Citation: Cai, F.; Chen, Y. X.; Wang, W. Z.; Yu, H. F. Macroscopic regulation of hierarchical nanostructures in liquid-crystalline block copolymers towards functional materials. Chinese J. Polym. Sci. 2021, 39, 397–416 doi: 10.1007/s10118-021-2531-1 shu

Macroscopic Regulation of Hierarchical Nanostructures in Liquid-crystalline Block Copolymers towards Functional Materials

  • Corresponding author: Hai-Feng Yu, E-mail: yuhaifeng@pku.edu.cn
  • Received Date: 2020-11-01
    Available Online: 2020-12-17

Figures(24) / Tables(2)

  • The great potential of liquid-crystalline block copolymers (LCBCs) containing photoresponsive mesogens toward novel applications in photonics and nanotechnology has been attracting increasing attention, due to the combination of the inherent property of microphase separation of block copolymers and the hierarchically-assembled structures of liquid-crystalline polymers (LCPs). The periodically ordered nanostructures in bulk film of LCBCs can be acquired by supramolecular cooperative motion, derived from the interaction between liquid-crystalline elastic deformation and microphase separation, which are able to improve physical properties of polymer film toward advanced functional applications. Moreover, various micro/nano-patterned structures have been fabricated via light manipulation of photoresponsive LCBCs with good reproducibility and mass production. Thanks to recent developments in synthesis and polymerization techniques, diverse azobenzene-containing LCBCs have been designed, resulting in the creation of a wide variety of novel functions. This review illustrates recent progresses in macroscopic regulation of hierarchical nanostructures in LCBCs towards functional materials. The existing challenges are also discussed, showing perspectives for future studies.
  • 加载中
    1. [1]

      Fasolka, M. J.; Mayes, A. M. Block copolymer thin films: physics and applications. Ann. Rev. Mater. Res. 2001, 31, 323−355. doi: 10.1146/annurev.matsci.31.1.323

    2. [2]

      Bates, F. S.; Fredrickson, G. H. Block copolymers-designer soft materials. Phys. Today 1999, 52, 32−38.

    3. [3]

      Schacher, F.; Rupar, P.; Manners, I. Functional block copolymers: nanostructured materials with emerging applications. Angew. Chem. Int. Ed. 2012, 51, 7898−7921. doi: 10.1002/anie.201200310

    4. [4]

      Sun, Z.; Chen, Z.; Zhang, W.; Choi, J.; Huang, C.; Jeong, G.; Coughlin, E. B.; Hsu, Y.; Yang, Z.; Lee, K.; Kuo, D.; Xiao, C.; Russell, T. P. Directed self-assembly of poly(2-vinylpyridine)-b-polystyrene-b-poly(2-vinylpyridine) triblock copolymer with sub-15 nm spacing line patterns using a nanoimprinted photoresist template. Adv. Mater. 2015, 27, 4364−4370. doi: 10.1002/adma.201501585

    5. [5]

      Kim, J.; Yang, S.; Lee, Y.; Kim, Y. Functional nanomaterials based on block copolymer self-assembly. Prog. Polym. Sci. 2010, 35, 1325−1349. doi: 10.1016/j.progpolymsci.2010.06.002

    6. [6]

      Metwalli, E.; Korstgens, V.; Schlage, K.; Meier, R.; Kaune, G.; Buffet, A.; Couet, S.; Roth, S. V.; Rohlsberger, R.; Muller-Buschbaum, P. Cobalt nanoparticles growth on a block copolymer thin film: a time-resolved GISAXS study. Langmuir 2013, 29, 6331−6340. doi: 10.1021/la400741b

    7. [7]

      Roth, S. V.; Santoro, G.; Risch, J. F. H.; Yu, S.; Schwartzkopf, M.; Boese, T.; Dohrmann, R.; Zhang, P.; Besner, B.; Bremer, P.; Rukser, D.; Rubhausen, M. A.; Terrill, N. J.; Staniec, P. A.; Yao, Y.; Metwalli, E.; Muller-Buschbaum, P. Patterned diblock copolymer thin films as templates for advanced anisotropic metal nanostructures. ACS Appl. Mater. Interfaces 2015, 7, 12470−12477. doi: 10.1021/am507727f

    8. [8]

      Lu, X.; Li, J.; Zhu, D.; Xu, M.; Li, W.; Lu, Q. Double-helical nanostructures with controllable handedness in bulk diblock copolymers. Angew. Chem. Int. Ed. 2018, 57, 15148−15152. doi: 10.1002/anie.201809676

    9. [9]

      Seki, T. Light-directed alignment, surface morphing and related processes: recent trends. J. Mater. Chem. C 2016, 4, 7895−7910. doi: 10.1039/C6TC02482C

    10. [10]

      Nagano, S. Inducing planar orientation in side-chain liquid-crystalline polymer systems via interfacial control. Chem. Rec. 2016, 16, 378−392. doi: 10.1002/tcr.201500232

    11. [11]

      Fukuhara, K.; Fujii, Y.; Nagashima, Y.; Hara, M.; Nagano, S.; Seki, T. Liquid-crystalline polymer and block copolymer domain alignment controlled by free-surface segregation. Angew. Chem. Int. Ed. 2013, 52, 5988−5991. doi: 10.1002/anie.201300560

    12. [12]

      Fukuhara, K.; Nagano, S.; Hara, M.; Seki, T. Free-surface molecular command systems for photoalignment of liquid crystalline materials. Nat. Commun. 2014, 5, 3320.

