Citation: Huo, P.; Zhong, C. T.; Xiong, X. P. Tailoring morphology of PVDF-HFP membrane via one-step reactive vapor induced phase separation for efficient oil-water separation. Chinese J. Polym. Sci. 2021, 39, 610–619 doi: 10.1007/s10118-021-2527-x shu

Tailoring Morphology of PVDF-HFP Membrane via One-step Reactive Vapor Induced Phase Separation for Efficient Oil-Water Separation

  • Corresponding author: Xiao-Peng Xiong, E-mail: xpxiong@xmu.edu.cn
  • Received Date: 2019-08-19
    Available Online: 2020-12-02

Figures(7) / Tables(2)

  • Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) receives increasing attention in membrane separation field based on its advantages such as high mechanical strength, thermal and chemical stability. However, controlling the microporous structure is still challenging. In this work, we attempted to tailor the morphology of PVDF-HFP membrane via a one-step reactive vapor induced phase separation method. Namely, PVDF-HFP was dissolved in a volatile solvent and then was cast in an ammonia water vapor atmosphere. After complete evaporation of solvent, membranes with adjustable porous structure were prepared, and the microstructures of the membranes were analyzed by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction characterizations. Based on the results, a mechanism of dehydrofluorination induced cross-linking of PVDF-HFP has been suggested to understand the morphology tailoring. To our knowledge, this is the first report of one-step reactive vapor induced phase separation strategy to tailor morphology of PVDF-HFP membrane. In addition, the membranes prepared in the ammonia water vapor exhibited enhanced mechanical strength and achieved satisfactory separation efficiency for water-in-oil emulsions, suggesting promising potential.
    1. [1]

      Wu, J.; Xu, F.; Li, S.; Ma, P.; Zhang, X.; Liu, Q.; Fu, R.; Wu, D. Porous polymers as multifunctional material platforms toward task-specific applications. Adv. Mater. 2019, 31, 1802922. doi: 10.1002/adma.201802922

    2. [2]

      Cui, Z.; Drioli, E.; Lee, Y. M. Recent progress in fluoropolymers for membranes. Prog. Polym. Sci. 2014, 39, 164−198. doi: 10.1016/j.progpolymsci.2013.07.008

    3. [3]

      Tan, X.; Rodrigue, D. A review on porous polymeric membrane preparation. Part I: Production techniques with polysulfone and poly(vinylidene fluoride). Polymers 2019, 11, 1310.

    4. [4]

      Améduri, B.; Boutevin, B.; Kostov, G. Fluoroelastomers: synthesis, properties and applications. Prog. Polym. Sci. 2001, 26, 105−187. doi: 10.1016/S0079-6700(00)00044-7

    5. [5]

      Cui, Z.; Hassankiadeh, N. T.; Zhuang, Y.; Drioli, E.; Lee, Y. M. Crystalline polymorphism in poly(vinylidenefluoride) membranes. Prog. Polym. Sci. 2015, 51, 94−126. doi: 10.1016/j.progpolymsci.2015.07.007

    6. [6]

      Ma, F.-f.; Zhang, D.; Zhang, N.; Huang, T.; Wang, Y. Polydopamine-assisted deposition of polypyrrole on electrospun poly(vinylidene fluoride) nanofibers for bidirectional removal of cation and anion dyes. Chem. Eng. J. 2018, 354, 432−444. doi: 10.1016/j.cej.2018.08.048

    7. [7]

      Ejaz Ahmed, F.; Lalia, B. S.; Hilal, N.; Hashaikeh, R. Underwater superoleophobic cellulose/electrospun PVDF-HFP membranes for efficient oil/water separation. Desalination 2014, 344, 48−54. doi: 10.1016/j.desal.2014.03.010

    8. [8]

      He, Y.; Chang, Z.; Wu, S.; Qiao, Y.; Bai, S.; Jiang, K.; He, P.; Zhou, H. Simultaneously inhibiting lithium dendrites growth and polysulfides shuttle by a flexible MOF-based membrane in Li-S batteries. Adv. Energy Mater. 2018, 8, 1802130. doi: 10.1002/aenm.201802130

    9. [9]

