Citation: Xie, Z. N.; Ye, H. M.; Chen, T.; Zheng, T. Z.; Xu, J.; Guo, B. H. Melting and annealing peak temperatures of poly(butylene succinate) on the same Hoffman-Weeks plot parallel to T m= T c line. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-021-2530-2 doi: 10.1007/s10118-021-2530-2 shu

Melting and Annealing Peak Temperatures of Poly(butylene succinate) on the Same Hoffman-Weeks Plot Parallel to Tm=Tc Line

Figures(10) / Tables(1)

  • The crystallization and melting behavior of polymers is of theoretical importance. In this work, poly(butylene succinate) (PBS) was selected as an example to study such behavior at low supercooling via introduction of the extended-chain crystal (ECC) of the same polymer as nucleating agent. The crystallization of PBS with its ECC as nucleating agent in a wide temperature range (90–127 °C) and the following melting behavior were studied. It is revealed that the melting point (Tm, for Tc≥113 °C) and the annealing peak temperature (Ta, for Tc=90–100 °C) show similar asymptotic behavior. Both Tm and Ta approach to a value of ca. 3.3 °C higher than the corresponding Tc when the crystallization time tc approaches the starting point. That is to say, the Hoffman-Weeks plot is parallel to Tm=Tc line. The crystallization line became parallel to the melting line when PBS was crystallized at Tc higher than 102 °C. Based on these results, we propose that the parallel relationship and the intrinsic similarity between the Ta and the Tm observed at the two ends of the Tc range could be attributed to the metastable crystals formed at the beginning of crystallization.
  • 加载中
    1. [1]

      Miyata, T.; Masuko, T. Crystallization behaviour of poly(tetramethylene succinate). Polymer 1998, 39, 1399−1404. doi: 10.1016/S0032-3861(97)00418-7

    2. [2]

      Gan, Z.; Abe, H.; Kurokawa, H.; Doi, Y. Solid-state microstructures, thermal properties, and crystallization of biodegradable poly(butylene succinate) (PBS) and its copolyesters. Biomacromolecules 2001, 2, 605−13. doi: 10.1021/bm015535e

    3. [3]

      Park, J. W.; Kim, D. K.; Im, S. S. Crystallization behaviour of poly(butylene succinate) copolymers. Polym. Int. 2002, 51, 239−244. doi: 10.1002/pi.848

    4. [4]

      Ye, H. M.; Tang, Y. R.; Xu, J.; Guo, B. H. Role of poly(butylene fumarate) on crystallization behaviour of poly(butylene succinate). Ind. Eng. Chem. Res. 2013, 52, 10682−10689. doi: 10.1021/ie4010018

    5. [5]

      Xu, J.; Heck, B.; Ye, H. M.; Jiang, J.; Tang, Y. R.; Liu, J.; Guo, B. H.; Reiter, R.; Zhou, D. S.; Reiter, G. Stabilization of nuclei of lamellar polymer crystals: insights from a comparison of the Hoffman-Weeks line with the crystallization line. Macromolecules 2016, 49, 2206−2215. doi: 10.1021/acs.macromol.5b02123

    6. [6]

      Hoffman, J. D. D., G. T.; Lauritzen, J. I., The rate of crystallization of linear polymers with chain folding. In Treatise on solid state chemistry, Hannay, N. B. Ed. Plenum Press, New York, 1976, Vol. 3.

    7. [7]

      Wunderlich, B., Crystal Melting. In Macromolecular physics, Academic Press, New York, 1980, Vol. 3.

    8. [8]

      Tang, Y. R.; Gao, Y.; Xu, J.; Guo, B. H. How to regulate the isothermal growth rate of polymer spherulite without changing its molecular composition? CrystEngComm 2015, 17, 6467−6470. doi: 10.1039/C5CE01175B

    9. [9]

      Toda, A.; Taguchi, K.; Nozaki, K.; Guan, X. C.; Hu, W. B.; Furushima, Y.; Schick, C. Crystallization and melting of poly(butylene terephthalate) and poly(ethylene terephthalate) investigated by fast-scan chip calorimetry and small angle X-ray scattering. Polymer 2020, 192, 122303. doi: 10.1016/j.polymer.2020.122303