    13. [13]

      Yu, H. Photoresponsive liquid-crystalline block copolymers: from photonics to nanotechnology. Prog. Polym. Sci. 2014, 39, 781−815. doi: 10.1016/j.progpolymsci.2013.08.005

    14. [14]

      Yu, H. Recent advances in photoresponsive liquid-crystalline polymers containing azobenzene chromophores. J. Mater. Chem. C 2014, 2, 3047−3054.

    15. [15]

      Mao, G.; Wang, J.; Clingman, S. R.; Ober, C. K.; Chen, J. T.; Thomas, E. L. Molecular design, synthesis, and characterization of liquid crystal-coil diblock copolymers with azobenzene side groups. Macromolecules 1997, 30, 2556−2567. doi: 10.1021/ma9617835

    16. [16]

      Tian, Y.; Watanabe, K.; Kong, X.; Abe, J.; Iyoda, T. Synthesis, nanostructures, and functionality of amphiphilic liquid crystalline block copolymers with azobenzene moieties. Macromolecules 2002, 35, 3739−3747.

    17. [17]

      Asaoka, S.; Uekusa, T.; Tokimori, H.; Komura, M.; Iyoda, T.; Yamada, T.; Yoshida, H. Normally oriented cylindrical nanostructures in amphiphilic PEO-LC diblock copolymers films. Macromolecules 2011, 44, 7645−7658. doi: 10.1021/ma201119u

    18. [18]

      Yu, H.; Iyoda, T.; Ikeda, T. Photoinduced alignment of nanocylinders by supramolecular cooperative motions. J. Am. Chem. Soc. 2006, 128, 11010−11011. doi: 10.1021/ja064148f

    19. [19]

      Yu, H.; Li, J.; Ikeda, T.; Iyoda, T. Macroscopic parallel nanocylinder array fabrication using a simple rubbing technique. Adv. Mater. 2006, 18, 2213−2215. doi: 10.1002/adma.200600582

    20. [20]

      Yu, H.; Kobayashi, T.; Hu, G. Photocontrolled microphase separation in a nematic liquid-crystalline diblock copolymer. Polymer 2011, 52, 1554−1561. doi: 10.1016/j.polymer.2011.01.053

    21. [21]

      Nagano, S.; Koizuka, Y.; Murase, T.; Sano, M.; Shinohara, Y.; Amemiya, Y.; Seki, T. Synergy effect on morphology switching: real-time observation of photo-orientation of microphase separation in a block copolymer. Angew. Chem. Int. Ed. 2012, 51, 5884−5888. doi: 10.1002/anie.201201346

    22. [22]

      Sano, M.; Hara, M.; Nagano, S.; Shinohara, Y.; Amemiya, Y.; Seki, T. New aspects for the hierarchical cooperative motions in photoalignment process of liquid crystalline block copolymer films. Macromolecules 2015, 48, 2217−2223. doi: 10.1021/acs.macromol.5b00299

    23. [23]

      Sano, M.; Shan, F.; Hara, M.; Nagano, S.; Shinohara, Y.; Amemiya, Y.; Seki, T. Dynamic photoinduced realignment processes in photoresponsive block copolymer films: effects of the chain length and block copolymer architecture. Soft Matter 2015, 11, 5918−5925. doi: 10.1039/C5SM01140J

    24. [24]

      Cai, F.; Zheng, F.; Lu, X.; Lu, Q. Control of the alignment of liquid crystal molecules on a sequence-polymerized film by surface migration and polarized light irradiation. Polym. Chem. 2017, 8, 7316−7324. doi: 10.1039/C7PY01576C

    25. [25]

      Yu, H.; Ikeda, T. Photocontrollable liquid-crystalline actuators. Adv. Mater. 2011, 23, 2149−2180. doi: 10.1002/adma.201100131

    26. [26]

      Ikeda, T. Photomodulation of liquid crystal orientations for photonic applications. J. Mater. Chem. 2003, 13, 2037−2057. doi: 10.1039/b306216n

    27. [27]

      Yu, H.; Kobayashi, T.; Yang, H. Liquid-crystalline ordering helps block copolymer self-assembly. Adv. Mater. 2011, 23, 3337−3344. doi: 10.1002/adma.201101106

    28. [28]

      Barrett, C. J.; Yager, K. G.; Mamiya, J.; Ikeda, T. Photo-mechanical effects in azobenzene-containing soft materials. Soft Matter 2007, 3, 1249−1261. doi: 10.1039/b705619b

    29. [29]

      Han, D.; Tong, X.; Zhao, Y. Block copolymers comprising p-conjugated and liquid crystalline subunits: induction of macroscopic nanodomain orientation. Angew. Chem. Int. Ed. 2010, 49, 9162−9165. doi: 10.1002/anie.201004445

    30. [30]

      Intelligent stimuli responsive materials: from well-defined nanostructures to applications. Li, Q. Ed. John Wiley & Sons, Hoboken, NJ, 2013.

