao, P.; Cao, H.; Ding, Y.; Cai, M.; Cui, Z.; Lu, X.; Cai, Y. Synthesis of hydrogen-bonded pore-switchable cylindrical vesicles via visible-light-mediated RAFT room-temperature aqueous dispersion polymerization. ACS Macro Lett. 2016, 5, 1327−1331. doi: 10.1021/acsmacrolett.6b00796

    41. [41]

      Varlas, S.; Foster, J. C.; Georgiou, P. G.; Keogh, R.; Husband, J. T.; Williams, D. S.; O’Reilly, R. K. Tuning the membrane permeability of polymersome nanoreactors developed by aqueous emulsion polymerization-induced self-assembly. Nanoscale 2019, 11, 12643−12654. doi: 10.1039/C9NR02507C

    42. [42]

      Blackman, L. D.; Doncom, K. E. B.; Gibson, M. I.; O’Reilly, R. K. Comparison of photo- and thermally initiated polymerization-induced self-assembly: a lack of end group fidelity drives the formation of higher order morphologies. Polym. Chem. 2017, 8, 2860−2871. doi: 10.1039/C7PY00407A

    43. [43]

      Xu, S.; Ng, G.; Xu, J.; Kuchel, R. P.; Yeow, J.; Boyer, C. 2-(Methylthio)ethyl methacrylate: a versatile monomer for stimuli responsiveness and polymerization-induced self-assembly in the presence of air. ACS Macro Lett. 2017, 6, 1237−1244. doi: 10.1021/acsmacrolett.7b00731

    44. [44]

      Yeow, J.; Boyer, C. Photoinitiated polymerization-induced self-assembly (photo-PISA): new insights and opportunities. Adv. Sci. 2017, 4, 1700137. doi: 10.1002/advs.201700137

    45. [45]

      Yeow, J.; Shanmugam, S.; Corrigan, N.; Kuchel, R. P.; Xu, J.; Boyer, C. A polymerization-induced self-assembly approach to nanoparticles loaded with singlet oxygen generators. Macromolecules 2016, 49, 7277−7285. doi: 10.1021/acs.macromol.6b01581

    46. [46]

      Tan, J.; Liu, D.; Huang, C.; Li, X.; He, J.; Xu, Q.; Zhang, L. Photoinitiated polymerization-induced self-assembly of glycidyl methacrylate for the synthesis of epoxy-functionalized block copolymer nano-objects. Macromol. Rapid Commun. 2017, 38, 1700195. doi: 10.1002/marc.201700195

    47. [47]

      Xu, Q.; Zhang, Y.; Li, X.; He, J.; Tan, J.; Zhang, L. Enzyme catalysis-induced RAFT polymerization in water for the preparation of epoxy-functionalized triblock copolymer vesicles. Polym. Chem. 2018, 9, 4908−4916. doi: 10.1039/C8PY01053F

    48. [48]

      Tan, J.; Bai, Y.; Zhang, X.; Huang, C.; Liu, D.; Zhang, L. Low-temperature synthesis of thermoresponsive diblock copolymer nano-objects via aqueous photoinitiated polymerization-induced self-assembly (photo-PISA) using thermoresponsive Macro-RAFT agents. Macromol. Rapid Commun. 2016, 37, 1434−1440. doi: 10.1002/marc.201600299

    49. [49]

      Wang, L.; Ding, Y.; Liu, Q.; Zhao, Q.; Dai, X.; Lu, X.; Cai, Y. Sequence-controlled polymerization-induced self-assembly. ACS Macro Lett. 2019, 8, 623−628.

    50. [50]

      Zhang, Y.; He, J.; Dai, X.; Yu, L.; Tan, J.; Zhang, L. Combining the power of heat and light: temperature-programmed photoinitiated RAFT dispersion polymerization to tune polymerization-induced self-assembly. Polym. Chem. 2019, 10, 3902−3911. doi: 10.1039/C9PY00534J

    51. [51]

      Ma, Y.; Gao, P.; Ding, Y.; Huang, L.; Wang, L.; Lu, X.; Cai, Y. Visible light initiated thermoresponsive aqueous dispersion polymerization-induced self-assembly. Macromolecules 2019, 52, 1033−1041. doi: 10.1021/acs.macromol.8b02490

    52. [52]

      Zhao, Q.; Liu, Q.; Li, C.; Cao, L.; Ma, L.; Wang, X.; Cai, Y. Noncovalent structural locking of thermoresponsive polyion complex micelles, nanowires, and vesicles via polymerization-induced electrostatic self-assembly using an arginine-like monomer. Chem. Commun. 2020, 56, 4954−4957. doi: 10.1039/D0CC00427H

    53. [53]

      Tan, J.; Li, X.; Zeng, R.; Liu, D.; Xu, Q.; He, J.; Zhang, Y.; Dai, X.; Yu, L.; Zeng, Z.; Zhang, L. Expanding the scope of polymerization-induced self-assembly: Z-RAFT-mediated photoinitiated dispersion polymerization. ACS Macro Lett. 2018, 7, 255−262. doi: 10.1021/acsmacrolett.8b00035