    10. [10]

      Toda, A.; Taguchi, K.; Kono, G.; Nozaki, K. Crystallization and melting behaviours of poly(vinylidene fluoride) examined by fast-scan calorimetry: Hoffman-Weeks, Gibbs-Thomson and thermal Gibbs-Thomson plots. Polymer 2019, 169, 11−20. doi: 10.1016/j.polymer.2019.02.017

    11. [11]

      Strobl, G. Colloquium: laws controlling crystallization and melting in bulk polymers. Rev. Mod. Phys. 2009, 81, 1287−1300. doi: 10.1103/RevModPhys.81.1287

    12. [12]

      Strobl, G. Crystallization and melting of bulk polymers: new observations, conclusions and a thermodynamic scheme. Prog. Polym. Sci. 2006, 31, 398−442. doi: 10.1016/j.progpolymsci.2006.01.001

    13. [13]

      Strobl, G. From the melt via mesomorphic and granular crystalline layers to lamellar crystallites: a major route followed in polymer crystallization? Eur. Phys. J. E 2000, 3, 165−183.

    14. [14]

      Heck, B.; Hugel, T.; Iijima, M.; Strobl, G. Steps in the formation of the partially crystalline state. Polymer 2000, 41, 8839−8848. doi: 10.1016/S0032-3861(00)00227-5

    15. [15]

      Strobl, G. A thermodynamic multiphase scheme treating polymer crystallization and melting. Eur. Phys. J. E 2005, 18, 295−309. doi: 10.1140/epje/e2005-00032-y

    16. [16]

      Lv, Z. Y.; Zhang, M. C.; Zhang, Y.; Guo, B. H.; Xu, J. Study on melting and recrystallization of poly(butylene succinate) lamellar crystals via step heating differential scanning calorimetry. Chinese J. Polym. Sci. 2017, 35, 1552−1560. doi: 10.1007/s10118-017-1986-6

    17. [17]

      Yao, S. F.; Chen, X. T.; Ye, H. M. Investigation of structure and crystallization behaviour of poly(butylene succinate) by Fourier transform infrared spectroscopy. J. Phys. Chem. B 2017, 121, 9476−9485. doi: 10.1021/acs.jpcb.7b07954

    18. [18]

      Wei, Z. Y.; Yu, Y.; Zhou, C.; Zheng, L. C.; Leng, X. F.; Li, Y. Relationship between melting behaviour and morphological changes of semicrystalline polymers. J. Therm. Anal. Calorim. 2017, 129, 777−787. doi: 10.1007/s10973-017-6255-y

    19. [19]

      Charlon, S.; Delbreilh, L.; Dargent, E.; Follain, N.; Soulestin, J.; Marais, S. Influence of crystallinity on the dielectric relaxations of poly(butylene succinate) and poly[(butylene succinate)-co-(butylene adipate)]. Eur. Polym. J. 2016, 84, 366−376. doi: 10.1016/j.eurpolymj.2016.09.045

    20. [20]

      Beckingham, B. S.; Ho, V.; Segalman, R. A. Formation of a rigid amorphous fraction in poly(3-(2'-ethyl)hexylthiophene). ACS Macro. Lett. 2014, 3, 684−688. doi: 10.1021/mz500262d

    21. [21]

      Wei, Z. Y.; Song, P.; Zhou, C.; Chen, G. Y.; Chang, Y.; Li, J. F.; Zhang, W. X.; Liang, J. C. Insight into the annealing peak and microstructural changes of poly(L-lactic acid) by annealing at elevated temperatures. Polymer 2013, 54, 3377−3384. doi: 10.1016/j.polymer.2013.04.027

    22. [22]

      Bonnet, M.; Rogausch, K. D.; Petermann, J. The endothermic "annealing peak" of poly(phenylene sulphide) and poly(ethylene terephthalate). Colloid Polym. Sci. 1999, 277, 513−518. doi: 10.1007/s003960050418

    23. [23]

      Alizadeh, A.; Richardson, L.; Xu, J.; McCartney, S.; Marand, H.; Cheung, Y. W.; Chum, S. Influence of structural and topological constraints on the crystallization and melting behaviour of polymers 1. Ethylene/1-octene copolymers. Macromolecules 1999, 32, 6221−6235.