      Prabakaran, P.; Manimuthu, R. P.; Gurusamy, S.; Sebasthiyan, E. Plasticized polymer electrolyte membranes based on PEO/PVDF-HFP for use as an effective electrolyte in lithium-ion batteries. Chinese J. Polym. Sci. 2017, 35, 407−421. doi: 10.1007/s10118-017-1906-9

    10. [10]

      Liu, T.; Chang, Z.; Yin, Y.; Chen, K.; Zhang, Y.; Zhang, X. The PVDF-HFP gel polymer electrolyte for Li-O2 battery. Solid State Ion. 2018, 318, 88−94. doi: 10.1016/j.ssi.2017.08.001

    11. [11]

      Lu, J.; Liu, Y.; Yao, P.; Ding, Z.; Tang, Q.; Wu, J.; Ye, Z.; Huang, K.; Liu, X. Hybridizing poly(vinylidene fluoride-co-hexafluoropropylene) with Li6.5La3Zr1.5Ta0.5O12 as a lithium-ion electrolyte for solid state lithium metal batteries. Chem. Eng. J. 2019, 367, 230−238. doi: 10.1016/j.cej.2019.02.148

    12. [12]

      Martins, P.; Lopes, A. C.; Lanceros-Mendez, S. Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog. Polym. Sci. 2014, 39, 683−706. doi: 10.1016/j.progpolymsci.2013.07.006

    13. [13]

      Ahmed, F. E.; Lalia, B. S.; Hashaikeh, R. A review on electrospinning for membrane fabrication: challenges and applications. Desalination 2015, 356, 15−30. doi: 10.1016/j.desal.2014.09.033

    14. [14]

      Venault, A.; Chang, Y.; Wang, D. M.; Bouyer, D. A review on polymeric membranes and hydrogels prepared by vapor-induced phase separation process. Polym. Rev. 2013, 53, 568−626. doi: 10.1080/15583724.2013.828750

    15. [15]

      Lalia, B. S.; Kochkodan, V.; Hashaikeh, R.; Hilal, N. A review on membrane fabrication: structure, properties and performance relationship. Desalination 2013, 326, 77−95. doi: 10.1016/j.desal.2013.06.016

    16. [16]

      Shi, L.; Wang, R.; Cao, Y.; Feng, C.; Liang, D. T.; Tay, J. H. Fabrication of poly(vinylidene fluoride-co-hexafluropropylene) (PVDF-HFP) asymmetric microporous hollow fiber membranes. J. Membr. Sci. 2007, 305, 215−225. doi: 10.1016/j.memsci.2007.08.012

    17. [17]

      Wongchitphimon, S.; Wang, R.; Jiraratananon, R.; Shi, L.; Loh, C. H. Effect of polyethylene glycol (PEG) as an additive on the fabrication of polyvinylidene fluoride-co-hexafluropropylene (PVDF-HFP) asymmetric microporous hollow fiber membranes. J. Membr. Sci. 2011, 369, 329−338. doi: 10.1016/j.memsci.2010.12.008

    18. [18]

      García-Payo, M. C.; Essalhi, M.; Khayet, M. Effects of PVDF-HFP concentration on membrane distillation performance and structural morphology of hollow fiber membranes. J. Membr. Sci. 2010, 347, 209−219. doi: 10.1016/j.memsci.2009.10.026

    19. [19]

      García-Fernández, L.; García-Payo, M. C.; Khayet, M. Effects of mixed solvents on the structural morphology and membrane distillation performance of PVDF-HFP hollow fiber membranes. J. Membr. Sci. 2014, 468, 324−338. doi: 10.1016/j.memsci.2014.06.014

    20. [20]

      García-Fernández, L.; García-Payo, M. C.; Khayet, M. Mechanism of formation of hollow fiber membranes for membrane distillation: 1. Inner coagulation power effect on morphological characteristics. J. Membr. Sci. 2017, 542, 456−468. doi: 10.1016/j.memsci.2017.03.036

    21. [21]

      García-Fernández, L.; García-Payo, M. C.; Khayet, M. Mechanism of formation of hollow fiber membranes for membrane distillation: 2. Outer coagulation power effect on morphological characteristics. J. Membr. Sci. 2017, 542, 469−481. doi: 10.1016/j.memsci.2017.03.038