    54. [54]

      Zhou, Y.; Gu, Y.; Jiang, K.; Chen, M. Droplet-flow photopolymerization aided by computer: overcoming the challenges of viscosity and facilitating the generation of copolymer libraries. Macromolecules 2019, 52, 5611−5617. doi: 10.1021/acs.macromol.9b00846

    55. [55]

      Reis, M. H.; Leibfarth, F. A.; Pitet, L. M. Polymerizations in continuous flow: recent advances in the synthesis of diverse polymeric materials. ACS Macro Lett. 2020, 9, 123−133. doi: 10.1021/acsmacrolett.9b00933

    56. [56]

      Zaquen, N.; Rubens, M.; Corrigan, N.; Xu, J.; Zetterlund, P. B.; Boyer, C.; Junkers, T. Polymer synthesis in continuous flow reactors. Prog. Polym. Sci. 2020, 107, 101256. doi: 10.1016/j.progpolymsci.2020.101256

    57. [57]

      Zaquen, N.; Azizi, W. A. A. W.; Yeow, J.; Kuchel, R. P.; Junkers, T.; Zetterlund, P. B.; Boyer, C. Alcohol-based PISA in batch and flow: exploring the role of photoinitiators. Polym. Chem. 2019, 10, 2406−2414. doi: 10.1039/C9PY00166B

    58. [58]

      Zaquen, N.; Yeow, J.; Junkers, T.; Boyer, C.; Zetterlund, P. B. Visible light-mediated polymerization-induced self-assembly using continuous flow reactors. Macromolecules 2018, 51, 5165−5172. doi: 10.1021/acs.macromol.8b00887

    59. [59]

      Tan, J.; Liu, D.; Bai, Y.; Huang, C.; Li, X.; He, J.; Xu, Q.; Zhang, L. Enzyme-assisted photoinitiated polymerization-induced self-assembly: an oxygen-tolerant method for preparing block copolymer nano-objects in open vessels and multiwell plates. Macromolecules 2017, 50, 5798−5806. doi: 10.1021/acs.macromol.7b01219

    60. [60]

      Tan, J.; Liu, D.; Bai, Y.; Huang, C.; Li, X.; He, J.; Xu, Q.; Zhang, X.; Zhang, L. An insight into aqueous photoinitiated polymerization-induced self-assembly (photo-PISA) for the preparation of diblock copolymer nano-objects. Polym. Chem. 2017, 8, 1315−1327. doi: 10.1039/C6PY02135B

    61. [61]

      Blanazs, A.; Ryan, A. J.; Armes, S. P. Predictive phase diagrams for RAFT aqueous dispersion polymerization: effect of block copolymer composition, molecular weight, and copolymer concentration. Macromolecules 2012, 45, 5099−5107. doi: 10.1021/ma301059r

    62. [62]

      Tan, J.; He, J.; Li, X.; Xu, Q.; Huang, C.; Liu, D.; Zhang, L. Rapid synthesis of well-defined all-acrylic diblock copolymer nano-objects via alcoholic photoinitiated polymerization-induced self-assembly (photo-PISA). Polym. Chem. 2017, 8, 6853−6864. doi: 10.1039/C7PY01652B

    63. [63]

      Zhang, Y.; Han, G.; Cao, M.; Guo, T.; Zhang, W. Influence of solvophilic homopolymers on RAFT polymerization-induced self-assembly. Macromolecules 2018, 51, 4397−4406. doi: 10.1021/acs.macromol.8b00690

  • 加载中
    1. [1]

      Shou-Kuo ManXiao WangJin-Wen ZhengZe-Sheng An . Effect of Butyl α-Hydroxymethyl Acrylate Monomer Structure on the Morphology Produced via Aqueous Emulsion Polymerization-induced Self-assembly. Chinese J. Polym. Sci, doi: 10.1007/s10118-019-2303-3

    2. [2]

      Ruoyu Li and Zesheng An . Photoenzymatic RAFT Emulsion Polymerization with Oxygen Tolerance. Chinese J. Polym. Sci, doi: 10.1007/s10118-021-2556-5

    3. [3]

      Sheng-li ChenPeng-fei ShiWang-qing ZhangIn Situ Synthesis of Block Copolymer Nano-assemblies by Polymerization-induced Self-assembly under Heterogeneous Condition. Chinese J. Polym. Sci, doi: 10.1007/s10118-017-1907-8

    4. [4]

      Chun-Na LvNing LiYu-Xuan DuJia-Hua LiXiang-Cheng Pan . Activation and Deactivation of Chain-transfer Agent in Controlled Radical Polymerization by Oxygen Initiation and Regulation

      . Chinese J. Polym. Sci, doi: 10.1007/s10118-020-2441-7

    5. [5]

      Wei SongYang YouTian-Jing LiJuan LiLiang Ding . Perylene Bisimide In-chain Polyethylene with Unique Self-assembly Nanostructure through Acyclic Diene Metathesis (ADMET) Polymerization. Chinese J. Polym. Sci, doi: 10.1007/s10118-018-2067-1