    31. [31]

      Zheng, Z.; Li, Y.; Bisoyi, H.; Wang, L.; Bunning, T.; Li, Q. Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light. Nature 2016, 531, 352−356. doi: 10.1038/nature17141

    32. [32]

      Bisoyi, H.; Li, Q. Light-directed dynamic chirality inversion in functional self-organized helical superstructures. Angew. Chem. Int. Ed. 2016, 55, 2994−3010. doi: 10.1002/anie.201505520

    33. [33]

      Zhao, Y.; Tong, X.; Zhao, Y. Photoinduced microphase separation in block copolymers: exploring shape incompatibility of mesogenic side groups. Macromol. Rapid Commun. 2010, 31, 986−990. doi: 10.1002/marc.200900892

    34. [34]

      Bisoyi, H.; Li, Q. Light-driven liquid crystalline materials: from photo-induced phase transitions and property modulations to applications. Chem. Rev. 2016, 116, 15089−15166. doi: 10.1021/acs.chemrev.6b00415

    35. [35]

      Hu, J.; Li, X.; Ni, Y.; Ma S.; Yu, H. A programmable and biomimetic photo-actuator: a composite of a photo-liquefiable azobenzene derivative and commercial plastic film. J. Mater. Chem. C 2018, 6, 10815−10821. doi: 10.1039/C8TC03693D

    36. [36]

      Hoshino, M.; Uchida, E.; Norikane, Y.; Azumi, R.; Nozawa, S.; Tomita, A.; Sato, T.; Adachi, S.; Koshihara, S. Crystal melting by light: X-ray crystal structure analysis of an azo crystal showing photoinduced crystal-melt transition. J. Am. Chem. Soc. 2014, 136, 9158−9164. doi: 10.1021/ja503652c

    37. [37]

      Han, G. D.; Park, S. S.; Liu, Y.; Zhitomirsky, D.; Cho, E.; Dinca, M.; Grossman, J. C. Photon energy storage materials with high energy densities based on diacetylene-azobenzene derivatives. J. Mater. Chem. A 2016, 4, 16157−16165. doi: 10.1039/C6TA07086H

    38. [38]

      Han, G. D.; Deru, J. H.; Cho, E. N.; Grossman, J. C. Optically-regulated thermal energy storage in diverse organic phase-change materials. Chem. Commun. 2018, 54, 10722−10725. doi: 10.1039/C8CC05919E

    39. [39]

      Seki, T. Dynamic photoresponsive functions in organized layer systems comprised of azobenzene-containing polymers. Polym. J. 2004, 36, 435−454. doi: 10.1295/polymj.36.435

    40. [40]

      Seki, T. Smart photoresponsive polymer systems organized in two dimensions. Bull. Chem. Soc. Jpn. 2007, 80, 2084−2109. doi: 10.1246/bcsj.80.2084

    41. [41]

      Zhao, Y.; He, J. Azobenzene-containing block copolymers: the inter-play of light and morphology enables new functions. Soft Matter 2009, 5, 2686−2693. doi: 10.1039/b821589h

    42. [42]

      Kawatsuki, N. Photoalignment and photoinduced molecular reorientation of photosensitive materials. Chem. Lett. 2011, 40, 548−554. doi: 10.1246/cl.2011.548

    43. [43]

      Wang, Y.; Urbas, A.; Li, Q. Reversible visible-light tuning of self-organized helical superstructures enabled by unprecedented light-driven axially chiral molecular switches. J. Am. Chem. Soc. 2012, 134, 3342−3345. doi: 10.1021/ja211837f

    44. [44]

      Yun, X.; Tang, B.; Xiong, Z.; Wang, X. Understanding self-assembly, colloidal behavior and rheological properties of graphene derivatives for high-performance supercapacitor fabrication. Chinese J. Polym. Sci. 2020, 38, 423−434. doi: 10.1007/s10118-020-2411-0

    45. [45]

      Wang, Y.; Urbas, A.; Li, Q. Light-driven chiral molecular switches or motors in liquid crystals. Adv. Mater. 2012, 24, 1926−1945. doi: 10.1002/adma.201200241

    46. [46]

      Li, J.; Blake, J.; Delaney, C. Template-and vacuum-ultraviolet-assisted fabrication of an Ag-nanoparticle array on flexible and rigid substrates. Adv. Mater. 2007, 19, 1267−1271. doi: 10.1002/adma.200602851

    47. [47]

      Li, J.; Kamata, K.; Komura, M.; Yamada, T.; Yoshida, H.; Iyoda, T. Anisotropic ion conductivity in liquid crystalline diblock copolymer membranes with perpendicularly oriented PEO cylindrical domains. Macromolecules 2007, 40, 8125−8128. doi: 10.1021/ma071821s

    48. [48]

      Watanabe, S.; Fujiwara, R.; Hada, M.; Okazaki, Y.; Iyoda, T. Site-specific recognition of nanophase-separated surfaces of amphiphilic block copolymers by hydrophilic and hydrophobic gold nanoparticles. Angew. Chem. Int. Ed. 2007, 46, 1120−1123. doi: 10.1002/anie.200603516

