Citation: Chueangchayaphan, W.; Luangchuang, P.; Chueangchayaphan, N.; Sulaiman, M. A.; Nakaramontri, Y. Barium titanate-reinforced acrylonitrile-butadiene rubber: synergy effect of carbon-based secondary filler. Chinese J. Polym. Sci. doi: 10.1007/s10118-021-2528-9 shu

Barium Titanate-reinforced Acrylonitrile-Butadiene Rubber: Synergy Effect of Carbon-based Secondary Filler

  • Corresponding author: Yeampon Nakaramontri, E-mail:
  • Received Date: 2020-07-12
    Accepted Date: 2020-11-19
    Available Online: 2021-01-05

Figures(11) / Tables(5)

  • Acrylonitrile rubber (NBR) composites filled with barium titanate (BT) were prepared using an internal mixer and a two-roll mill. Also, a secondary filler, namely carbon nanotubes (CNT), was added in order to find a potential synergistic blend ratio of BT and CNT. The cure characteristics, tensile and dielectric properties (dielectric constant and dielectric loss) of the composites were determined. It was found that NBR/BT composites with CNT secondary filler, at a proper BT:CNT ratio, exhibited shorter scorch time (ts1) and cure time (tc90) together with superior tensile properties and reinforcement efficiency, relative to the one with only the primary filler. In addition, the NBR/BT-CNT composite with 80 phr BT and 1−2 phr CNT had dielectric constant of 100−500, dielectric loss of 12−100 and electrical conductivity below 10−4 S/m together with high thermal stability. Thus, with a proper BT:CNT mix and filler loading, we can produce mechanically superior rubber composites that are easy to process and low-cost, for flexible dielectric materials application.
  • 加载中
    1. [1]

      Zhou, T.; Zha, J. W.; Cui, R. Y.; Fan, B. H.; Yuan, J. K.; Dang, Z. M. Improving dielectricproperties of BaTiO3/ferroelectric polymer composites by employing surface hydroxylated BaTiO3 nanoparticles. J. Appl. Mater. Interfaces 2011, 3, 2184−2188. doi: 10.1021/am200492q

    2. [2]

      Tan, Y. J.; Liang, Y. R.; Hu, G. S.; Wang, Y. Q.; Lu, Y. L.; Zhang, L. Q. Structure and properties of isobutylene-isoprene rubber/swollen organoclay nanocomposites prepared by shear mixing. Chinese J. Polym. Sci. 2011, 29, 225−231. doi: 10.1007/s10118-011-1029-7

    3. [3]

      Wan, Y. J.; Zhu, P. L.; Yu, S. H.; Yang, W. H.; Sun, R.; Wong, C. P.; Liao, W. H. Barium titanate coated and thermally reduced graphene oxide towards high dielectric constant and low loss of polymeric composites. Compos. Sci. Technol. 2017, 141, 48−55. doi: 10.1016/j.compscitech.2017.01.010

    4. [4]

      Kumar, G. S.; Vishnupriya, D.; Chary, K. S.; Patro, T. U. High dielectric permittivity and improved mechanical and thermal properties of poly(vinylidene fluoride) composites low carbon nanotube content: effect of composite processing on phase behavior and dielectric properties. Nanotechology 2016, 27, 385702.

    5. [5]

      Gupta, S. K.; Pandey, K.; Verma, V.; Mathur, S.; Kumar, V. Dielectric properties of polymethylmethacrylate/barium titanate (PMMA/BaTiO3) nanocomposites. Appl. Polym. Compos. 2013, 1, 47−56.

    6. [6]

      Singh, S.; Dey, S. S.; Singh, S.; Kumar, N. Preparation and characterization of barium titanate composite film. Mater. Today. 2017, 4, 3300−3307.

