Citation: Li, M. X.; Rong, M. Z.; Zhang, M. Q. Reversible mechanochemistry enabled autonomous sustaining of robustness of polymers—an example of next generation self-healing strategy. Chinese J. Polym. Sci. 2021, 39, 545–553 doi: 10.1007/s10118-021-2532-0 shu

Reversible Mechanochemistry Enabled Autonomous Sustaining of Robustness of Polymers—An Example of Next Generation Self-healing Strategy


  • Even under low external force, a few macromolecules of a polymer have to be much more highly stressed and fractured first due to the inherent heterogeneous microstructure. When the materials keep on working under loading, as is often the case, the minor damages would add up, endangering the safety of use. Here we show an innovative solution based on mechanochemically initiated reversible cascading variation of metal-ligand complexations. Upon loading, crosslinking density of the proof-of-concept metallopolymer networks autonomously increases, and recovers after unloading. Meanwhile, the stress-induced tiny fracture precursors are blocked to grow and then restored. The entire processes reversibly proceed free of manual intervention and catalyst. The proposed molecular-level internal equilibrium prevention mechanisms fundamentally enhance durability of polymers in service.
    1. [1]

      White, S. R.; Sottos, N. R.; Geubelle, P. H.; Moore, J. S.; Kessler, M. R.; Sriram, S. R.; Brown, E. N.; Viswanathan, S. Autonomic healing of polymer composites. Nature 2001, 409, 794−797. doi: 10.1038/35057232

    2. [2]

      Chen, X. X.; Dam, M. A.; Ono, K.; Mal, A.; Shen, H.; Nutt, S. R.; Sheran, K.; Wudl, F. A thermally re-mendable cross-linked polymeric material. Science 2002, 295, 1698−1702. doi: 10.1126/science.1065879

    3. [3]

      Chen, X. X.; Zhong, Q. Y.; Wang, S. J.; Wu, Y. S.; Tan, J. D.; Lei, H. X.; Huang, S. Y.; Zhang, Y. F. Progress in dynamic covalent polymers. Acta Polymerica Sinica (in Chinese) 2019, 50, 469−484.

    4. [4]

      Yin, Q. Y.; Dai, C. H.; Chen, H.; Gou, K.; Guan, H. Z.; Wang, P. H.; Jiang, J. T.; Weng, G. S. Tough double metal-ion cross-linked elastomers with temperature-adaptable self-healing and luminescence properties. Chinese J. Polym. Sci. 2021, DOI: 10.1007/s10118-021-2517-z.

    5. [5]

      Paulusse, J. M. J.; Sijbesma, R. P. Reversible mechanochemistry of a Pd(II) coordination polymer. Angew. Chem. Int. Ed. 2004, 43, 4460−4462. doi: 10.1002/anie.200460040

    6. [6]

      Kersey, F. R.; Loveless, D. M.; Craig, S. L. A hybrid polymer gel with controlled rates of cross-link rupture and self-repair. J. R. Soc. Interface 2007, 4, 373−380. doi: 10.1098/rsif.2006.0187

    7. [7]

      Piermattei, A.; Karthikeyan, S.; Sijbesma, R. P. Activating catalysts with mechanical force. Nat. Chem. 2009, 1, 133−137. doi: 10.1038/nchem.167

    8. [8]

      Balkenende, D. W. R.; Coulibaly, S.; Balog, S.; Simon, Y. C.; Fiore, G. L.; Weder, C. Mechanochemistry with metallosupramolecular polymers. J. Am. Chem. Soc. 2014, 136, 10493−10498. doi: 10.1021/ja5051633

    9. [9]

      Das, M.; Pal, S.; Naskar, K. Exploring various metal-ligand coordination bond formation in elastomers: mechanical performance and self-healing behavior. Express Polym. Lett. 2020, 14, 860−880. doi: 10.3144/expresspolymlett.2020.71

    10. [10]

      Wilker, J. J. Marine bioinorganic materials: mussels pumping iron. Curr. Opin. Chem. Biol. 2010, 14, 276−283. doi: 10.1016/j.cbpa.2009.11.009

    11. [11]

      Harrington, M. J.; Masic, A.; Holten-Andersen, N.; Waite, J. H.; Fratzl, P. Iron-clad fibers: a metal-based biological strategy for hard flexible coatings. Science 2010, 328, 216−220. doi: 10.1126/science.1181044