    22. [22]

      Asghar, M. R.; Zhang, Y.; Wu, A.; Yan, X.; Shen, S.; Ke, C.; Zhang, J. Preparation of microporous cellulose/poly(vinylidene fluoride-hexafluoropropylene) membrane for lithium ion batteries by phase inversion method. J. Power Sources 2018, 379, 197−205. doi: 10.1016/j.jpowsour.2018.01.052

    23. [23]

      Chang, H. Y.; Venault, A. Adjusting the morphology of poly(vinylidene fluoride-co-hexafluoropropylene) membranes by the VIPS process for efficient oil-rich emulsion separation. J. Membr. Sci. 2019, 581, 178−194. doi: 10.1016/j.memsci.2019.03.053

    24. [24]

      Khayet, M.; Cojocaru, C.; García-Payo, M. C. Experimental design and optimization of asymmetric flat-sheet membranes prepared for direct contact membrane distillation. J. Membr. Sci. 2010, 351, 234−245. doi: 10.1016/j.memsci.2010.01.057

    25. [25]

      Ahmad, A. L.; Farooqui, U. R.; Hamid, N. A. Synthesis and characterization of porous poly(vinylidene fluoride-co-hexafluoro propylene) (PVDF-co-HFP)/poly(aniline) (PANI)/graphene oxide (GO) ternary hybrid polymer electrolyte membrane. Electrochim. Acta 2018, 283, 842−849. doi: 10.1016/j.electacta.2018.07.001

    26. [26]

      Ruan, X.; Zhang, K.; Jiang, X.; Zhang, X.; Yan, X.; Zhang, N.; He, G. Facile fabrication of reinforced homoporous MF membranes by in situ breath figure and thermal adhesion method on substrates. J. Membr. Sci. 2018, 554, 291−299. doi: 10.1016/j.memsci.2018.03.023

    27. [27]

      Elamin, K.; Shojaatalhosseini, M.; Danyliv, O.; Martinelli, A.; Swenson, J. Conduction mechanism in polymeric membranes based on PEO or PVDF-HFP and containing a piperidinium ionic liquid. Electrochim. Acta 2019, 299, 979−986. doi: 10.1016/j.electacta.2018.12.154

    28. [28]

      Xiong, X.; Xie, F.; Meng, J. Preparation of superhydrophobic porous coating film with the matrix covered with polydimethylsiloxane for oil/water separation. Prog. Org. Coat. 2018, 125, 365−371. doi: 10.1016/j.porgcoat.2018.08.031

    29. [29]

      Meng, J.; Lin, S.; Xiong, X. Preparation of breathable and superhydrophobic coating film via spray coating in combination with vapor-induced phase separation. Prog. Org. Coat. 2017, 107, 29−36. doi: 10.1016/j.porgcoat.2017.03.004

    30. [30]

      Xiong, X.; Zou, W.; Yu, Z.; Duan, J.; Liu, X.; Fan, S.; Zhou, H. Microsphere pattern prepared by a “reverse” breath figure method. Macromolecules 2009, 42, 9351−9356. doi: 10.1021/ma9018119

    31. [31]

      Sun, H.; Yang, X.; Zhang, Y.; Cheng, X.; Xu, Y.; Bai, Y.; Shao, L. Segregation-induced in situ hydrophilic modification of poly (vinylidene fluoride) ultrafiltration membranes via sticky poly(ethylene glycol) blending. J. Membr. Sci. 2018, 563, 22−30. doi: 10.1016/j.memsci.2018.05.046

    32. [32]

      Khare, V. P.; Greenberg, A. R.; Krantz, W. B. Vapor-induced phase separation—effect of the humid air exposure step on membrane morphology: Part I. Insights from mathematical modeling. J. Membr. Sci. 2005, 258, 140−156. doi: 10.1016/j.memsci.2005.03.015

    33. [33]

      Bouyer, D.; Werapun, W.; Pochat-Bohatier, C.; Deratani, A. Morphological properties of membranes fabricated by VIPS process using PEI/NMP/water system: SEM analysis and mass transfer modelling. J. Membr. Sci. 2010, 349, 97−112. doi: 10.1016/j.memsci.2009.11.036