    7. [7]

      Pant, H. C.; Patra, M. K.; Verma, A.; Vadera, S. R.; Kumar, N. Study of the dielectric properties of barium titanate-polymer composites. Acta Mate. 2006, 54, 3163−3169. doi: 10.1016/j.actamat.2006.02.031

    8. [8]

      Iijima, M.; Sato, N.; Lenggoro, I. W.; Kamiya, H. Surface modification of BaTiO3 particles by silane coupling agents in different solvents and their effect on dielectric properties of BaTiO3/epoxy composites. Colloi. Surf. A: Physicochem. Eng. Asp. 2009, 352, 88−93. doi: 10.1016/j.colsurfa.2009.10.005

    9. [9]

      Phan, T. T. M.; Chu, N. C.; Luu, V. B.; Xuan, H. N.; Martin, I.; Carriere, P. The role of epoxy matrix occlusions within BaTiO3 nanoparticles on the dielectric properties of functionalized BaTiO3/epoxy nanocomposites. Compos. A: Appl. Sci. Manuf. 2016, 90, 528−535. doi: 10.1016/j.compositesa.2016.08.018

    10. [10]

      Salaeh, S.; Muensit, N.; Bomlai, P.; Nakason, C. Ceramic/natural rubber composites: influence types of rubber and ceramic materials on curing, mechanical, morphological, and dielectric properties. Adv. Mater. Res-Switz. 2011, 46, 1723−1731.

    11. [11]

      Gonzalez, N.; Tomara, GN.; Psarras, G. C.; Riba, J. R.; Armelin, E. Dielectric response of vulcanized natural rubber containing BaTiO3 filler: the role of particle functionalization. Eur. Polym. J. 2017, 97, 57−67. doi: 10.1016/j.eurpolymj.2017.10.001

    12. [12]

      Asimakopoulos, I.; Psarras, G.; Zoumpoulakis, L. Barium titanate/polyester resin nanocomposites: development, structure-properties relationship and energy storage capability. Express Polym. Lett. 2014, 8, 692−707. doi: 10.3144/expresspolymlett.2014.72

    13. [13]

      Chameswary, J.; Sebastian, M. Preparation and properties of BaTiO3 filled butyl rubber composites for flexible electronic circuit applications. J. Mater. Sci. 2015, 26, 4629−4637.

    14. [14]

      Bele, A.; Cazacu, M.; Stiubianu, G.; Vlad, S.; Ignat, M. Polydimethylsiloxane-barium titanate composites: preparation and evaluation of the morphology, moisture, thermal, mechanical and dielectric behavior. Compos. B Eng. 2015, 68, 237−245. doi: 10.1016/j.compositesb.2014.08.050

    15. [15]

      Jiang, L.; Betts, A.; Kennedy, D.; Jerrams, S. Improving the electromechanical performance of dielectric elastomers using silicone rubber and dopamine coated barium titanate. Mater. Des. 2015, 85, 733−742. doi: 10.1016/j.matdes.2015.07.075

    16. [16]

      Namitha, L.; Sebastian, M. High permittivity ceramics loaded silicone elastomer composites for flexible electronics applications. Ceram. Int. 2017, 43, 2994−3003. doi: 10.1016/j.ceramint.2016.11.080

    17. [17]

      Ziegmann, A.; Schubert, D. W. Influence of the particle size and the filling degree of barium titanate filled silicone elastomers used as potential dielectric elastomers on the mechanical properties and the crosslinking density. Mater. Today. 2018, 14, 90−98.

    18. [18]

      Han, W.; Yoo, B.; Kwon, K. H.; Cho, H. H.; Park, H. H. Fluorine ligand exchange effect in poly(vinylidenefluoride-co-hexafluoropropylene) with embedded fluorinated barium titanate nanoparticles. Thin Solid Films 2016, 619, 17−24. doi: 10.1016/j.tsf.2016.10.043

    19. [19]

      Defebvin, J.; Barrau, S.; Lyskawa, J.; Woisel, P.; Lefebvre, J. M. Influence of nitrodopamine-functionalized barium titanate content on the piezoelectric response of poly(vinylidene fluoride) based polymer-ceramic composites. Compos. Sci. Technol. 2017, 147, 16−21. doi: 10.1016/j.compscitech.2017.05.001

    20. [20]

      Yaqoob, U.; Uddin, A. I.; Chung, G. S. A novel tri-layer flexible piezoelectric nanogenerator based on surface-modified graphene and PVDF-BaTiO3 nanocomposites. Appl. Surf. Sci. 2017, 405, 420−426. doi: 10.1016/j.apsusc.2017.01.314

    21. [21]

      Li, H. Z.; Li, W. Z.; Yang, Y.J.; Tai, H. L.; Du, X. S.; Gao, R. Y.; Li, S. Y. Pyroelectric performances of 1-3 ferroelectric composites based on barium titanate nanowires/polyvinylidene fluoride. Ceram. Int. 2018, 44, 19254−61. doi: 10.1016/j.ceramint.2018.07.150