    24. [24]

      Marand, H.; Alizadeh, A.; Farmer, R.; Desai, R.; Velikov, V. Influence of structural and topological constraints on the crystallization and melting behaviour of polymers 2. Poly(arylene ether ether ketone). Macromolecules 2000, 33, 3392−3403.

    25. [25]

      Alizadeh, A.; Sohn, S.; Quinn, J.; Marand, H.; Shank, L. C.; Iler, H. D. Influence of structural and topological constraints on the crystallization and melting behaviour of polymers: 3. Bisphenol A polycarbonate. Macromolecules 2001, 34, 4066−4078. doi: 10.1021/ma001417s

    26. [26]

      Edling, H. E.; Vincent, M.; Marand, H.; Talley, S. J.; Barr, K.; Moore, R. B.; Turner, S. R. Synthesis and crystallization behaviour of rigid copolyesters with biphenyl-4,4'-dicarboxylate and 2,6-naphthalenedicarboxylate in the main chain. J. Polym. Sci., Part B Polly. Phys. 2019, 57, 973−980. doi: 10.1002/pola.29350

    27. [27]

      Furushima, Y.; Toda, A.; Rousseaux, V.; Bailly, C.; Zhuravlev, E.; Schick, C. Quantitative understanding of two distinct melting kinetics of an isothermally crystallized poly(ether ether ketone). Polymer 2016, 99, 97−104. doi: 10.1016/j.polymer.2016.07.005

    28. [28]

      Jariyavidyanont, K.; Androsch, R.; Schick, C. Crystal reorganization of poly(butylene terephthalate). Polymer 2017, 124, 274−283. doi: 10.1016/j.polymer.2017.07.076

    29. [29]

      Schulz, M.; Seidlitz, A.; Petzold, A.; Thurn-Albrecht, T. The effect of intracrystalline chain dynamics on melting and reorganization during heating in semicrystalline polymers. Polymer 2020, 196, 122441. doi: 10.1016/j.polymer.2020.122441

    30. [30]

      Ye, H. M.; Wang, R. D.; Liu, J.; Xu, J.; Guo, B. H. Isomorphism in poly(butylene succinate-co-butylene fumarate) and its application as polymeric nucleating agent for poly(butylene succinate). Macromolecules 2012, 45, 5667−5675. doi: 10.1021/ma300685f

    31. [31]

      Ye, H. M.; Chen, X. T.; Li, H. F.; Zhang, P.; Ma, W. Z.; Li, B. T.; Xu, J. Industrializable and sustainable approach for preparing extended-chain crystals of biodegradable poly(butylene succinate) and their applications. Polymer 2019, 160, 93−98. doi: 10.1016/j.polymer.2018.11.038

    32. [32]

      Ye, H. M.; Chen, X. T.; Liu, P.; Wu, S. Y.; Jiang, Z. Y.; Xiong, B. J.; Xu, J. Preparation of poly(butylene succinate) crystals with exceptionally high melting point and crystallinity from its inclusion complex. Macromolecules 2017, 50, 5425−5433. doi: 10.1021/acs.macromol.7b00656

    33. [33]

      Ichikawa, Y.; Kondo, H.; Igarashi, Y.; Noguchi, K.; Okuyama, K.; Washiyama, J. Crystal structures of α and β forms of poly(tetramethylene succinate). Polymer 2000, 41, 4719−4727. doi: 10.1016/S0032-3861(99)00659-X

    34. [34]

      Ichikawa, Y.; Kondo, H.; Igarashi, Y.; Noguchi, K.; Okuyama, K.; Washiyama, J. Crystal structures of α and β forms of poly(tetramethylene succinate). Polymer 2001, 42, 847−847. doi: 10.1016/S0032-3861(00)00390-6

    35. [35]

      Liu, G. M.; Zheng, L. C.; Zhang, X. Q.; Li, C. C.; Wang, D. J. Critical stress for crystal transition in poly(butylene succinate)-based crystalline-amorphous multiblock copolymers. Macromolecules 2014, 47, 7533−7539. doi: 10.1021/ma501832z