    12. [12]

      Zeng, H.; Hwang, D. S.; Israelachvili, J. N.; Waite, J. H. Strong reversible Fe3+-mediated bridging between DOPA-containing protein films in water. Proc. Natl. Acad. Sci. 2010, 107, 12850−12853. doi: 10.1073/pnas.1007416107

    13. [13]

      Waite, J. H.; Qin, X. X.; Coyne, K. J. The peculiar collagens of mussel byssus. J. Matrix Biol. 1998, 17, 93−106. doi: 10.1016/S0945-053X(98)90023-3

    14. [14]

      Krauss, S.; Metzger, T. H.; Fratzl, P.; Harrington, M. J. Self-repair of a biological fiber guided by an ordered elastic framework. Biomacromolecules 2013, 14, 1520−1528. doi: 10.1021/bm4001712

    15. [15]

      Dzhardimalieva, G. I.; Yadav, B. C.; Singh S.; Uflyand, I. E. Self-healing and shape memory metallopolymers: state-of-the-art and future perspectives. Dalton Trans. 2020, 49, 3042−3087. doi: 10.1039/C9DT04360H

    16. [16]

      Zechel, S.; Hager, M. D.; Priemel, T.; Harrington, M. J. Healing through histidine: bioinspired pathways to self-healing polymers via imidazole–metal coordination. Biomimetics 2019, 4, 20.

    17. [17]

      Enke, M.; Bode, S.; Vitz, J.; Schacher, F. H.; Harrington, M. J.; Hager, M. D.; Schubert, U. S. Self-healing response in supramolecular polymers based on reversible zinc-histidine interactions. Polymer 2015, 69, 274−282. doi: 10.1016/j.polymer.2015.03.068

    18. [18]

      Andersen, A.; Chen, Y.; Birkedal, H. Bioinspired metal-polyphenol materials: self-healing and beyond. Biomimetics 2019, 4, 30. doi: 10.3390/biomimetics4020030

    19. [19]

      Tunn, I.; Harrington, M. J.; Blank, K. G. Bioinspired histidine-Zn2+ coordination for tuning the mechanical properties of self-healing coiled coil cross-linked hydrogels. Biomimetics 2019, 4, 25.

    20. [20]

      Filippidi, E.; Cristiani, T. R.; Eisenbach, C. D.; Waite, J. H.; Israelachvili, J. N.; Ahn, K.; Valentine, M. T. Toughening elastomers using mussel-inspired iron-catechol complexes. Science 2017, 358, 502−505. doi: 10.1126/science.aao0350

    21. [21]

      Mozhdehi, D.; Neal, J. A.; Grindy, S. C.; Cordeau, Y.; Ayala, S.; Holten-Andersen, N.; Guan, Z. Tuning dynamic mechanical response in metallopolymer networks through simultaneous control of structural and temporal properties of the networks. Macromolecules 2016, 49, 6310−6321. doi: 10.1021/acs.macromol.6b01626

    22. [22]

      Grindy, S. C.; Learsch, R.; Mozhdehi, D.; Cheng, J.; Barrett, D. G.; Guan, Z.; Messersmith, P. B.; Holten-Andersen, N. Control of hierarchical polymer mechanics with bioinspired metal-coordination dynamics. Nat. Mater. 2015, 14, 1210−1216. doi: 10.1038/nmat4401

    23. [23]

      Holten-Andersen, N.; Harrington, M. J.; Irkedal, H. B.; Lee, B. P.; Messersmith, P. B.; Lee, K. Y. C.; Waite, J. H. pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli. Proc. Natl. Acad. Sci. 2011, 108, 2651−2655. doi: 10.1073/pnas.1015862108

    24. [24]

      Wang, J.; Liu, C.; Lu, X.; Yin, M. Co-polypeptides of 3,4-dihydroxyphenylalanine and L-lysine to mimic marine adhesive protein. Biomaterials 2007, 28, 3456−3468. doi: 10.1016/j.biomaterials.2007.04.009

    25. [25]

      Fullenkamp, D. E.; He, L.; Barrett, D. G.; Burghardt, W. R.; Messersmith, P. B. Mussel-inspired histidine-based transient network metal coordination hydrogels. Macromolecules 2013, 46, 1167−1174. doi: 10.1021/ma301791n

    26. [26]