    22. [22]

      Padalia, D.; Bisht, G.; Johri, U.; Asokan, K. Fabrication and characterization of cerium doped barium titanate/PMMA nanocomposites. Sol. Sci. 2013, 19, 122−129. doi: 10.1016/j.solidstatesciences.2013.02.002

    23. [23]

      Su, J.; Zhang, J. Improvement of mechanical and dielectrical properties of ethylene propylene diene monomer (EPDM)/barium titanate (BaTiO3) by layered mica and graphite flakes. Compos. B Eng. 2017, 112, 148−157. doi: 10.1016/j.compositesb.2017.01.002

    24. [24]

      Qi, F.; Chen, N.; Wang, Q. Preparation of PA11/BaTiO3 nanocomposite powders with improved processability, dielectric and piezoelectric properties for use in selective laser sintering. Mater. Des. 2017, 131, 135−143. doi: 10.1016/j.matdes.2017.06.012

    25. [25]

      Zhu, S.; Guo, J.; Zhang, J. Enhancement of mechanical strength associated with interfacial tension between barium titanate and acrylonitrile-butadiene rubber with different acrylonitrile contents by surface modification. J. Appl. Polym. Sci. 2018, 135, 45936.

    26. [26]

      Liu, J.; Gu, H.; Liu, Q.; Ren, L.; Li, G. An intelligent material for tissue reconstruction: the piezoelectric property of polycaprolactone/barium titanate composites. Mater. Lett. 2019, 236, 686−689. doi: 10.1016/j.matlet.2018.11.036

    27. [27]

      Ma, W. L.; Cai, Z. H.; Zhang, Y.; Wang, Z. Y.; Xia, L.; Ma, S. P.; Li, G. H.; Huang, Y. An overview of stretchable supercapacitors based on carbon nanotube and graphene. Chinese J. Polym. Sci. 2020, 38, 491−505. doi: 10.1007/s10118-020-2386-x

    28. [28]

      Yang, J. H.; Xie, X.; He, Z. Z.; Lu, Y.; Qi, X. D.; Wang, Y. Graphene oxide-tailored dispersion of hybrid barium titanate@polypyrrole particles and the dielectric composites. Chem. Eng. J. 2019, 355, 137−149. doi: 10.1016/j.cej.2018.08.152

    29. [29]

      Wu, C.; Huang, X.; Wu, X.; Yu, J.; Xie, L.; Jiang, P. TiO2-nanorod decorated carbon nanotubes for high-permittivity and low-dielectric-loss polystyrene composites. Compos. Sci. Technol. 2012, 72, 521−527. doi: 10.1016/j.compscitech.2011.12.014

    30. [30]

      Zhang, J.; Zhang, H.; Wang, S.; Liu, M. Antioxidant-loaded carbon nanotube to sustain a long-term aging-protection for acrylonitrile-butadiene rubber. Polym. Degrad. Stabil. 2017, 144, 93−99. doi: 10.1016/j.polymdegradstab.2017.08.006

    31. [31]

      Hayashida, K.; Matsuoka, Y. Highly enhanced dielectric constants of barium titanate-filled polymer composites using polymer-grafted carbon nanotube matrix. Carbon 2013, 60, 506−513. doi: 10.1016/j.carbon.2013.04.072

    32. [32]

      Yu, C. R.; Wu, D. M.; Liu, Y.; Qiao. H.; Yu, Z. Z.; Dasari, A.; Du, X. S.; Mai, Y. W. Electrical and dielectric properties of polypropylene nanocomposites based on carbon nanotubes and barium titanate nanoparticles. Compos. Sci. Technol. 2011, 71, 1706−1712. doi: 10.1016/j.compscitech.2011.07.022

    33. [33]

      Qi, F.; Chen, N.; Wang, Q. Dielectric and piezoelectric properties in selective laser sintered polyamide11/BaTiO3/CNT ternary nanocomposites. Mater. Des. 2018, 143, 72−80. doi: 10.1016/j.matdes.2018.01.050

    34. [34]