    36. [36]

      Liu, G. M.; Zheng, L. C.; Zhang, X. Q.; Li, C. C.; Jiang, S. C.; Wang, D. J. Reversible lamellar thickening induced by crystal transition in poly(butylene succinate). Macromolecules 2012, 45, 5487−5493. doi: 10.1021/ma300530a

    37. [37]

      Nikolic, M. S.; Djonlagic, J. Synthesis and characterization of biodegradable poly(butylene succinate-co-butylene adipate)s. Polym. Degrad. Stabil. 2001, 74, 263−270. doi: 10.1016/S0141-3910(01)00156-2

    38. [38]

      Schmidtke, J.; Strobl, G.; ThurnAlbrecht, T. A four-state scheme for treating polymer crystallization and melting suggested by calorimetric and small angle X-ray scattering experiments on syndiotactic polypropylene. Macromolecules 1997, 30, 5804−5821. doi: 10.1021/ma9703923

    39. [39]

      Strobl, G. R.; Schneider, M. Direct evaluation of the electron-density correlation-function of partially crystalline polymers. J. Polym. Sci., Part B: Polym. Phys. 1980, 18, 1343−1359. doi: 10.1002/pol.1980.180180614

    40. [40]

      Zhang, S. J.; Han, J. R.; Gao, Y.; Guo, B. H.; Reiter, G.; Xu, J. Determination of the critical size of secondary nuclei on the lateral growth front of lamellar polymer crystals. Macromolecules 2019, 52, 7439−7447. doi: 10.1021/acs.macromol.9b01270

    41. [41]

      Xu, Y. X.; Xu, J.; Sun, Y. B.; Liu, D. H.; Guo, B. H.; Xie, X. M. Crystallization behaviour of poly(butylene succinate-co-propylene succinate)s. Acta Polymerica Sinica (in Chinese) 2006, 1000−1006.

    42. [42]

      Yoo, E. S.; Im, S. S. Melting behaviour of poly(butylene succinate) during heating scan by DSC. J. Polym. Sci., Part B: Polym. Phys. 1999, 37, 1357−1366.

    43. [43]

      Wang, X. H.; Zhou, J. J.; Li, L. Multiple melting behaviour of poly(butylene succinate). Eur. Polym. J. 2007, 43, 3163−3170. doi: 10.1016/j.eurpolymj.2007.05.013

    44. [44]

      Yasuniwa, M.; Satou, T. Multiple melting behaviour of poly(butylene succinate). I. Thermal analysis of melt-crystallized samples. J. Polym. Sci., Part B: Polym. Phys. 2002, 40, 2411−2420. doi: 10.1002/polb.10298

    45. [45]

      Yasuniwa, M.; Tsubakihara, S.; Satou, T.; Iura, K. Multiple melting behaviour of poly(butylene succinate). II. Thermal analysis of isothermal crystallization and melting process. J. Polym. Sci., Part B: Polym. Phys. 2005, 43, 2039−2047.

    46. [46]

      Phillips, P. J.; Rensch, G. J. Crystallization studies of poly(epsilon-caprolactone). 2. Lamellar thickening and melting. J. Polym. Sci., Part B: Polym. Phys. 1989, 27, 155−173. doi: 10.1002/polb.1989.090270110

    47. [47]

      Cheng, S. Z. D.; Chen, J. H.; Barley, J. S.; Zhang, A. Q.; Habenschuss, A.; Zschack, P. R. Isothermal thickening and thinning processes in low-molecular-weight poly(ethylene oxide) fractions crystallized from the melt. 3. Molecular-weight dependence. Macromolecules 1992, 25, 1453−1460.