    49. [49]

      Darling, S. B. Directing the self-assembly of block copolymers. Prog. Polym. Sci. 2007, 32, 1152−1204. doi: 10.1016/j.progpolymsci.2007.05.004

    50. [50]

      Lodge, T. P. Block copolymers: past successes and future challenges. Macromol. Chem. Phys. 2003, 204, 265−273. doi: 10.1002/macp.200290073

    51. [51]

      Hawker, C. J.; Russell, T. P. Block copolymer lithography: merging “bottom-up” with “top-down” processes. MRS Bull. 2005, 30, 952−965. doi: 10.1557/mrs2005.249

    52. [52]

      Ruzette, A. V.; Leibler, A. L. Block copolymers in tomorrow’s plastics. Nat. Mater. 2005, 4, 19−31. doi: 10.1038/nmat1295

    53. [53]

      Wu, J.; Yi, Z.; Lu, X.; Chen, S.; Lu, Q. Formation and properties of liquid crystalline supramolecules with anisotropic fluorescence emission. Polym. Chem. 2014, 5, 2567−2573. doi: 10.1039/c3py01544k

    54. [54]

      Yu, H.; Asaoka, A.; Shishido, A.; Iyoda, T.; Ikeda T. Photoinduced nanoscale cooperative motion in a novel well-defined triblock copolymer. Small 2007, 3, 768−771. doi: 10.1002/smll.200600724

    55. [55]

      Yu, H.; Shishido, A.; Iyoda, T.; Ikeda, T. Novel wormlike nanostructure self-assembled in a well-defined liquid-crystalline diblock copolymer with azobenzene moieties. Macromol. Rapid Commun. 2007, 28, 927−931. doi: 10.1002/marc.200600901

    56. [56]

      Ravi, P.; Sin, S.; Gan, L.; Gan, Y.; Tam, K.; Xia, X.; Hu, X. New water soluble azobenzene-containing diblock copolymers: synthesis and aggregation behavior. Polymer 2005, 46, 137−146. doi: 10.1016/j.polymer.2004.11.009

    57. [57]

      Cui, L.; Tong, X.; Yan, X.; Liu, G.; Zhao, Y. Photoactive thermoplastic elastomers of azobenzene-containing triblock copolymers prepared through atom transfer radical polymerization. Macromolecules 2004, 37, 7097−7104. doi: 10.1021/ma048995j

    58. [58]

      Qi, B.; Yavrian, A.; Galstian, T.; Zhao, Y. Liquid crystalline ionomers containing azobenzene mesogens: phase stability, photoinduced birefringence and holographic grating. Macromolecules 2005, 38, 3079−3086. doi: 10.1021/ma0473869

    59. [59]

      Discher, D.; Eisenberg, A. Polymer vesicles. Science 2002, 297, 967−974. doi: 10.1126/science.1074972

    60. [60]

      Zhao, Y. Photocontrollable block copolymer micelles: what can we control? J. Mater. Chem. 2009, 19, 4887−4895. doi: 10.1039/b819968j

    61. [61]

      Huang, S.; Chen, Y.; Ma, S.; Yu, H. Hierarchical self-assembly in liquid-crystalline block copolymers enabled by chirality transfer. Angew. Chem. Int. Ed. 2018, 57, 12524−12528. doi: 10.1002/anie.201807379

    62. [62]

      Lynd, N. A.; Meuler, A. J.; Hillmyer, M. A. Polydispersity and block copolymer self-assembly. Prog. Polym. Sci. 2008, 33, 875−893. doi: 10.1016/j.progpolymsci.2008.07.003

    63. [63]

      Takano, A.; Kamaya, I.; Takahashi, Y.; Matsushita, Y. Effect of loop/bridge conformation ratio on elastic properties of the sphere-forming ABA triblock copolymers: preparation of samples and determination of loop/bridge ratio. Macromolecules 2005, 38, 9718−9723. doi: 10.1021/ma050712f

    64. [64]

      Whitesides, G. M.; Grzybowski, B. Self-assembly at all scales. Science 2002, 295, 2418−2421. doi: 10.1126/science.1070821

    65. [65]

      Komura, M.; Iyoda, T. AFM cross-sectional imaging of perpendicularly oriented nanocylinder structures of microphase-separated block copolymer films by crystal-like cleavage. Macromolecules 2007, 40, 4106−4108. doi: 10.1021/ma0704008

    66. [66]

      Watanabe, K.; Yoshida, H.; Kamata, K.; Iyoda, T. Direct TEM observation of perpendicularly oriented nanocylinder structure in amphiphilic liquid crystalline block copolymer thin films. Trans. Mater. Res. Soc. Jpn. 2005, 30, 377−381.