      Andersson, M.; Hedin, J.; Johansson, P.; Nordström, J.; Nydén, M. Coordination of imidazoles by Cu(II) and Zn(II) as studied by NMR relaxometry, EPR, far-FTIR vibrational spectroscopy and Ab initio calculations: effect of methyl substitution. J. Phys. Chem. A 2010, 114, 13146−13153. doi: 10.1021/jp1062868

    27. [27]

      Schmidt, S.; Reinecke, A.; Wojcik, F.; Pussak, D.; Hartmann, L.; Harrington, M. J. Metal-mediated molecular self-healing in histidine-rich mussel peptides. Biomacromolecules 2014, 15, 1644−1652. doi: 10.1021/bm500017u

    28. [28]

      Li, Y.; Wen, J.; Qin, M.; Cao, Y.; Ma, H.; Wang, W. Single-molecule mechanics of catechol-iron coordination bonds. ACS Biomater. Sci. Eng. 2017, 3, 979−989. doi: 10.1021/acsbiomaterials.7b00186

    29. [29]

      Yang, B.; Lim, C.; Hwang, D. S.; Cha, H. J. Switch of surface adhesion to cohesion by dopa-Fe3+ complexation in response to microenvironment at the mussel plaque/substrate interface. Chem. Mater. 2016, 28, 7982−7989. doi: 10.1021/acs.chemmater.6b03676

    30. [30]

      Xu, Z. P. Mechanics of metal-catecholate complexes: the role of coordination state and metal types. Sci. Rep. 2013, 3, 2914−2920. doi: 10.1038/srep02914

    31. [31]

      Mozhdehi, D.; Ayala, S.; Cromwell, O. R.; Guan, Z. Self-healing multiphase polymers via dynamic metal-ligand interactions. J. Am. Chem. Soc. 2014, 136, 16128−16131. doi: 10.1021/ja5097094

    32. [32]

      Enke, M.; Jehle, F.; Bode, S.; Vitz, J.; Harrington, M. J.; Hager, M. D.; Schubert, U. S. Histidine-zinc interactions investigated by isothermal titration calorimetry (ITC) and their application in self-healing polymers. Macromol. Chem. Phys. 2017, 218, 1600458. doi: 10.1002/macp.201600458

    33. [33]

      Enke, M.; Bose, R. K.; Zechel, S.; Vitz, J.; Deubler, R.; Garcia, S. J.; Zwaag, S. V.; Schacher, F. H.; Hager, M. D.; Schubert, U. S. A translation of the structure of mussel byssal threads into synthetic materials by the utilization of histidine-rich block copolymers. Polym. Chem. 2018, 9, 3543−3551. doi: 10.1039/C8PY00663F

    34. [34]

      Harrington, M. J.; Gupta, H. S.; Fratzl, P.; Waite, J. H. Collagen insulated from tensile damage by domains that unfold reversibly: in situ X-ray investigation of mechanical yield and damage repair in the mussel byssus. J. Struct. Biol. 2009, 167, 47−54. doi: 10.1016/j.jsb.2009.03.001

    35. [35]

      Tang, J. D.; Li, J. Y.; Vlassak, J. J.; Suo, Z. G. Fatigue fracture of hydrogels. Extreme Mech. Lett. 2017, 10, 24−31. doi: 10.1016/j.eml.2016.09.010

    36. [36]

      Xia, N. N.; Xiong, X. M.; Wang, J.; Rong, M. Z.; Zhang, M. Q. A seawater triggered dynamic coordinate bond and its application for underwater self-healing and reclaiming of lipophilic polymer. Chem. Sci. 2016, 7, 2736−2742. doi: 10.1039/C5SC03483C

    37. [37]

      Zhu, D. Y.; Chen, X. J.; Hong, Z. P.; Zhang, L. Y.; Zhang, L.; Guo, J. W.; Rong, M. Z.; Zhang, M. Q. Repeatedly intrinsic self-healing of millimeter-scale wounds in polymer through rapid volume expansion aided host−guest interaction. ACS Appl. Mater. Interfaces 2020, 12, 22534−22542. doi: 10.1021/acsami.0c03523

    38. [38]

      Xia, N. N.; Rong, M. Z.; Zhang, M. Q.; Kuo, S. W. Stress intensification—an abnormal phenomenon observed during stress relaxation of dynamic coordination polymer. Express Polym. Lett. 2016, 10, 742−749. doi: 10.3144/expresspolymlett.2016.68