    6. [6]

      Huai-chao WangMing-zu ZhangPei-hong NiJin-lin HeYing HaoYi-xian Wu . SYNTHESIS OF pH-RESPONSIVE AMPHIPHILIC DIBLOCK COPOLYMERS CONTAINING POLYISOBUTYLENE via OXYANION-INITIATED POLYMERIZATION AND THEIR MULTIPLE SELF-ASSEMBLY MORPHOLOGIES. Chinese J. Polym. Sci, doi: 10.1007/s10118-013-1208-9

    7. [7]

      Wei-cai WangYan-xiong PanKai ShiChao PengXiang-ling Jia . Hierarchical Porous Polymer Beads Prepared by Polymerization-induced Phase Separation and Emulsion-template in a Microfluidic Device. Chinese J. Polym. Sci, doi: 10.1007/s10118-014-1547-1

    8. [8]

      LI JunWANG XiuzhiYANG YongyungLI MiaozhenWANG Erjian . A SENSITIZED PHOTOINITIATION SYSTEM ——BIS (7-DIETHYLAMINO COUMARIN ) KETONE-3 AND DIPHENYLIODONIUM SALT COMBINATION. Chinese J. Polym. Sci,

    9. [9]

      Guang-Xing Song Teng-Fei Miao Xiao-Xiao Cheng Hao-Tian Ma Zi-Xiang He Wei Zhang Zheng-Biao Zhang and Xiu-Lin Zhu . Construction of Chiroptical Switch on Silica Nanoparticle Surface via Chiral Self-assembly of Side-chain Azobenzene-containing Polymer. Chinese J. Polym. Sci, doi: 10.1007/s10118-021-2580-5

    10. [10]

      Jia-Lu Bai Dan Liu Rong Wang . Self-assembly of Amphiphilic Diblock Copolymers Induced by Liquid-Liquid Phase Separation. Chinese J. Polym. Sci, doi: 10.1007/s10118-021-2563-6

    11. [11]

      Ying LiYi Cao . The Physical Chemistry for the Self-assembly of Peptide Hydrogels. Chinese J. Polym. Sci, doi: 10.1007/s10118-018-2099-6

    12. [12]

      WU JinyuanYANG ChaoxiongWU Yuxian . TERMINATION AND TRANSFER OF THE CHAIN RADICALS IN THE POLYMERIZATION OF ACRYLONITRILE INITIATED BY VANADIUM(V)-THIOUREA REDOX SYSTEM. Chinese J. Polym. Sci,

    13. [13]

      Wei ZhaoTian-Pin WangJia-Li WuRu-Ping PanXiang-Yang LiuXi-Kui Liu . Monolithic Covalent Organic Framework Aerogels through Framework Crystallization Induced Self-assembly: Heading towards Framework Materials Synthesis over All Length Scales. Chinese J. Polym. Sci, doi: 10.1007/s10118-019-2313-1

    14. [14]

      Mineto UchiyamaMasataka SakaguchiKotaro SatohMasami Kamigaito . A User-friendly Living Cationic Polymerization: Degenerative Chain-transfer Polymerization of Vinyl Ethers by Simply Using Mixtures of Weak and Superstrong Protonic Acids. Chinese J. Polym. Sci, doi: 10.1007/s10118-019-2233-0

    15. [15]

      . IONIC SELF-ASSEMBLY AND HUMIDITY SENSITIVITY OF POLYELECTROLYTE MULTILAYERS*. Chinese J. Polym. Sci,

    16. [16]

      . FABRICATION OF SELF-ASSEMBLY DNA-C60 MULTILAYER FILMS. Chinese J. Polym. Sci,

    17. [17]

      Man-Zhu ZhaoDong-Bing ChengZhao-Ru ShangLei WangZeng-Ying QiaoJing-Ping ZhangHao Wang . An “In Vivo Self-assembly” Strategy for Constructing Superstructures for Biomedical Applications. Chinese J. Polym. Sci, doi: 10.1007/s10118-018-2170-3

    18. [18]

      Wen-juan QiuShi-ben LiYong-yun JiLin Xi Zhang . SELF-ASSEMBLY OF LINEAR TRIBLOCK COPOLYMERS UNDER CYLINDRICAL NANOPORE CONFINEMENTS. Chinese J. Polym. Sci, doi: 10.1007/s10118-013-1183-1

    19. [19]

      Xiao-yun LiuJian-mao YangLiu-sheng ZhaZi-jun Jiang . Self-assembly of Hollow PNIPAM Microgels to Form Discontinuously Hollow Fibers. Chinese J. Polym. Sci, doi: 10.1007/s10118-014-1508-8

    20. [20]

      Ying-dong XiaJi-zhong ChenTong-fei ShiLi-jia An . SELF-ASSEMBLY OF LINEAR ROD-COIL MULTIBLOCK COPOLYMERS. Chinese J. Polym. Sci, doi: 10.1007/s10118-013-1322-8

Article Metrics
  • PDF Downloads(4)
  • Abstract views(503)
  • HTML views(182)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return