    48. [48]

      Marand, H.; Huang, Z. Y. Isothermal lamellar thickening in linear polyethylene: correlation between the evolution of the degree of crystallinity and the melting temperature. Macromolecules 2004, 37, 6492−6497. doi: 10.1021/ma0497198

    49. [49]

      Lee, Y. C.; Porter, R. S. Double-melting behaviour of poly(ether ether ketone). Macromolecules 1987, 20, 1336−1341. doi: 10.1021/ma00172a028

    50. [50]

      Zhuravlev, E.; Schmelzer, J. W. P.; Wunderlich, B.; Schick, C. Kinetics of nucleation and crystallization in poly(epsilon-caprolactone) (PCL). Polymer 2011, 52, 1983−1997. doi: 10.1016/j.polymer.2011.03.013

    51. [51]

      Furushima, Y.; Nakada, M.; Ishikiriyama, K.; Toda, A.; Androsch, R.; Zhuravlev, E.; Schick, C. Two crystal populations with different melting/reorganization kinetics of isothermally crystallized polyamide 6. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 2126−2138. doi: 10.1002/polb.24123

    52. [52]

      Konishi, T.; Sakatsuji, W.; Fukao, K.; Miyamoto, Y. Temperature dependence of lamellar thickness in isothermally crystallized poly(butylene terephthalate). Macromolecules 2016, 49, 2272−2280. doi: 10.1021/acs.macromol.6b00126

    53. [53]

      Furushima, Y.; Nakada, M.; Yoshida, Y.; Okada, K. Crystallization/melting kinetics and morphological analysis of polyphenylene sulfide. Macromol. Chem. Phys. 2018, 219, 7.

    54. [54]

      Strobl, G. The physics of polymers. Springer-Verlag, New York, 1997.

    55. [55]

      Doye, J. P. K.; Frenkel, D. Mechanism of thickness determination in polymer crystals. Phys. Rev. Lett. 1998, 81, 2160−2163. doi: 10.1103/PhysRevLett.81.2160

    56. [56]

      Rottele, A.; Thurn-Albrecht, T.; Sommer, J. U.; Reiter, G. Thermodynamics of formation, reorganization, and melting of confined nanometer-sized polymer crystals. Macromolecules 2003, 36, 1257−1260. doi: 10.1021/ma021434c

  • 加载中
    1. [1]

      Mu DongMing-yin JiaZhao-xia GuoJian Yu . EFFECT OF FINAL HEATING TEMPERATURE ON CRYSTALLIZATION OF ISOTACTIC POLYPROPYLENE NUCLEATED WITH AN ARYL AMIDE DERIVATIVE AS b-FORM NUCLEATING AGENT. Chinese J. Polym. Sci, doi: 10.1007/s10118-011-1031-0

    2. [2]

      Fei-fei XueXue-si ChenLi-jia AnSergio S. FunariShi-chun Jiang . CONFINED LAMELLA FORMATION IN CRYSTALLINE-CRYSTALLINE POLY(ETHYLENE OXIDE)-b-POLY(-CAPROLACTONE) DIBLOCK COPOLYMERS. Chinese J. Polym. Sci, doi: 10.1007/s10118-013-1325-5

    3. [3]

      Ze-Qian WangZhen-Xing ZhongYu-Ying MaXiao-Feng LuCe WangZhao-Hui Su . Melting Temperature of Individual Electrospun Poly(vinylidene fluoride) Fibers Studied by AFM-based Local Thermal Analysis. Chinese J. Polym. Sci, doi: 10.1007/s10118-020-2476-9

    4. [4]

      WANG GuomingYAN DeyueBU Haishan . CRYSTALLIZATION AND MELTING OF NYLON 610*. Chinese J. Polym. Sci,

    5. [5]

      . MELTING CRYSTALLIZATION BEHAVIOR OF NYLON 66. Chinese J. Polym. Sci,

    6. [6]

      Hai-jun WangHui-ping FengXue-chuan WangPei-ying GuoTing-shan ZhaoLong-fang RenXi-huai QiangYu-hao XiangChao Yan . Effects of Crystallization Temperature and Blend Ratio on the Crystal Structure of Poly(butylene adipate) in the Poly(butylene adipate)/Poly(butylene succinate) Blends. Chinese J. Polym. Sci, doi: 10.1007/s10118-014-1420-2

    7. [7]

      Zhao-po ZengZe-chun ShaoRu XiaoYong-gen Lu . Structure Evolution Mechanism of Poly (acrylonitrile/itaconic acid/acrylamide) during Thermal Oxidative Stabilization Process. Chinese J. Polym. Sci, doi: 10.1007/s10118-017-1945-2

