Citation: Zhong, Z. R.; Chen, Y. N.; Zhou, Y.; Chen, M. Challenges and recent developments of photoflow-reversible deactivation radical polymerization (RDRP). Chinese J. Polym. Sci. 2021, 39, 1069–1083 doi: 10.1007/s10118-021-2529-8 shu

Challenges and Recent Developments of Photoflow-Reversible Deactivation Radical Polymerization (RDRP)

  • Corresponding author: Mao Chen, E-mail:
  • Received Date: 2020-10-21
    Available Online: 2021-01-05


  • Photo-controlled reversible-deactivation radical polymerization (photo-RDRP) has been investigated as a “green” and spatiotemporally controlling pathway for polymer synthesis. While the combination of photo-RDRP and flow chemistry has offered opportunities to increase light intensity and enable uniform light irradiation, problems associated with flow approaches still remain for photoflow-RDRP, which has hindered merging flow polymerization with other cutting-edge techniques. Herein, we summarize challenges and recent achievements in photoflow-RDRP including the development of (a) droplet/slug-flow to regulate residence time distribution, (b) mixing techniques to tailor polymer, (c) polymerization induced self-assembly, and (d) computer-aided synthesis. We hope this work will provide informative knowledge to people in related fields and stimulate novel ideas to promote polymer synthesis in both academia and industry.
  • 加载中
    1. [1]

      Steinbacher, J. L.; McQuade, D. T. Polymer chemistry in flow: new polymers, beads, capsules, and fibers. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 6505−6533. doi: 10.1002/pola.21630

    2. [2]

      DeMello, A. J. Control and detection of chemical reactions in microfluidic systems. Nature 2006, 442, 394−402. doi: 10.1038/nature05062

    3. [3]

      Geyer, K.; Codee, J. D.; Seeberger, P. H. Microreactors as tools for synthetic chemists-the chemists' round-bottomed flask of the 21st century? Chem. Eur. J. 2006, 12, 8434−8442. doi: 10.1002/chem.200600596

    4. [4]

      Watts, P.; Wiles, C. Recent advances in synthetic micro reaction technology. Chem. Commun. 2007, 443−467.

    5. [5]

      Voicu, D.; Scholl, C.; Li, W.; Jagadeesan, D.; Nasimova, I.; Greener, J.; Kumacheva, E. Kinetics of multicomponent polymerization reaction studied in a microfluidic format. Macromolecules 2012, 45, 4469−4475. doi: 10.1021/ma300444k

    6. [6]

      Knox, S. T.; Parkinson, S.; Stone, R.; Warren, N. J. Benchtop flow-NMR for rapid online monitoring of RAFT and free radical polymerisation in batch and continuous reactors. Polym. Chem. 2019, 10, 4774−4778. doi: 10.1039/C9PY00982E

    7. [7]

      Wilms, D.; Klos, J.; Frey, H. Microstructured reactors for polymer synthesis: a renaissance of continuous flow processes for tailor-made macromolecules? Macromol. Chem. Phys. 2008, 209, 343−356. doi: 10.1002/macp.200700588

    8. [8]

      Geacintov, C.; Smid, J.; Szwarc, M. Kinetics of anionic polymerization of styrene in tetrahydrofuran. J. Am. Chem. Soc. 1962, 84, 2508−2514. doi: 10.1021/ja00872a012

    9. [9]

      Matyjaszewski, K., Comparison and classification of controlled/living radical polymerizations. In Controlled/living radical polymerization, American Chemical Society, Washington, DC, 2000, Vol. 768, pp 2−26.

    10. [10]

      Braunecker, W. A.; Matyjaszewski, K. Controlled/living radical polymerization: features, developments, and perspectives. Prog. Polym. Sci. 2007, 32, 93−146. doi: 10.1016/j.progpolymsci.2006.11.002

    11. [11]

      Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H. Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules 1998, 31, 5559−5562. doi: 10.1021/ma9804951

    12. [12]

      Wang, J. S.; Matyjaszewski, K. Controlled living radical polymerization—atom-transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc. 1995, 117, 5614−5615. doi: 10.1021/ja00125a035

    13. [13]

      Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T. Polymerization of methyl-methacrylate with the carbon-tetrachloride dichlorotris(triphenylphosphine)ruthenium(ii) methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system-possibility of living radical polymerization. Macromolecules 1995, 28, 1721−1723. doi: 10.1021/ma00109a056

    14. [14]

      Hawker, C. J.; Bosman, A. W.; Harth, E. New polymer synthesis by nitroxide mediated living radical polymerizations. Chem. Rev. 2001, 101, 3661−3688. doi: 10.1021/cr990119u