      Guan, S.; Li, H.; Zhao, S.; Guo, L. Novel three-component nanocomposites with high dielectric permittivity and low dielectric loss co-filled by carboxyl-functionalized multi-walled nanotube and BaTiO3. Compos. Sci. Technol. 2018, 158, 79−85. doi: 10.1016/j.compscitech.2017.12.038

    35. [35]

      Sobia, I.; Muhammad, S.; Ayesha, K.; Sedra, T. M.; Jaweria, A.; Iram, B. A review featuring fabrication, properties and applications of carbon nanotubes (CNTs) reinforced polymer and epoxy nanocomposites. Chinese J. Polym. Sci. 2018, 36, 445−461. doi: 10.1007/s10118-018-2045-7

    36. [36]

      Fan, B.; Bai, J. Composites of hybrids BaTiO3/carbon nanotubes/polyvinylidene fluoride with high dielectric properties. J. Phys. D-Appl. Phys. 2015, 48, 455303.

    37. [37]

      Fan, B.; Bedoui, F.; Weigand, S.; Bai, J. Conductive network and β polymorph content evolution caused by thermal treatment in carbon nanotubes-BaTiO3 hybrids reinforced polyvinylidene fluoride composites. J. Phys. Chem. C 2016, 120, 9511−9519. doi: 10.1021/acs.jpcc.6b01745

    38. [38]

      Jin, Y.; Xia, N.; Gerhardt, R. A. Enhanced dielectric properties of polymer matrix composites with BaTiO3 and MWCNT hybrid fillers using simple phase separation. Nano Energy 2016, 30, 407−416. doi: 10.1016/j.nanoen.2016.10.033

    39. [39]

      Fan, B.; Lu, X.; Dang, Z.; Deng, Y.; Zhou, X.; He, D.; Bai, J. Improved dispersion of carbon nanotubes in poly(vinylidene fluoride) composites by hybrids with core-shell structure. J. Appl. Polym. Sci. 2018, 135, 1−10.

    40. [40]

      Joseph, N.; Janardhanan, C.; Sebastian, M. T. Electromagnetic interference shielding properties of butyl rubber-single walled carbon nanotube composites. Compos. Sci. Technol. 2014, 101, 139−144. doi: 10.1016/j.compscitech.2014.07.002

    41. [41]

      Kumar, V,; Kumar, A.; Wu, R. R.; Lee, D. J. Room-temperature vulcanized silicone rubber/barium titanateebased high-performance nanocomposite for energy harvesting. Mater. Today Chem. 2020, 16, 1−8.

    42. [42]

      Bizhani, H.; Katbab, A. A.; Hernandez, E. L.; Miranda, J. M.; Manchado, M. A. L.; Verdejo, R. Preparation and characterization of highly elastic foams with enhanced electromagnetic wave absorption based on ethylene-propylene-diene-monomer rubber filled with barium titanate/multiwall carbon nanotube hybrid. Polymer 2020, 12, 1−15.

    43. [43]

      Nakaramontri, Y.; Pichaiyut, S.; Wisunthorn, S.; Nakason, C. Hybrid carbon nanotubes and conductive carbon black in natural rubber composites to enhance electrical conductivity by reducing gaps separating carbon nanotube encapsulates. Eur. Polym. J. 2017, 90, 467−484. doi: 10.1016/j.eurpolymj.2017.03.029

    44. [44]

      Dief, M. A.; Ali, Z.; Rozik, N. N.; Raslan, M.; Sadek, K. U. Electrical and mechanical properties of nitrile rubber (NR) filled with industrial waste and by product from manufacture of ferrosilicon alloys in egyptian chemical industries company. Egypt. J. Chem. 2017, 60, 905−918.

    45. [45]

      Zhi, X.; Mao, Y.; Yu, Z.; Wen, S.; Li, Y.; Zhang, L.; Chan, T. W.; Liu, L. γ-Aminopropyl triethoxysilane functionalized graphene oxide for composites with high dielectric constant and low dielectric loss. Compos. A-Appl. S. 2015, 76, 194−202. doi: 10.1016/j.compositesa.2015.05.015

    46. [46]

      Ruan, M.; Yang, D.; Guo, W.; Zhang, L.; Li, S.; Shang, Y.; Wu, Y.; Zhang, M.; Wang, H. Improved dielectric properties, mechanical properties, and thermal conductivity properties of polymer composites via controlling interfacial compatibility with bio-inspired method. Appl. Surf. Sci. 2018, 439, 186−195. doi: 10.1016/j.apsusc.2017.12.250