    39. [39]

      Lei, Y. F.; Shan, S. J.; Lin Y. L.; Zhang, A. Q. Network reconfiguration and unusual stress intensification of a dynamic reversible polyimine elastomer. Polymer 2020, 186, 122031. doi: 10.1016/j.polymer.2019.122031

    40. [40]

      Fortman, D. J.; Brutman, J. P.; Cramer, C. J.; Hillmyer, M. A.; Dichtel, W. R. Mechanically activated, catalyst-free polyhydroxyurethane vitrimers. J. Am. Chem. Soc. 2015, 137, 14019−14022. doi: 10.1021/jacs.5b08084

    41. [41]

      Liu, C.; Lafdi, K.; Chinesta, F. Durability sensor using low concentration carbon nano additives. Compos. Sci. Technol. 2020, 195, 108200. doi: 10.1016/j.compscitech.2020.108200

  • 加载中
    1. [1]

      Rabia SattarAyesha KausarMuhammad Siddiq . Thermal, Mechanical and Electrical Studies of Novel Shape Memory Polyurethane/Polyaniline Blends. Chinese J. Polym. Sci, 2015, 33(9): 1313-1324. doi: 10.1007/s10118-015-1680-5

    2. [2]

      Qian XingRong-bo LiXia DongXiu-qin ZhangLiao-yun ZhangDu-jin Wang . Phase Morphology, Crystallization Behavior and Mechanical Properties of Poly(L-lactide) Toughened with Biodegradable Polyurethane: Effect of Composition and Hard Segment Ratio. Chinese J. Polym. Sci, 2015, 33(9): 1294-1304. doi: 10.1007/s10118-015-1679-y

    3. [3]

      Han JiaKun ChangShu-Ying Gu . Synthesis and Properties of Reversible Disulfide Bond-based Self-healing Polyurethane with Triple Shape Memory Properties. Chinese J. Polym. Sci, 2019, 37(11): 1119-1129. doi: 10.1007/s10118-019-2268-2

    4. [4]

      Ge-Liang ZhuDi HanYe YuanFeng ChenQiang Fu . Improving Damping Properties and Thermal Stability of Epoxy/Polyurethane Grafted Copolymer by Adding Glycidyl POSS. Chinese J. Polym. Sci, 2018, 36(11): 1297-1302. doi: 10.1007/s10118-018-2145-4

    5. [5]

      Ni-jia SongLi-juan ZhouWen-kai LiuXue-ling HeZhi-cheng PanMing-ming DingXin-yuan WanJie-hua LiHong TanFeng LuoQiang Fu . Effect of Trastuzumab on the Micellization Properties, Endocytic Pathways and Antitumor Activities of Polyurethane-based Drug Delivery System. Chinese J. Polym. Sci, 2017, 35(8): 909-923. doi: 10.1007/s10118-017-1952-3

    6. [6]

      Long-mei WuShuang-quan LiaoSheng-jun ZhangXiao-ying BaiXue Hou . Enhancement of Mechanical Properties of Natural Rubber with Maleic Anhydride Grafted Liquid Polybutadiene Functionalized Graphene Oxide. Chinese J. Polym. Sci, 2015, 33(7): 1058-1068. doi: 10.1007/s10118-015-1652-9

    7. [7]

      Yu-han LiMi ZhouCheng-zhen GengFeng ChenQiang Fu . Simultaneous Improvements of Thermal Stability and Mechanical Properties of Poly(propylene carbonate) via Incorporation of Environmental-friendly Polydopamine. Chinese J. Polym. Sci, 2014, 32(12): 1724-1736. doi: 10.1007/s10118-014-1518-6

    8. [8]

      Yao GaoGui-ying ZongHong-wei BaiQiang Fu . Combined Effects of Stretching and Nanofillers on the Crystalline Structure and Mechanical Properties of Polypropylene and Single-walled Carbon Nanotube Composite Fibers. Chinese J. Polym. Sci, 2014, 32(2): 245-254. doi: 10.1007/s10118-014-1397-x

    9. [9]

      Jing-wei ChenJian DaiJing-hui YangNan ZhangTing HuangYong WangChao-liang Zhang . Annealing Induced Microstructure and Mechanical Property Changes of Impact Resistant Polypropylene Copolymer. Chinese J. Polym. Sci, 2015, 33(9): 1211-1224. doi: 10.1007/s10118-015-1668-1