    15. [15]

      Yagci, Y.; Jockusch, S.; Turro, N. J. Photoinitiated polymerization: advances, challenges, and opportunities. Macromolecules 2010, 43, 6245−6260. doi: 10.1021/ma1007545

    16. [16]

      Tehfe, M. A.; Louradour, F.; Lalevee, J.; Fouassier, J. P. Photopolymerization reactions: on the way to a green and sustainable chemistry. Appl. Sci. 2013, 3, 490−514. doi: 10.3390/app3020490

    17. [17]

      Yamago, S.; Nakamura, Y. Recent progress in the use of photoirradiation in living radical polymerization. Polymer 2013, 54, 981−994. doi: 10.1016/j.polymer.2012.11.046

    18. [18]

      Gong, H.; Ma, M.; Zhou, Y.; Zhao, Y.; Gu, Y.; Chen, M. Photoredox controlled living polymerization. J. Funct. Polym. 2019, 32, 271−291.

    19. [19]

      Shen, L. L.; Lu, Q. Z.; Zhu, A. Q.; Lv, X. Q.; An, Z. S. Photocontrolled RAFT polymerization mediated by a supramolecular catalyst. ACS Macro Lett. 2017, 6, 625−631. doi: 10.1021/acsmacrolett.7b00343

    20. [20]

      Yang, Y. Q.; An, Z. S. Visible light induced aqueous RAFT polymerization using a supramolecular perylene diimide/cucurbit 7 uril complex. Polym. Chem. 2019, 10, 2801−2811. doi: 10.1039/C9PY00393B

    21. [21]

      Li, S. Z.; Han, G.; Zhang, W. Q. Photoregulated reversible addition-fragmentation chain transfer (RAFT) polymerization. Polym. Chem. 2020, 11, 1830−1844. doi: 10.1039/D0PY00054J

    22. [22]

      Corrigan, N.; Almasri, A.; Taillades, W.; Xu, J.; Boyer, C. Controlling molecular weight distributions through photoinduced flow polymerization. Macromolecules 2017, 50, 8438−8448. doi: 10.1021/acs.macromol.7b01890

    23. [23]

      Pan, X. C.; Tasdelen, M. A.; Laun, J.; Junkers, T.; Yagci, Y.; Matyjaszewski, K. Photomediated controlled radical polymerization. Prog. Polym. Sci. 2016, 62, 73−125. doi: 10.1016/j.progpolymsci.2016.06.005

    24. [24]

      Cambie, D.; Bottecchia, C.; Straathof, N. J.; Hessel, V.; Noel, T. Applications of continuous-flow photochemistry in organic synthesis, material science, and water treatment. Chem. Rev. 2016, 116, 10276−10341. doi: 10.1021/acs.chemrev.5b00707

    25. [25]

      Nie, H. J.; Li, S. Z.; Qian, S. J.; Han, Z. Q.; Zhang, W. Q. Switchable reversible addition-fragmentation chain transfer (RAFT) polymerization with the assistance of azobenzenes. Angew. Chem. Int. Ed. 2019, 58, 11449−11453. doi: 10.1002/anie.201904991

    26. [26]

      Zhang, Y. X.; He, J.; Dai, X. C.; Yu, L. L.; Tan, J. B.; Zhang, L. Combining the power of heat and light: temperature-programmed photoinitiated RAFT dispersion polymerization to tune polymerization-induced self-assembly. Polym. Chem. 2019, 10, 3902−3911. doi: 10.1039/C9PY00534J

    27. [27]

      Shanmugam, S.; Xu, J. T.; Boyer, C. A logic gate for external regulation of photopolymerization. Polym. Chem. 2016, 7, 6437−6449. doi: 10.1039/C6PY01361A

    28. [28]

      Chen, M.; Deng, S.; Gu, Y.; Lin, J.; MacLeod, M. J.; Johnson, J. A. Logic-controlled radical polymerization with heat and light: multiple-stimuli switching of polymer chain growth via a recyclable, thermally responsive gel photoredox catalyst. J. Am. Chem. Soc. 2017, 139, 2257−2266. doi: 10.1021/jacs.6b10345

    29. [29]

      Wu, C.; Chen, H.; Corrigan, N.; Jung, K.; Kan, X.; Li, Z.; Liu, W.; Xu, J.; Boyer, C. Computer-guided discovery of a pH-responsive organic photocatalyst and application for pH and light dual-gated polymerization. J. Am. Chem. Soc. 2019, 141, 8207−8220. doi: 10.1021/jacs.9b01096