    47. [47]

      Nabil, H.; Ismail, H.; Rashid, A. A. Effects of partial replacement of commercial fillers by recycled poly(ethylene terephthalate) powder on the properties of natural rubber composites. J. Vinyl Addit. Technol. 2012, 18, 139−146. doi: 10.1002/vnl.20291

    48. [48]

      Hwu, J. M.; Yu, W. H.; Yang, W. C.; Chen, Y. W.; Chou, Y. Y. Characterization of dielectric barium titanate powders prepared by homogeneous precipitation chemical reaction for embedded capacitor applications. Mater. Res. Bull. 2005, 40, 1662−1679. doi: 10.1016/j.materresbull.2005.05.019

    49. [49]

      Zhan, J. Y.; Gian, G. F.; Wu, Z. P.; Qi, S. L.; Wu, D. Z. Preparation of polyimide/BaTiO3/Ag nanocomposite films via in situ technique and study of their dielectric behavior. Chinese J. Polym. Sci. 2014, 32, 424−431. doi: 10.1007/s10118-014-1413-1

    50. [50]

      Nakaramontri, Y.; Kummerlöwe, C.; Nakason, C.; Vennemann, N. The effect of surface functionalization of carbon nanotubes on the properties of natural rubber/carbon nanotube composites. Polym. Compos. 2014, 36, 2113−2122.

    51. [51]

      Nakaramontri, Y.; Kummerlöwe, C.; Nakason, C.; Vennemann, N. Influence of modified natural rubber on properties of natural rubber-carbon nanotubes composites. Rubber Chem. Technol. 2015, 88, 199−218. doi: 10.5254/rct.14.85949

    52. [52]

      Pötschke, P.; Dudkin, S. M.; Alig, I. Dielectric spectroscopy on melt processed polycarbonate-multiwalled carbon nanotube composites. Polymer 2003, 44, 5023−5030. doi: 10.1016/S0032-3861(03)00451-8

    53. [53]

      Bokobza, L. Enhanced electrical and mechanical properties of multiwall carbon nanotube rubber composites. Polym. Adv. Technol. 2012, 23, 1543−1549. doi: 10.1002/pat.3027

    54. [54]

      Szadkowski, B.; Marzec, A.; Zaborski, M. Effect of different carbon fillers on the properties of nitrile rubber composites. Compos. Interface 2018, 8, 729−750.

    55. [55]

      Ismail, H.; Ramly, A.; Othman, N. The effect of carbon black/multiwall carbon nanotube hybrid fillers on the properties of natural rubber nanocomposites. Polym. Plas. Technol. Eng. 2011, 50, 660−666. doi: 10.1080/03602559.2010.551380

    56. [56]

      Amin, L. M. N.; Ismail, H.; Nadras, O. Comparative study of bentonite filled acrylonitrile butadiene rubber and carbon black filled nbr composites properties. Int. J. Auto. Mecha. Eng. 2018, 15, 5468−5479. doi: 10.15282/ijame.15.3.2018.5.0420

    57. [57]

      Sadek, E. M.; El-Nashar, D. E. Preparation and characterization of nitrile butadiene rubber-nanoclay composites with maleic acid anhydride as compatibilizer. Part I: rheometric and swelling characteristics. High Perform. Polym. 2012, 24, 654−663. doi: 10.1177/0954008312448405

    58. [58]

      Subramaniam, K.; Das, A.; Stöckelhuber, K. W.; Heinrich, G. Elastomer composites based on carbon nanotubes and ionic liquid. Rubber Chem. Technol. 2018, 86, 367−400.

    59. [59]

      Kaewsakul, W.; Sahakaro, K.; Dierkes, W. K.; Noordermeer, J. W. Optimization of mixing conditions for silica-reinforced natural rubber tire tread compounds. Rubber Chem. Technol. 2012, 85, 277−294. doi: 10.5254/rct.12.88935

    60. [60]

      Nakaramontri, Y.; Wisunthorn, S.; Pichaiyut, S.; Nakason, C. Hybrid carbon nanotubes and conductive carbon black in natural rubber composites to enhance electrical conductivity by reducing gaps separating carbon nanotube encapsulates. Eur. Polym. J. 2017, 90, 467−484. doi: 10.1016/j.eurpolymj.2017.03.029