    67. [67]

      Komura, M.; Watanabe, K.; Iyoda, T.; Yamada, T.; Yoshida, H.; Iwasaki, Y. Laboratory-GISAXS measurements of block copolymer films with highly ordered and normally oriented nanocylinders. Chem. Lett. 2009, 38, 408−409. doi: 10.1246/cl.2009.408

    68. [68]

      Ikkala, O.; Brinke, G. Functional materials based on self-assembly of polymeric supramolecules. Science 2002, 295, 2407−2409. doi: 10.1126/science.1067794

    69. [69]

      Zoelen, W.; Brinke, G. Thin films of complexed block copolymers. Soft Matter 2009, 5, 1568−1582. doi: 10.1039/b817093b

    70. [70]

      Tung, S. H.; Kalarickal, N. C.; Mays, J. W.; Xu, T. Hierarchical assemblies of block-copolymer-based supramolecules in thin films. Macromolecules 2008, 41, 6453−6462. doi: 10.1021/ma800726r

    71. [71]

      Korhonen, J. T.; Verho, T.; Rannou, P.; Ikkala, O. Self-assembly and hierarchies in pyridine-containing homopolymers and block copolymers with hydrogen-bonded cholesteric side-chains. Macromolecules 2010, 43, 1507−1514. doi: 10.1021/ma9021604

    72. [72]

      Wu, S.; Bubeck, C. Macro- and microphase separation in block copolymer supramolecular assemblies induced by solvent annealing. Macromolecules 2013, 46, 3512−3518. doi: 10.1021/ma400104d

    73. [73]

      Berreman, D. W. Solid surface shape and the alignment of an adjacent nematic liquid crystal. Phys. Rev. Lett. 1972, 28, 1683−1686. doi: 10.1103/PhysRevLett.28.1683

    74. [74]

      Reiter, G.; Gastelein, G.; Hoerner, P.; Riess, G.; Blumen, A.; Sommer, J. Nanometer-scale surface patterns with long-range order created by crystallization of diblock copolymers. Phys. Rev. Lett. 1999, 83, 3844−3847. doi: 10.1103/PhysRevLett.83.3844

    75. [75]

      Uekusa, T.; Nagano, S.; Seki, T. Unique molecular orientation in a smectic liquid crystalline polymer film attained by surface-initiated graft polymerization. Langmuir 2007, 23, 4642−4645. doi: 10.1021/la063467h

    76. [76]

      Uekusa, T.; Nagano, S.; Seki, T. Highly ordered in-plane photoalignment attained by the brush architecture of liquid crystalline azobenzene polymer. Macromolecules 2009, 42, 312−318. doi: 10.1021/ma802010x

    77. [77]

      Haque, H. A.; Nagano, S.; Seki, T. Lubricant effect of flexible chain in the photoinduced motions of surface-grafted liquid crystalline azobenzene polymer brush. Macromolecules 2012, 45, 6095−6103. doi: 10.1021/ma300843x

    78. [78]

      Sano, M.; Hara, M.; Nagano, S.; Shinohara, Y.; Amemiya Y.; Seki, T. New aspects for the hierarchical cooperative motions in photoalignment process of liquid crystalline block copolymer films. Macromolecules 2015, 48, 2217−2223. doi: 10.1021/acs.macromol.5b00299

    79. [79]

      Sano, M.; Shan, F.; Hara, M.; Nagano, S.; Shinohara, Y.; Amemiya Y.; Seki, T. Dynamic photoinduced realignment processes in photoresponsive block copolymer films: effects of the chain length and block copolymer architecture. Soft Matter 2015, 11, 5918−5925. doi: 10.1039/C5SM01140J

    80. [80]

      Haque, H. A.; Hara, M.; Nagano, S.; Seki, T. Photoinduced in-plane motions of azobenzene mesogens affected by the flexibility of underlying amorphous chains. Macromolecules 2013, 46, 8275−8283. doi: 10.1021/ma401536r

    81. [81]

      Morikawa, Y.; Nagano, S.; Watanabe, K.; Kamata, K.; Iyoda, T.; Seki, T. Optical alignment and patterning of nanoscale microdomains in a block copolymer thin film. Adv. Mater. 2006, 18, 883−886. doi: 10.1002/adma.200502573

    82. [82]

      Wang, T.; Li, X.; Dong, Z.; Huang, S.; Yu, H. Vertical orientation of nanocylinders in liquid-crystalline block copolymers directed by light. ACS Appl. Mater. Interfaces 2017, 9, 24864−24872. doi: 10.1021/acsami.7b06086

    83. [83]

      Nickmans, K.; Bogels, G. M.; Sanchez-Somolinos, C.; Murphy, J. N.; Leclere, P.; Voets, I. K.; Schenning, A. P. H. J. 3D orientational control in self-assembled thin films with sub-5 nm features by light. Small 2017, 13, 1701043−1701053. doi: 10.1002/smll.201701043

    84. [84]

      Sano, M.; Nakamura, S.; Hara, M.; Nagano, S.; Shinohara, Y.; Amemiya, Y.; Seki, T. Pathways toward photoinduced alignment switching in liquid crystalline block copolymer films. Macromolecules 2014, 47, 7178−7186. doi: 10.1021/ma501803g

    85. [85]

      Chen, Y.; Huang, S.; Wang, T.; Yu, H. Enhanced ordering and efficient photoalignment of nanostructures in block copolymers enabled by halogen bond. Macromolecules 2020, 53, 1486−1493. doi: 10.1021/acs.macromol.9b02686

    86. [86]