    30. [30]

      Anastasaki, A.; Nikolaou, V.; Pappas, G. S.; Zhang, Q.; Wan, C.; Wilson, P.; Davis, T. P.; Whittaker, M. R.; Haddleton, D. M. Photoinduced sequence-control via one pot living radical polymerization of acrylates. Chem. Sci. 2014, 5, 3536−3542. doi: 10.1039/C4SC01374C

    31. [31]

      Tanaka, J.; Hakkinen, S.; Boeck, P. T.; Cong, Y.; Perrier, S.; Sheiko, S. S.; You, W. Orthogonal cationic and radical RAFT polymerizations to prepare bottlebrush polymers. Angew. Chem. Int. Ed. 2020, 59, 7203−7208. doi: 10.1002/anie.202000700

    32. [32]

      Zhao, Y.; Ma, M.; Lin, X.; Chen, M. Photoorganocatalyzed divergent reversible-deactivation radical polymerization towards linear and branched fluoropolymers. Angew. Chem. Int. Ed. 2020, 59, 21470−21474. doi: 10.1002/anie.202009475

    33. [33]

      Han, S.; Gu, Y.; Ma, M.; Chen, M. Light-intensity switch enabled nonsynchronous growth of fluorinated raspberry-like nanoparticles. Chem. Sci. 2020, 11, 10431−10436. doi: 10.1039/D0SC04141F

    34. [34]

      Sebra, R. P.; Reddy, S. K.; Masters, K. S.; Bowman, C. N.; Anseth, K. S. Controlled polymerization chemistry to graft architectures that influence cell-material interactions. Acta Biomater. 2007, 3, 151−161. doi: 10.1016/j.actbio.2006.07.010

    35. [35]

      Jiang, K. M.; Han, S. T.; Ma, M. Y.; Zhang, L.; Zhao, Y. C.; Chen, M. Photoorganocatalyzed reversible-deactivation alternating copolymerization of chlorotrifluoroethylene and vinyl ethers under ambient conditions: facile access to main-chain fluorinated copolymers. J. Am. Chem. Soc. 2020, 142, 7108−7115. doi: 10.1021/jacs.0c01016

    36. [36]

      Bai, H. D.; Huang, Z. H.; Yang, W. T. Visible light-induced living surface grafting polymerization for the potential biological applications. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 6852−6862. doi: 10.1002/pola.23724

    37. [37]

      Li, A.; Ramakrishna, S. N.; Nalam, P. C.; Benetti, E. M.; Spencer, N. D. Stratified polymer grafts: synthesis and characterization of layered ‘brush’ and ‘gel’ structures. Adv. Mater. Interfaces 2014, 1, 1300007. doi: 10.1002/admi.201300007

    38. [38]

      Zhang, Z.; Corrigan, N.; Bagheri, A.; Jin, J.; Boyer, C. A versatile 3D and 4D printing system through photocontrolled RAFT polymerization. Angew. Chem. Int. Ed. 2019, 58, 17954−17963. doi: 10.1002/anie.201912608

    39. [39]

      Quan, Q.; Wen, H.; Han, S.; Wang, Z.; Shao, Z.; Chen, M. Fluorous-core nanoparticle-embedded hydrogel synthesized via tandem photo-controlled radical polymerization: facilitating the separation of perfluorinated alkyl substances from water. ACS Appl. Mater. Interfaces 2020, 12, 24319−24327. doi: 10.1021/acsami.0c04646

    40. [40]

      Su, Y.; Straathof, N. J.; Hessel, V.; Noel, T. Photochemical transformations accelerated in continuous-flow reactors: basic concepts and applications. Chem. Eur. J. 2014, 20, 10562−10589. doi: 10.1002/chem.201400283

    41. [41]

      Junkers, T.; Wenn, B. Continuous photoflow synthesis of precision polymers. React. Chem. Eng. 2016, 1, 60−64. doi: 10.1039/C5RE00042D

    42. [42]

      Tonhauser, C.; Nataello, A.; Lowe, H.; Frey, H. Microflow technology in polymer synthesis. Macromolecules 2012, 45, 9551−9570. doi: 10.1021/ma301671x

    43. [43]

      Diehl, C.; Laurino, P.; Azzouz, N.; Seeberger, P. H. Accelerated continuous flow RAFT polymerization. Macromolecules 2010, 43, 10311−10314. doi: 10.1021/ma1025253

    44. [44]