    10. [10]

      Tianxi LiuHongdan PengYue-E MiaoWeng Weei TjiuLu ShenChun Wei . Synergistic Effect of Carbon Nanotubes and Layered Double Hydroxides on the Mechanical Reinforcement of Nylon-6 Nanocomposites. Chinese J. Polym. Sci, 2014, 32(10): 1276-1285. doi: 10.1007/s10118-014-1521-y

    11. [11]

      Yan-yan Yang aKai-zhou Zhang bYi-hu Song aQiang Zheng a . PREPARATION AND PROPERTIES OF WHEAT GLUTEN/RICE PROTEIN COMPOSITES PLASTICIZED WITH GLYCEROL. Chinese J. Polym. Sci, 2011, 29(1): 87-92. doi: 10.1007/s10118-010-9185-8

    12. [12]

      Susan AziziMansor Bin AhmadNor Azow IbrahimMohd Zobir HusseinFarideh Namvar . Preparation and Properties of Poly(vinyl alcohol)/Chitosan Blend Bio-nanocomposites Reinforced by Cellulose Nanocrystals. Chinese J. Polym. Sci, 2014, 32(12): 1620-1627. doi: 10.1007/s10118-014-1548-0

    13. [13]

      Yan-ping HaoHuan-huan GeLi-jing HanHui-liang ZhangLi-song Dong . THERMAL AND MECHANICAL PROPERTIES OF POLYLACTIDE TOUGHENED WITH A BUTYL ACRYLATE-ETHYL ACRYLATE-GLYCIDYL METHACRYLATE COPOLYMER. Chinese J. Polym. Sci, 2013, 31(11): 1519-1527. doi: 10.1007/s10118-013-1350-4

    14. [14]

      Habibollah BaharvandGhasem NaderiSedigheh Soltani . SBR COMPOSITES REINFORCED WITH N-ISOPROPYL-N'-PHENYL-P-PHENYLENEDIAMINE-MODIFIED CLAY. Chinese J. Polym. Sci, 2011, 29(2): 191-196. doi: 10.1007/s10118-010-1017-3

    15. [15]

      Zhuo-yue XiongXiao-yu KongZhao-xia GuoJian Yu . Poly(ethylene terephthalate)/Carbon Black Composite Fibers Prepared by Electrospinning. Chinese J. Polym. Sci, 2015, 33(9): 1234-1244. doi: 10.1007/s10118-015-1674-3

    16. [16]

      Jing-xiao HuXuan CaiShao-bo MoLi ChenXin-yu ShenHua Tong . Fabrication and Characterization of Chitosan-Silk Fibroin/Hydroxyapatite Composites via in situ Precipitation for Bone Tissue Engineering. Chinese J. Polym. Sci, 2015, 33(12): 1661-1671. doi: 10.1007/s10118-015-1710-3

    17. [17]

      Sangeeta GargAsim Kumar Jana . Preparation of LDPE-Acetylated/Butyrylated Starch Blend Blow Films and Characterization. Chinese J. Polym. Sci, 2014, 32(3): 268-279. doi: 10.1007/s10118-014-1403-3

    18. [18]

      Fang-zhen AnXue-qin GaoJun LeiCong DengZhong-ming LiKai-zhi Shen . Vibration Assisted Extrusion of Polypropylene. Chinese J. Polym. Sci, 2015, 33(5): 688-696. doi: 10.1007/s10118-015-1617-z

    19. [19]

      Hadi Rezaei-VahidianTohid FarajpourMahdi Abdollahi . Using an Inhibitor to Prevent Plasticizer Migration from Polyurethane Matrix to EPDM Based Substrate. Chinese J. Polym. Sci, 2019, 37(7): 681-686. doi: 10.1007/s10118-019-2251-y

    20. [20]

      Yuan YuanYu-lan Chen . Visualized Bond Scission in Mechanically Activated Polymers. Chinese J. Polym. Sci, 2017, 35(11): 1315-1327. doi: 10.1007/s10118-017-2002-x

Article Metrics
  • PDF Downloads(4)
  • Abstract views(504)
  • HTML views(274)
  • Cited By(0)

通讯作者: 陈斌,
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索


DownLoad:  Full-Size Img  PowerPoint