      Yu, H.; Shishido, A.; Li, J.; Kamata, K.; Iyoda, T.; Ikeda, T. Stable macroscopic nanocylinder arrays in an amphiphilic diblock liquid-crystalline copolymer with successive hydrogen bonds. J. Mater. Chem. 2007, 17, 3485−3488. doi: 10.1039/b705748b

    87. [87]

      Huang, S.; Pang, L.; Chen, Y.; Zhou, L.; Fang, S.; Yu, H. Hydrogen bond induces hierarchical self-assembly in liquid-crystalline block copolymers. Macromol. Rapid Commun. 2018, 39, 1700783. doi: 10.1002/marc.201700783

    88. [88]

      Priimagi, A.; Cavallo, G.; Forni, A.; Gorynsztejn-Leben, M.; Kaivola, M.; Metrangolo, P.; Milani, R.; Shishido, A.; Pilati, T.; Resnati, G.; Terraneo, G. Halogen bonding versus hydrogen bonding in driving self-assembly and performance of light-responsive supramolecular polymers. Adv. Funct. Mater. 2012, 22, 2572−2579. doi: 10.1002/adfm.201200135

    89. [89]

      Kravchenko, A.; Shevchenko, A.; Ovchinnikov, V.; Priimagi, A.; Kaivola, M. Optical interference lithography using azobenzene-functionalized polymers for micro- and nanopatterning of silicon. Adv. Mater. 2011, 23, 4174−4177. doi: 10.1002/adma.201101888

    90. [90]

      Yu, Y.; Nakano, M.; Ikeda, T. Directed bending of a polymer film by light-miniaturizing a simple photomechanical system could expand its range of applications. Nature 2003, 425, 145. doi: 10.1038/425145a

    91. [91]

      Zhang, L.; Liang, H.; Jacob, J.; Naumov, P. Photogated humidity-driven motility. Nat. Commun. 2015, 6, 7429−7440. doi: 10.1038/ncomms8429

    92. [92]

      Priimagi, A.; Saccone, M.; Cavallo, G.; Shishido, A.; Pilati, T.; Metrangolo, P.; Resnati, G. Photoalignment and surface-relief-grating formation are efficiently combined in low-molecular-weight halogen-bonded complexes. Adv. Mater. 2012, 24, 345−352.

    93. [93]

      Priimagi, A.; Cavallo, G.; Metrangolo, P.; Resnati, G. The halogen bond in the design of functional supramolecular materials: recent advances. Acc. Chem. Res. 2013, 46, 2686−2695. doi: 10.1021/ar400103r

    94. [94]

      Cheng, X.; Miao, T.; Yin, L.; Ji, Y.; Li, Y.; Zhang, Z.; Zhang, W.; Zhu, X. In situ controlled construction of a hierarchical supramolecular chiral liquid-crystalline polymer assembly. Angew. Chem. Int. Ed. 2020, 59, 9669−9677. doi: 10.1002/anie.202001657

    95. [95]

      Chen, Y.; Huang, S.; Wang, T.; Dong, Z.; Yu, H. Confined self-assembly enables stabilization and patterning of nanostructures in liquid-crystalline block copolymers. Macromolecules 2019, 52, 1892−1898. doi: 10.1021/acs.macromol.8b02435

    96. [96]

      Kim, D. Y.; Tripathy, S. K.; Li, L.; Kumar, J. Laser-induced holographic surface relief gratings on nonlinear optical polymer films. Appl. Phys. Lett. 1995, 66, 1166−1168. doi: 10.1063/1.113845

    97. [97]

      Yu, H.; Okano, K.; Shishido, A.; Ikeda, T.; Kamata, K.; Komura, M.; Iyoda, T. Enhancement of surface-relief gratings recorded in amphiphilic liquid-crystalline diblock copolymer by nanoscale phase separation. Adv. Mater. 2005, 17, 2184−2188. doi: 10.1002/adma.200500346

    98. [98]

      Yu, H.; Naka, Y.; Shishido, A.; Iyoda, T.; Ikeda, T. Effect of recording time on grating formation and enhancement in an amphiphilic diblock liquid-crystalline copolymer. Mol. Cryst. Liq. Cryst. 2009, 498, 29−39. doi: 10.1080/15421400802612094

    99. [99]

      Lee, S.; Shin, J.; Lee, Y. H.; Fan, S.; Park, J. K. Directional photofluidization lithography for nanoarchitectures with controlled shapes and sizes. Nano Lett. 2010, 10, 296−304. doi: 10.1021/nl903570c

    100. [100]

      Bai, H.; Du, C.; Zhang, A.; Li, L. Breath figure arrays: unconventional fabrications, functionalizations, and applications. Angew. Chem. Int. Ed. 2013, 52, 12240−12255. doi: 10.1002/anie.201303594

    101. [101]

      Widawski, G.; Rawiso, M.; Francois, B. Self-organized honeycomb morphology of star-polymer polystyrene films. Nature 1994, 369, 387−389. doi: 10.1038/369387a0

    102. [102]

      Chen, S.; Lu, X.; Hu, Y.; Lu, Q. Biomimetic honeycomb-patterned surface as the tunable cell adhesion scaffold. Biomater. Sci. 2015, 3, 85−93. doi: 10.1039/C4BM00233D

    103. [103]

      Ye, Q.; Chen, S.; Zhu, D.; Lu, X.; Lu, Q. Preparation of aggregation-induced emission dots for long-term two-photon cell imaging. J. Mater. Chem. B 2015, 3, 3091−3097.