      Zaquen, N.; Kadir, A. M. N. B. P. H. A.; Iasa, A.; Corrigan, N.; Junkers, T.; Zetterlund, P. B.; Boyer, C. Rapid oxygen tolerant aqueous RAFT photopolymerization in continuous flow reactors. Macromolecules 2019, 52, 1609−1619. doi: 10.1021/acs.macromol.8b02628

    45. [45]

      Rubens, M.; Latsrisaeng, P.; Junkers, T. Visible light-induced iniferter polymerization of methacrylates enhanced by continuous flow. Polym. Chem. 2017, 8, 6496−6505. doi: 10.1039/C7PY01157A

    46. [46]

      Huang, W.; Zhai, J.; Hu, X.; Duan, J.; Fang, Z.; Zhu, N.; Guo, K. Continuous flow photoinduced phenothiazine derivatives catalyzed atom transfer radical polymerization. Eur. Polym. J. 2020, 126, 109565. doi: 10.1016/j.eurpolymj.2020.109565

    47. [47]

      Marathianos, A.; Liarou, E.; Anastasaki, A.; Whitfield, R.; Laurel, M.; Wemyss, A. M.; Haddleton, D. M. Photo-induced copper-RDRP in continuous flow without external deoxygenation. Polym. Chem. 2019, 10, 4402−4406. doi: 10.1039/C9PY00945K

    48. [48]

      Buss, B. L.; Miyake, G. M. Photoinduced controlled radical polymerizations performed in flow: methods, products, and opportunities. Chem. Mater. 2018, 30, 3931−3942. doi: 10.1021/acs.chemmater.8b01359

    49. [49]

      Reis, M. H.; Leibfarth, F. A.; Pitet, L. M. Polymerizations in continuous flow: recent advances in the synthesis of diverse polymeric materials. ACS Macro Lett. 2020, 9, 123−133. doi: 10.1021/acsmacrolett.9b00933

    50. [50]

      Zhu, N.; Hu, X.; Fang, Z.; Guo, K. Continuous flow photoinduced reversible deactivation radical polymerization. ChemPhotoChem 2018, 2, 831−838. doi: 10.1002/cptc.201800032

    51. [51]

      Bally, F.; Serra, C. A.; Hessel, V.; Hadziioannou, G. Micromixer-assisted polymerization processes. Chem. Eng. Sci. 2011, 66, 1449−1462. doi: 10.1016/j.ces.2010.07.026

    52. [52]

      Hornung, C. H.; Guerrero-Sanchez, C.; Brasholz, M.; Saubern, S.; Chiefari, J.; Moad, G.; Rizzardo, E.; Thang, S. H. Controlled RAFT polymerization in a continuous flow microreactor. Org. Process. Res. Dev. 2011, 15, 593−601. doi: 10.1021/op1003314

    53. [53]

      Parida, D.; Serra, C.; Gómez, R.; Garg, D.; Hoarau, Y.; Bouquey, M.; Muller, R.; Ibarra-Gómez, R.; Bouquey, M.; Muller, R. Atom transfer radical polymerization in continuous microflow: effect of process parameters. J. Flow. Chem. 2014, 4, 92−96. doi: 10.1556/JFC-D-14-00003

    54. [54]

      Muller, M.; Cunningham, M. F.; Hutchinson, R. A. Continuous atom transfer radical polymerization in a tubular reactor. Macromol. React. Eng. 2008, 2, 31−36. doi: 10.1002/mren.200700029

    55. [55]

      Taylor, G. Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. Math. Phys. Eng. Sci. 1997, 219, 186−203.

    56. [56]

      Russum, J. P.; Jones, C. W.; Schork, F. J. Impact of flow regime on polydispersity in tubular RAFT miniemulsion polymerization. AlChE J. 2006, 52, 1566−1576. doi: 10.1002/aic.10730

    57. [57]

      Hu, X.; Zhu, N.; Fang, Z.; Guo, K. Continuous flow ring-opening polymerizations. React. Chem. Eng. 2017, 2, 20−26. doi: 10.1039/c6re00206d

    58. [58]

      Danckwerts, P. V. Continuous flow systems. Continuous flow systems. Distribution of residence times. Chem. Eng. Sci. 1995, 50, 3855. doi: 10.1016/0009-2509(96)81810-0

    59. [59]

      Reis, M. H.; Varner, T. P.; Leibfarth, F. A. The influence of residence time distribution on continuous-flow polymerization. Macromolecules 2019, 52, 3551−3557. doi: 10.1021/acs.macromol.9b00454

    60. [60]