    61. [61]

      Nakaramontri, Y.; Kummerlöwe, C.; Wisunthorn, S.; Pichaiyut, S.; Vennemann, N.; Nakason, C. Electron tunneling in carbon nanotubes and carbon black hybrid filler-filled natural rubber composites: influence of non-rubber components. Polym. Compos. 2018, 39, 1237−1250. doi: 10.1002/pc.24821

    62. [62]

      Sulaiman, M. A.; Hutagalung, S. D.; Ahmad, Z. A.; Ain, M. F. Investigation of grain size effect on the impedance of CaCu3Ti4O12 from 100 Hz to 1 GHz of frequency. Adv. Mater. 2013, 620, 230−235.

    63. [63]

      Sulaiman, M. A.; Panwiriyarat, W.; Jie, B. L. C.; Masri, M. N.; Yusuff, M. Mechanical and electrical properties of TiO2 loaded vulcanized natural rubber. Proc. Mater. 2016, 4, 39−43.

    64. [64]

      Sulaiman, M. A.; Hutagalung, S. D.; Ain, M. F.; Ahmad, Z. A. Dielectric properties of Nb-doped CaCu3Ti4O12 electroceramics measured at high frequencies. J. Alloy Compd. 2010, 493, 486−492. doi: 10.1016/j.jallcom.2009.12.137

    65. [65]

      Shehzad, K.; Dang, Z. M.; Ahmad, M. N.; Sagar, R. U. R.; Butt, S.; Farooq, M. U.; Wang, T. B. Effects of carbon nanotubes aspect ratio on the qualitative and quantitative aspects of frequency response of electrical conductivity and dielectric permittivity in the carbon nanotube/polymer composites. Carbon 2013, 54, 105−112. doi: 10.1016/j.carbon.2012.10.068

  • 加载中
    1. [1]

      Yao GaoGui-ying ZongHong-wei BaiQiang Fu . Combined Effects of Stretching and Nanofillers on the Crystalline Structure and Mechanical Properties of Polypropylene and Single-walled Carbon Nanotube Composite Fibers. Chinese J. Polym. Sci, doi: 10.1007/s10118-014-1397-x

    2. [2]

      Long-mei WuShuang-quan LiaoSheng-jun ZhangXiao-ying BaiXue Hou . Enhancement of Mechanical Properties of Natural Rubber with Maleic Anhydride Grafted Liquid Polybutadiene Functionalized Graphene Oxide. Chinese J. Polym. Sci, doi: 10.1007/s10118-015-1652-9

    3. [3]

      Jibril Al-HawarinAyman S. AyeshRami A. Abdel-Rahem . DILECTRIC AND THERMAL PROPERTIES OF PEO DOPED WITH CADIMIUM CHLORIDE SALT. Chinese J. Polym. Sci, doi: 10.1007/s10118-012-1106-6

    4. [4]

      Jia-yu ZhanGuo-feng TianZhan-peng WuSheng-li QiDe-zhen Wu . Preparation of Polyimide/BaTiO3/Ag Nanocomposite Films via in situ Technique and Study of Their Dielectric Behavior. Chinese J. Polym. Sci, doi: 10.1007/s10118-014-1413-1

    5. [5]

      Yu-han LiMi ZhouCheng-zhen GengFeng ChenQiang Fu . Simultaneous Improvements of Thermal Stability and Mechanical Properties of Poly(propylene carbonate) via Incorporation of Environmental-friendly Polydopamine. Chinese J. Polym. Sci, doi: 10.1007/s10118-014-1518-6

    6. [6]

      Tianxi LiuHongdan PengYue-E MiaoWeng Weei TjiuLu ShenChun Wei . Synergistic Effect of Carbon Nanotubes and Layered Double Hydroxides on the Mechanical Reinforcement of Nylon-6 Nanocomposites. Chinese J. Polym. Sci, doi: 10.1007/s10118-014-1521-y

    7. [7]


    8. [8]

      Yan-yan Yang aKai-zhou Zhang bYi-hu Song aQiang Zheng a . PREPARATION AND PROPERTIES OF WHEAT GLUTEN/RICE PROTEIN COMPOSITES PLASTICIZED WITH GLYCEROL. Chinese J. Polym. Sci, doi: 10.1007/s10118-010-9185-8