    104. [104]

      Wang, W.; Du, C.; Wang, X.; He, X.; Lin, J.; Li, L.; Lin, S. Directional photomanipulation of breath figure arrays. Angew. Chem. Int. Ed. 2014, 53, 12116−12119. doi: 10.1002/anie.201407230

    105. [105]

      Wang, W.; Shen, D.; Li, X.; Yao, Y.; Lin, J.; Wang, A.; Yu, J.; Wang, Z.; Hong, S.; Lin, Z.; Lin, S. Light-driven shape-memory porous films with precisely controlled dimensions. Angew. Chem. Int. Ed. 2018, 57, 2139−2143. doi: 10.1002/anie.201712100

    106. [106]

      Chen, D.; Liu, H.; Kobayashi, T.; Yu, H. Fabrication of regularly patterned microporous films by self-organization of an amphiphilic liquid-crystalline diblock copolymer in a dry environment. Macromol. Mater. Eng. 2010, 295, 26−31. doi: 10.1002/mame.200900178

    107. [107]

      Mukai, K.; Hara, M.; Nagano, S.; Seki, T. High-density liquid-crystalline polymer brushes formed by surface segregation and self-assembly. Angew. Chem. Int. Ed. 2016, 128, 14234−14238. doi: 10.1002/ange.201607786

    108. [108]

      Cai, F.; Huang, Z.; Zheng, F.; Lu, X.; Lu, Q. Enhancement of the photoalignment stability of block copolymer brushes by anchor segments. Macromol. Chem. Phys. 2018, 219, 1800153. doi: 10.1002/macp.201800153

    109. [109]

      Zhou, H.; Xue, C.; Weis, P.; Suzuki, Y.; Huang, S.; Koynov, K.; Auernhammer, G. K.; Berger, R.; Butt, H. J.; Wu, S. Photoswitching of glass transition temperatures of azobenzene-containing polymers induces reversible solid-to-liquid transitions. Nat. Chem. 2017, 9, 145−151. doi: 10.1038/nchem.2625

    110. [110]

      Ito, S.; Akiyama, H.; Sekizawa, R.; Mori, M.; Yoshida, M.; Kihara, H. Light-induced reworkable adhesives based on ABA-type triblock copolymers with azopolymer termini. ACS Appl. Mater. Interfaces 2018, 10, 32649−32658. doi: 10.1021/acsami.8b09319

    111. [111]

      White, T. J.; Broer, D. J. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Mater. 2015, 14, 1087−1098. doi: 10.1038/nmat4433

    112. [112]

      Lv, J.; Liu, Y.; Wei, J.; Chen, E.; Qin, L.; Yu, Y. Photocontrol of fluid slugs in liquid crystal polymer microactuators. Nature 2016, 537, 179−184. doi: 10.1038/nature19344

    113. [113]

      Yin, L.; Han, L.; Ge, F.; Tong, X.; Zhang, W.; Soldera, A.; Zhao, Y. A novel side-chain liquid crystal elastomer exhibiting anomalous reversible shape change. Angew. Chem. Int. Ed. 2020, 59, 15129−15134. doi: 10.1002/anie.202003904

  • 加载中
    1. [1]

      . NANOSTRUCTURES OF FUNCTIONAL BLOCK COPOLYMERS. Chinese J. Polym. Sci, 2000, 18(3): 255-262.

    2. [2]

      Houluo CongSen XuSixun Zheng . Synthesis and Microphase Separation Behavior of Random, Mixed Cylindrical Brush Copolymers Bearing Polystyrene and Poly(ε-caprolactone) Side Chains. Chinese J. Polym. Sci, 2017, 35(12): 1572-1586. doi: 10.1007/s10118-017-2001-y

    3. [3]

      Yu-han WeiCai-yuan PanBin-yao LiXin-hong YuYan-chun Han . EFFECT OF MOLECULAR WEIGHT AND FILM THICKNESS ON THE CRYSTALLIZATION AND MICROPHASE SEPARATION IN POLYSTYRENE-BLOCK-POLY(L-LACTIC ACID) THIN FILMS AT THE EARLY STAGE. Chinese J. Polym. Sci, 2011, 29(3): 325-335. doi: 10.1007/s10118-011-1040-z

    4. [4]

      Wei-cai WangYan-xiong PanKai ShiChao PengXiang-ling Jia . Hierarchical Porous Polymer Beads Prepared by Polymerization-induced Phase Separation and Emulsion-template in a Microfluidic Device. Chinese J. Polym. Sci, 2014, 32(12): 1646-1654. doi: 10.1007/s10118-014-1547-1

    5. [5]

      Xiao-Lin LyuHong-Bing PanZhi-Hao ShenXing-He Fan . Self-assembly and Properties of Block Copolymers Containing Mesogen-Jacketed Liquid Crystalline Polymers as Rod Blocks. Chinese J. Polym. Sci, 2018, 36(7): 811-821. doi: 10.1007/s10118-018-2115-x

    6. [6]

      . SYNTHESIS AND CHARACTERIZATION OF NOVEL CHIRAL SMECTIC C(Sc*) PHASE SHISH-KEBAB TYPE LIQUID CRYSTALLINE BLOCK COPOLYMERS*. Chinese J. Polym. Sci, 1999, 17(6): 579-587.