      Song, Y.; Song, J.; Shang, M.; Xu, W.; Liu, S.; Wang, B.; Lu, Q.; Su, Y. Hydrodynamics and mass transfer performance during the chemical oxidative polymerization of aniline in microreactors. Chem. Eng. J. 2018, 353, 769−780. doi: 10.1016/j.cej.2018.07.166

    61. [61]

      Tumarkin, E.; Kumacheva, E. Microfluidic generation of microgels from synthetic and natural polymers. Chem. Soc. Rev. 2009, 38, 2161−2168. doi: 10.1039/b809915b

    62. [62]

      Xu, S. Q.; Nie, Z. H.; Seo, M.; Lewis, P.; Kumacheva, E.; Stone, H. A.; Garstecki, P.; Weibel, D. B.; Gitlin, I.; Whitesides, G. M. Generation of monodisperse particles by using microfluidics: control over size, shape, and composition. Angew. Chem. Int. Ed. 2005, 44, 724−728. doi: 10.1002/anie.200462226

    63. [63]

      Daniloska, V.; Tomovska, R.; Asua, J. M. Designing tubular reactors to avoid clogging in high solids miniemulsion photopolymerization. Chem. Eng. J. 2013, 222, 136−141. doi: 10.1016/j.cej.2013.02.015

    64. [64]

      Liu, Z.; Lu, Y.; Yang, B.; Luo, G. Controllable preparation of poly(butyl acrylate) by suspension polymerization in a coaxial capillary microreactor. Ind. Eng. Chem. Res. 2011, 50, 11853−11862. doi: 10.1021/ie201497b

    65. [65]

      Corrigan, N.; Manahan, R.; Lew, Z. T.; Yeow, J.; Xu, J. T.; Boyer, C. Copolymers with controlled molecular weight distributions and compositional gradients through flow polymerization. Macromolecules 2018, 51, 4553−4563. doi: 10.1021/acs.macromol.8b00673

    66. [66]

      Corrigan, N.; Zhernakov, L.; Hashim, M. H.; Xu, J.; Boyer, C. Flow mediated metal-free PET-RAFT polymerisation for upscaled and consistent polymer production. React. Chem. Eng. 2019, 4, 1216−1228. doi: 10.1039/C9RE00014C

    67. [67]

      Zhou, Y.; Gu, Y.; Jiang, K. M.; Chen, M. Droplet-flow photopolymerization aided by computer: overcoming the challenges of viscosity and facilitating the generation of copolymer libraries. Macromolecules 2019, 52, 5611−5617. doi: 10.1021/acs.macromol.9b00846

    68. [68]

      Kohler, J. M.; Li, S. N.; Knauer, A. Why is micro segmented flow particularly promising for the synthesis of nanomaterials? Chem. Eng. Technol. 2013, 36, 887−899. doi: 10.1002/ceat.201200695

    69. [69]

      Noel, T.; Buchwald, S. L. Cross-coupling in flow. Chem. Soc. Rev. 2011, 40, 5010−5029. doi: 10.1039/c1cs15075h

    70. [70]

      Horie, T.; Sumino, M.; Tanaka, T.; Matsushita, Y.; Ichimura, T.; Yoshida, J. Photodimerization of maleic anhydride in a microreactor without clogging. Org. Process Res. Dev. 2010, 14, 405−410. doi: 10.1021/op900306z

    71. [71]

      DesLauriers, P. J.; McDaniel, M. P.; Rohlfing, D. C.; Krishnaswamy, R. K.; Secora, S. J.; Benham, E. A.; Maeger, P. L.; Wolfe, A. R.; Sukhadia, A. M.; Beaulieu, B. B. A comparative study of multimodal vs. bimodal polyethylene pipe resins for PE-100 applications. Polym. Eng. Sci. 2005, 45, 1203−1213.

    72. [72]

      Kukalyekar, N.; Balzano, L.; Peters, G. W. M.; Rastogi, S.; Chadwick, J. C. Characteristics of bimodal polyethylene prepared via co-immobilization of chromium and iron catalysts on an MgCl2-based support. Macromol. React. Eng. 2009, 3, 448−454. doi: 10.1002/mren.200900021

    73. [73]

      Ramsey, B. L.; Pearson, R. M.; Beck, L. R.; Miyake, G. M. Photoinduced organocatalyzed atom transfer radical polymerization using continuous flow. Macromolecules 2017, 50, 2668−2674. doi: 10.1021/acs.macromol.6b02791

    74. [74]

      Kuroki, A.; Martinez-Botella, I.; Hornung, C. H.; Martin, L.; Williams, E. G. L.; Locock, K. E. S.; Hartlieb, M.; Perrier, S. Looped flow RAFT polymerization for multiblock copolymer synthesis. Polym. Chem. 2017, 8, 3249−3254. doi: 10.1039/C7PY00630F