    8. [8]

      Jian-bin SongQing-yong ChenMin-qiao RenXiao-hong SunHui-liang ZhangHong-fang ZhangShu-yun WangZhi-shen Mo . MULTIPLE MELTING AND CRYSTALLIZATION BEHAVIOR OF NYLON 1212. Chinese J. Polym. Sci,

    9. [9]

      Annamaria BuonoJrjeng RuanAnnette ThierryPeter NeuenschwanderBernard Lotz . UNUSUAL CRYSTALLIZATION AND MELTING PROCESSES OF AN OPTICALLY ACTIVE POLYOLEFIN:. Chinese J. Polym. Sci,

    10. [10]

      YU XishengTONG ShuixinSUN Yishi . ON SWELLING CHARACTERISTICS AND MECHANISM OF TEMPERATURE SENSITIVE HYDROGELS*. Chinese J. Polym. Sci,

    11. [11]

      FENG JinhuaMO ZishenCHEN Donglin . DENSITY, EQUILIBRIUM HEAT OF FUSION AND EQUILIBRIUM MELTING TEMPERATURE OF NYLON 1010. Chinese J. Polym. Sci,

    12. [12]

      ZHANG GuoyaoYI GuozhengLIU DongWU Liheng . CRYSTALLIZATION BEHAVIOR OF A THERMOTROPIC LIQUID CRYSTAL COPOLYESTER*. Chinese J. Polym. Sci,

    13. [13]

      Sheng XiangShao JunGao LiXin-chao BianLi-dong FengXue-si ChenFeng-qi LiuShao-yong Huang . Effects of Molecular Weight on the Crystallization and Melting Behaviors of Poly(L-lactide). Chinese J. Polym. Sci, doi: 10.1007/s10118-016-1727-2

    14. [14]

      Xuan-bo LiuYong-feng ZhaoXing-he FanEr-qiang Chen . CRYSTAL ORIENTATION AND MELTING BEHAVIOR OF POLY(-CAPROLACTONE) UNDER ONE-DIMENSIONALLY HARD CONFINED MICROENVIRONMENT. Chinese J. Polym. Sci, doi: 10.1007/s10118-013-1285-9

    15. [15]

      Hai WangChun-Ji WuDong-Mei CuiYong-Feng Men . Equilibrium Crystallization Temperature of Syndiotactic Polystyrene γ Form. Chinese J. Polym. Sci, doi: 10.1007/s10118-018-2059-1

    16. [16]

      . SOLUTION CRYSTALLIZATION OF METALLOCENE SHORT CHAIN BRANCHED POLYETHYLENE:MORPHOLOGY AND MECHANISM*. Chinese J. Polym. Sci,

    17. [17]

      Yu-Jie WangSu-Ying YanZhi-Ping ZhaoZhen-Yu Xi . Isothermal Crystallization of iPP in Environment-friendly Diluents: Effect of Binary Diluents and Crystallization Temperature on Crystallization Kinetics. Chinese J. Polym. Sci, doi: 10.1007/s10118-019-2219-y

    18. [18]

      . POLYMER CHAIN DIFFUSION AT A TEMPERATURE BELOW ITS BULK GLASS TRANSITION TEMPERATURE*. Chinese J. Polym. Sci,

    19. [19]

      Zhi-dong WangXiao-zhong QuBi-qing JinYi ShiZhi-tian LiuXi-gao Jin . Effect of Polymer Matrix on Temperature Sensitivity of Temperature Sensitive Paints. Chinese J. Polym. Sci, doi: 10.1007/s10118-015-1684-1

    20. [20]

      Wei-ping GaoYu BaiEr-qiang ChenQi-feng Zhou . CRYSTALLIZATION AND MELTING OF POLY(ETHYLENE OXIDE) CONFINED IN NANOSTRUCTURED PARTICLES WITH CROSS-LINKED SHELLS OF POLYBUTADIENE. Chinese J. Polym. Sci,

Article Metrics
  • PDF Downloads(0)
  • Abstract views(417)
  • HTML views(249)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return