    7. [7]

      T.P.StepanovaL.L.Burshtein . DIPOLE POLARIZATION RELAXATION AND MOLECULAR STRUCTURE OF MAIN-AND SIDE-CHAIN LIQUID-CRYSTALLINE POLYMERS*. Chinese J. Polym. Sci, 1996, 14(1): 1-18.

    8. [8]

      Si Dong Sheng Ma Zhilin Liu Lili Ma Yu Zhang Zhaohui Tang Mingxiao Deng Wantong Song . Functional Amphiphilic Poly(2-oxazoline) Block Copolymers as Drug Carriers: the Relationship Between Structure and Drug Loading Capacity. Chinese J. Polym. Sci, 2021, (): -. doi: 10.1007/s10118-021-2547-6

    9. [9]

      Jia-Lu Bai Dan Liu Rong Wang . Self-assembly of Amphiphilic Diblock Copolymers Induced by Liquid-Liquid Phase Separation. Chinese J. Polym. Sci, 2021, (): -. doi: 10.1007/s10118-021-2563-6

    10. [10]

      Chun-xia ZhuRui-yan ZhangYan-hao HuangWei YangZheng-ying LiuJian-ming FengMing-bo Yang . Hierarchical Crystalline Structures Induced by Temperature Profile in HDPE Bars during Melt Penetration Process. Chinese J. Polym. Sci, 2017, 35(1): 108-122. doi: 10.1007/s10118-017-1880-2

    11. [11]

      QIU YongxingYU XiaojieFENG LinxianYANG Shilin . CHARACTERIZATION OF AMPHIPHILIC AND MICROPHASE SEPARATED GRAFT COPOLYMERS Ⅱ SURFACE CHARACTERIZATION AND IN VITRO BLOOD-COMPATIBILITY ASSESSMENT OF POLYSTYRENE-GRAFT-ω-STEARYLPOLY (ETHYLENE OXIDE)*. Chinese J. Polym. Sci, 1995, 13(2): 112-125.

    12. [12]

      Lin-li He aLin-xi Zhang b . THE EFFECTS OF PATTERNED SURFACES ON THE PHASE SEPARATION FOR DIBLOCK COPOLYMERS. Chinese J. Polym. Sci, 2009, 27(3): 307-315.

    13. [13]

      G. CoxW. WohllebenW. Schrepp . CHARACTERIZATION OF NANOSTRUCTURES: TOOLS AND CHALLENGES. Chinese J. Polym. Sci, 2009, 27(1): 77-83.

    14. [14]

      . PHASE STRUCTURE AND THERMAL BEHAVIOR OF LIQUID CRYSTALLINE MULTI-BLOCK COPOLYMERS,POLY[1,6-BIS(4-OXYBENZOYL-OXY)HEXANE TEREPHTHALATE]-b-BISPHENOL A POLYCARBONATE. Chinese J. Polym. Sci, 1999, 17(5): 453-458.

    15. [15]

      . SYNTHESIS AND CHARACTERIZATION OF LIQUID CRYSTALLINE MULTI-BLOCK COPOLYMERS,POLY[1,6-BIS(4-OXYBENZOYL-OXY)HEXANE TEREPHTHALATE]-b-BISPHENOL A POLYCARBONATE. Chinese J. Polym. Sci, 1999, 17(5): 447-452.

    16. [16]

      YANG HongliWU XuqinLI Shijin . WHOLLY-AROMATIC THERMOTROPIC LIQUID CRYSTALLINE POLYMER AND ITS BLOCK COPOLYMER. Chinese J. Polym. Sci, 1996, 14(2): 188-192.

    17. [17]

      . DESIGN AND STUDY OF NEW AZOBENZENE LIQUID CRYSTAL/POLYMER MATERIALS. Chinese J. Polym. Sci, 2003, 21(6): 621-629.

    18. [18]

      Pan ZhangLin YaoJian-hui LuoBin DingGe ZhouBo Jiang . Dynamics Simulation on the Associative Properties of Amphiphilic Functional Monomer Modified Polyacrylamide Copolymers. Chinese J. Polym. Sci, 2015, 33(4): 540-553. doi: 10.1007/s10118-015-1605-3

    19. [19]

      . SELF-ASSEMBLING AMPHIPHILIC POLYELECTROLYTES AND THEIR NANOSTRUCTURES. Chinese J. Polym. Sci, 2000, 18(4): 323-336.

    20. [20]

      ZHANG ShufanXIANG Qian . SYNTHESIS AND PHASE BEHAVIOUR OF CHIRAL COMBINED MAIN/SIDE CHAIN LIQUID CRYSTALLINE COPOLYMERS*. Chinese J. Polym. Sci, 1994, 12(2): 145-152.

Article Metrics
  • PDF Downloads(3)
  • Abstract views(1243)
  • HTML views(213)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return