    75. [75]

      Gong, H.; Zhao, Y.; Shen, X.; Lin, J.; Chen, M. Organocatalyzed photocontrolled radical polymerization of semifluorinated (meth)acrylates driven by visible light. Angew. Chem. Int. Ed. 2018, 57, 333−337. doi: 10.1002/anie.201711053

    76. [76]

      Morsbach, J.; Müller, A. H. E.; Berger-Nicoletti, E.; Frey, H. Living polymer chains with predictable molecular weight and dispersity via carbanionic polymerization in continuous flow: mixing rate as a key parameter. Macromolecules 2016, 49, 5043−5050. doi: 10.1021/acs.macromol.6b00975

    77. [77]

      Endo, Y.; Furusawa, M.; Shimazaki, T.; Takahashi, Y.; Nakahara, Y.; Nagaki, A. Molecular weight distribution of polymers produced by anionic polymerization enables mixability evaluation. Org. Process Res. Dev. 2019, 23, 635−640. doi: 10.1021/acs.oprd.8b00403

    78. [78]

      Nagaki, A.; Miyazaki, A.; Yoshida, J. I. Synthesis of polystyrenes-poly(alkyl methacrylates) block copolymers via anionic polymerization using an integrated flow microreactor system. Macromolecules 2010, 43, 8424−8429. doi: 10.1021/ma101663x

    79. [79]

      Nagaki, A.; Kawamura, K.; Suga, S.; Ando, T.; Sawamoto, M.; Yoshida, J. Cation pool-initiated controlled/living polymerization using microsystems. J. Am. Chem. Soc. 2004, 126, 14702−14703. doi: 10.1021/ja044879k

    80. [80]

      Wang, E.; Chen, M. Catalyst shuttling enabled by a thermoresponsive polymeric ligand: facilitating efficient cross-couplings with continuously recyclable ppm levels of palladium. Chem. Sci. 2019, 10, 8331−8337. doi: 10.1039/C9SC02171J

    81. [81]

      Zhong, F.; Zhou, Y.; Chen, M. The influence of mixing on chain extension by photo-controlled/living radical polymerization under continuous-flow conditions. Polym. Chem. 2019, 10, 4879−4886. doi: 10.1039/C9PY01063G

    82. [82]

      Yeow, J.; Boyer, C. Photoinitiated polymerization-induced self-assembly (photo-PISA): new insights and opportunities. Adv. Sci. 2017, 4, 1700137. doi: 10.1002/advs.201700137

    83. [83]

      Warren, N. J.; Armes, S. P. Polymerization-induced self-assembly of block copolymer nano-objects via RAFT aqueous dispersion polymerization. J. Am. Chem. Soc. 2014, 136, 10174−10185. doi: 10.1021/ja502843f

    84. [84]

      Zeng, R. M.; Chen, Y.; Zhang, L.; Tan, J. B. R-RAFT or Z-RAFT? Well-defined star block copolymer nano-objects prepared by RAFT-mediated polymerization-induced self-assembly Macromolecules 2020, 53, 1557−1566. doi: 10.1021/acs.macromol.0c00123

    85. [85]

      Li, H. H.; Xu, Q. H.; Xu, X.; Zhang, L. F.; Cheng, Z. P.; Zhu, X. L. One-step photocontrolled polymerization-induced self-assembly (photo-PISA) by using in situ bromine-iodine transformation reversible-deactivation radical polymerization. Polymers 2020, 12, 150. doi: 10.3390/polym12010150

    86. [86]

      Zaquen, N.; Yeow, J.; Junkers, T.; Boyer, C.; Zetterlund, P. B. Visible light-mediated polymerization-induced self-assembly using continuous flow reactors. Macromolecules 2018, 51, 5165−5172. doi: 10.1021/acs.macromol.8b00887

    87. [87]

      Zaquen, N.; Azizi, W. A. A. W.; Yeow, J.; Kuchel, R. P.; Junkers, T.; Zetterlund, P. B.; Boyer, C. Alcohol-based PISA in batch and flow: exploring the role of photoinitiators. Polym. Chem. 2019, 10, 2406−2414. doi: 10.1039/C9PY00166B

    88. [88]

      Quan, Q.; Gong, H.; Chen, M. Preparation of semifluorinated poly(meth)acrylates by improved photo-controlled radical polymerization without the use of a fluorinated RAFT agent: facilitating surface fabrication with fluorinated materials. Polym. Chem. 2018, 9, 4161−4171. doi: 10.1039/C8PY00990B

    89. [89]

      Zaquen, N.; Zu, H.; Kadir, A. M. N. B. P. H. A.; Junkers, T.; Zetterlund, P. B.; Boyer, C. Scalable aqueous reversible addition-fragmentation chain transfer photopolymerization-induced self-assembly of acrylamides for direct synthesis of polymer nanoparticles for potential drug delivery applications. ACS Appl. Polym. Mater. 2019, 1, 1251−1256.