    9. [9]

      Susan AziziMansor Bin AhmadNor Azow IbrahimMohd Zobir HusseinFarideh Namvar . Preparation and Properties of Poly(vinyl alcohol)/Chitosan Blend Bio-nanocomposites Reinforced by Cellulose Nanocrystals. Chinese J. Polym. Sci, doi: 10.1007/s10118-014-1548-0

    10. [10]

      Yan-ping HaoHuan-huan GeLi-jing HanHui-liang ZhangLi-song Dong . THERMAL AND MECHANICAL PROPERTIES OF POLYLACTIDE TOUGHENED WITH A BUTYL ACRYLATE-ETHYL ACRYLATE-GLYCIDYL METHACRYLATE COPOLYMER. Chinese J. Polym. Sci, doi: 10.1007/s10118-013-1350-4

    11. [11]

      Zhi-xin DongTao FengChao ZhengGuo-min LiFang-fang LiuXue-peng Qiu . Mechanical Properties of Polyimide/Multi-walled Carbon Nanotube Composite Fibers. Chinese J. Polym. Sci, doi: 10.1007/s10118-016-1841-1

    12. [12]

      Zhuo-yue XiongXiao-yu KongZhao-xia GuoJian Yu . Poly(ethylene terephthalate)/Carbon Black Composite Fibers Prepared by Electrospinning. Chinese J. Polym. Sci, doi: 10.1007/s10118-015-1674-3

    13. [13]

      Tanveer ul Haq ZiaAhmad Nawaz KhanMajid HussainIbrar HassanIftikhar Hussain Gul . Enhancing Dielectric and Mechanical Behaviors of Hybrid Polymer Nanocomposites Based on Polystyrene, Polyaniline and Carbon Nanotubes Coated with Polyaniline. Chinese J. Polym. Sci, doi: 10.1007/s10118-016-1867-4

    14. [14]

      Jing-Zhi MaKang ChengJiang-Bo LvChang ChenJiang-Huai HuKe ZengGang Yang . Phthalonitrile-PPO Blends: Cure Behavior and Properties. Chinese J. Polym. Sci, doi: 10.1007/s10118-018-2026-x

    15. [15]

      Guang-Yao YangLi-Fen TongXiao-Bo Liu . Design and Properties of Fluoroelastomer Composites via Incorporation of MWCNTs with Varied Modification. Chinese J. Polym. Sci, doi: 10.1007/s10118-020-2405-y

    16. [16]

      M. JohnsiS. Austin Suthanthiraraj . Compositional Effect of ZrO2 Nanofillers on a PVDF-co-HFP Based Polymer Electrolyte System for Solid State Zinc Batteries. Chinese J. Polym. Sci, doi: 10.1007/s10118-016-1750-3

    17. [17]

      M. SelviS. DevarajuK. SethuramanR. RevathiM. Alagar . Cyclotriphosphazene Fibre Reinforced Poly(benzoxazine-co-e-caprolactam) Nanocomposites for Flame Retardant Applications. Chinese J. Polym. Sci, doi: 10.1007/s10118-014-1479-9

    18. [18]

      Bin ChenBao-Jia NiMeng-Xiang FuHang ZhongWei-Feng JiangSi-Yuan LiuHe-Xin ZhangKeun-Byoung Yoon . Effect of Molybdenum Disulfide Exfoliation Conditions on the Mechanical Properties of Epoxy Nanocomposites. Chinese J. Polym. Sci, doi: 10.1007/s10118-019-2239-7

    19. [19]

      Xiao-ying LiuMing ZhongFu-kuan ShiHao XuXu-ming Xie . Multi-bond Network Hydrogels with Robust Mechanical and Self-healable Properties. Chinese J. Polym. Sci, doi: 10.1007/s10118-017-1971-0

    20. [20]

      Cao JingWen NaZheng Yu-ying . Effect of Long Chain Branching on the Rheological Behavior, Crystallization and Mechanical Properties of Polypropylene Random Copolymer. Chinese J. Polym. Sci, doi: 10.1007/s10118-016-1830-4

Article Metrics
  • PDF Downloads(3)
  • Abstract views(348)
  • HTML views(193)
  • Cited By(0)

通讯作者: 陈斌,
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索


DownLoad:  Full-Size Img  PowerPoint