    90. [90]

      Liu, D.; Cai, W.; Zhang, L.; Boyer, C.; Tan, J. Efficient photoinitiated polymerization-induced self-assembly with oxygen tolerance through fual-wavelength type I photoinitiation and photoinduced deoxygenation. Macromolecules 2020, 53, 1212−1223. doi: 10.1021/acs.macromol.9b02710

    91. [91]

      Lin, B.; Hedrick, J. L.; Park, N. H.; Waymouth, R. M. Programmable high-throughput platform for the rapid and scalable synthesis of polyester and polycarbonate libraries. J. Am. Chem. Soc. 2019, 141, 8921−8927. doi: 10.1021/jacs.9b02450

    92. [92]

      van de Walle, M.; De Bruycker, K.; Junkers, T.; Blinco, J. P.; Barner-Kowollik, C. Scalable synthesis of sequence-defined oligomers via photoflow chemistry. ChemPhotoChem 2019, 3, 225−228. doi: 10.1002/cptc.201900031

    93. [93]

      Walsh, D. J.; Schinski, D. A.; Schneider, R. A.; Guironnet, D. General route to design polymer molecular weight distributions through flow chemistry. Nat. Commun. 2020, 11, 3094. doi: 10.1038/s41467-020-16874-6

    94. [94]

      Harper, K. C.; Moschetta, E. G.; Bordawekar, S. V.; Wittenberger, S. J. A laser driven flow chemistry platform for scaling photochemical reactions with visible light. ACS Cent. Sci. 2019, 5, 109−115. doi: 10.1021/acscentsci.8b00728

    95. [95]

      Laudadio, G.; Deng, Y.; van der Wal, K.; Ravelli, D.; Nuño, M.; Fagnoni, M.; Guthrie, D.; Sun, Y.; Noël, T. C(sp3)-H functionalizations of light hydrocarbons using decatungstate photocatalysis in flow. Science 2020, 369, 92−96. doi: 10.1126/science.abb4688

    96. [96]

      Ge, L.; Yan, J.; Song, X.; Yan, M.; Ge, S.; Yu, J. Three-dimensional paper-based electrochemiluminescence immunodevice for multiplexed measurement of biomarkers and point-of-care testing. Biomaterials 2012, 33, 1024−1031. doi: 10.1016/j.biomaterials.2011.10.065

    97. [97]

      Yeo, L. Y.; Chang, H. C.; Chan, P. P.; Friend, J. R. Microfluidic devices for bioapplications. Small 2011, 7, 12−48. doi: 10.1002/smll.201000946

    98. [98]

      Rubens, M.; Vrijsen, J. H.; Laun, J.; Junkers, T. Precise polymer synthesis by autonomous self-optimizing flow reactors. Angew. Chem. Int. Ed. 2019, 58, 3183−3187. doi: 10.1002/anie.201810384

    99. [99]

      Gentekos, D. T.; Sifri, R. J.; Fors, B. P. Controlling polymer properties through the shape of the molecular-weight distribution. Nat. Rev. Mater. 2019, 4, 761−774. doi: 10.1038/s41578-019-0138-8

    100. [100]

      Whitfield, R.; Truong, N. P.; Messmer, D.; Parkatzidis, K.; Rolland, M.; Anastasaki, A. Tailoring polymer dispersity and shape of molecular weight distributions: methods and applications. Chem. Sci. 2019, 10, 8724−8734. doi: 10.1039/C9SC03546J

  • 加载中
    1. [1]

      Jie ZhouXiao-Yuan ZhangZhi-Qiang Su . Rational Design of Biomolecules/Polymer Hybrids by Reversible Deactivation Radical Polymerization (RDRP) for Biomedical Applications. Chinese J. Polym. Sci, 2021, 39(9): 1093-1109. doi: 10.1007/s10118-021-2543-x

    2. [2]

      Ruo-Yu LiZe-Sheng An . Photoenzymatic RAFT Emulsion Polymerization with Oxygen Tolerance. Chinese J. Polym. Sci, 2021, 39(9): 1138-1145. doi: 10.1007/s10118-021-2556-5

    3. [3]

      Ming LiLi-fen ZhangMei-xia TaoZhen-ping ChengXiu-lin Zhu . Photo-induced Living Cationic Copolymerization of Isobutyl Vinyl Ether and Vinyl Ether with Carbazolyl Groups. Chinese J. Polym. Sci, 2014, 32(11): 1564-1574. doi: 10.1007/s10118-014-1540-8

    4. [4]

      Gorkem YilmazYusuf Yagci . Mechanistic Transformations Involving Radical and Cationic Polymerizations. Chinese J. Polym. Sci, 2020, 38(3): 205-212. doi: 10.1007/s10118-020-2367-0

    5. [5]

      Yong-Peng MiaoJing LyuHai-Yang YongSigen AYong-Sheng GaoWen-Xin Wang . Controlled Polymerization of Methyl Methacrylate and Styrene via Cu(0)-Mediated RDRP by Selecting the Optimal Reaction Conditions. Chinese J. Polym. Sci, 2019, 37(6): 591-597. doi: 10.1007/s10118-019-2236-x

    6. [6]

      Wei-Bin CaiDong-Dong LiuYing ChenLi ZhangJian-Bo Tan . Enzyme-assisted Photoinitiated Polymerization-induced Self-assembly in Continuous Flow Reactors with Oxygen Tolerance. Chinese J. Polym. Sci, 2021, 39(9): 1127-1137. doi: 10.1007/s10118-021-2533-z

    7. [7]


    8. [8]


    9. [9]

      Ning LiXiang-Cheng Pan . Controlled Radical Polymerization: from Oxygen Inhibition and Tolerance to Oxygen Initiation. Chinese J. Polym. Sci, 2021, 39(9): 1084-1092. doi: 10.1007/s10118-021-2597-9

    10. [10]

      Hong-Hong GongYing ZhangYi-Pin ChengMing-Xin LeiZhi-Cheng Zhang . The Application of Controlled/Living Radical Polymerization in Modification of PVDF-based Fluoropolymer. Chinese J. Polym. Sci, 2021, 39(9): 1110-1126. doi: 10.1007/s10118-021-2616-x

    11. [11]


    12. [12]


    13. [13]

      Hao-Yu YuJiao WangJian-Wei ShaoDong ChenShi-Chao WangLi WangWan-Tai Yang . Controlled Radical Polymerization of Styrene Mediated by Xanthene-9-thione and Its Derivatives. Chinese J. Polym. Sci, 2018, 36(12): 1303-1311. doi: 10.1007/s10118-018-2153-4

    14. [14]

      Ren-yuan SongXiao-ling HuPing GuanJi LiLi-wei QianQiao-li Wang . Synthesis of Glutathione Imprinted Polymer Particles via Controlled Living Radical Precipitation Polymerization. Chinese J. Polym. Sci, 2015, 33(3): 404-415. doi: 10.1007/s10118-015-1590-6

    15. [15]

      Chun-Na LvNing LiYu-Xuan DuJia-Hua LiXiang-Cheng Pan . Activation and Deactivation of Chain-transfer Agent in Controlled Radical Polymerization by Oxygen Initiation and Regulation

      . Chinese J. Polym. Sci, 2020, 38(11): 1178-1184. doi: 10.1007/s10118-020-2441-7

    16. [16]

      Zhen-yu DengDong ZhangLin-xi Zhang . Dynamics of Attractive Vesicles in Shear Flow. Chinese J. Polym. Sci, 2016, 34(5): 623-636. doi: 10.1007/s10118-016-1785-5

    17. [17]


    18. [18]


    19. [19]

      Xiang-Xin KongWen-Duo ChenFeng-Chao CuiYun-Qi Li . Conformational and Dynamical Evolution of Block Copolymers in Shear Flow. Chinese J. Polym. Sci, 2021, 39(5): 640-650. doi: 10.1007/s10118-021-2523-1

    20. [20]

      Feng-yuan Yu aHong-bin Zhang aZhi-gang Wang b+Wei Yu aChi-xing Zhou a . OVERSHOOTS IN STRESS AND FREE ENERGY CHANGE DURING THE FLOW-INDUCED CRYSTALLIZATION OF POLYMERIC MELT IN SHEAR FLOW. Chinese J. Polym. Sci, 2010, 28(4): 657-666. doi: 10.1007/s10118-010-9174-y

Article Metrics
  • PDF Downloads(1)
  • Abstract views(1787)
  • HTML views(595)
  • Cited By(0)

通讯作者: 陈斌,
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索


DownLoad:  Full-Size Img  PowerPoint