    34. [34]

      Feng, K.; Tang, B.; Wu, P. Ammonia-assisted dehydrofluorination between PVDF and Nafion for highly selective and low-cost proton exchange membranes: a possible way to further strengthen the commercialization of Nafion. J. Mater. Chem. A 2015, 3, 12609−12615. doi: 10.1039/C5TA02855H

    35. [35]

      Tian, X.; Jiang, X. Poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP) membranes for ethyl acetate removal from water. J. Hazard. Mater. 2008, 153, 128−135. doi: 10.1016/j.jhazmat.2007.08.029

    36. [36]

      Zhang, W.; Shi, Z.; Zhang, F.; Liu, X.; Jin, J.; Jiang, L. Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux. Adv. Mater. 2013, 25, 2071−2076. doi: 10.1002/adma.201204520

    37. [37]

      Huang, A.; Chen, L. H.; Chen, C. H.; Tsai, H. Y.; Tung, K. L. Carbon dioxide capture using an omniphobic membrane for a gas-liquid contacting process. J. Membr. Sci. 2018, 556, 227−237. doi: 10.1016/j.memsci.2018.03.089

    38. [38]

      Woo, Y. C.; Chen, Y.; Tijing, L. D.; Phuntsho, S.; He, T.; Choi, J. S.; Kim, S. H.; Kyong Shon, H. CF4 plasma-modified omniphobic electrospun nanofiber membrane for produced water brine treatment by membrane distillation. J. Membr. Sci. 2017, 529, 234−242. doi: 10.1016/j.memsci.2017.01.063

    39. [39]

      Pandey, R. P.; Das, A. K.; Shahi, V. K. 2-Acrylamido-2-methyl-1-propanesulfonic acid grafted poly(vinylidene fluoride-co-hexafluoropropylene)-based acid-/oxidative-resistant cation exchange for membrane electrolysis. ACS Appl. Mater. Interfaces 2015, 7, 28524−28533. doi: 10.1021/acsami.5b09827

    40. [40]

      Liu, Z.; Wang, H.; Wang, E.; Zhang, X.; Yuan, R.; Zhu, Y. Superhydrophobic poly(vinylidene fluoride) membranes with controllable structure and tunable wettability prepared by one-step electrospinning. Polymer 2016, 82, 105−113. doi: 10.1016/j.polymer.2015.11.045

    41. [41]

      Cao, J. H.; Zhu, B. K.; Xu, Y. Y. Structure and ionic conductivity of porous polymer electrolytes based on PVDF-HFP copolymer membranes. J. Membr. Sci. 2006, 281, 446−453. doi: 10.1016/j.memsci.2006.04.013

    42. [42]

      Xiang, Y. H.; Liu, F.; Xue, L. X.; Shen, J. H.; Lin, H. B. Morphology evolution of poly(vinylidene fluoride) membranes during supercritical CO2 assisted phase inversion. Chinese J. Polym. Sci. 2014, 32, 1628−1638. doi: 10.1007/s10118-014-1554-2

    43. [43]

      Awanis Hashim, N.; Liu, Y.; Li, K. Stability of PVDF hollow fibre membranes in sodium hydroxide aqueous solution. Chem. Eng. Sci. 2011, 66, 1565−1575. doi: 10.1016/j.ces.2010.12.019

    44. [44]

      Zhu, Y.; Wang, J.; Zhang, F.; Gao, S.; Wang, A.; Fang, W.; Jin, J. Zwitterionic nanohydrogel grafted PVDF membranes with comprehensive antifouling property and superior cycle stability for oil-in-water emulsion separation. Adv. Funct. Mater. 2018, 28, 1804121. doi: 10.1002/adfm.201804121

    45. [45]

      Hou, Y.; Duan, C. T.; Zhao, N.; Zhang, H.; Zhao, Y. P.; Chen, L.; Dai, H. J.; Xu, J. A versatile coating approach to fabricate superwetting membranes for separation of water-in-oil emulsions. Chinese J. Polym. Sci. 2016, 34, 1234−1239. doi: 10.1007/s10118-016-1828-y

  • 加载中
    1. [1]

      Jian-hua WangYong-hua ZhangYou-yi XuBao-ku ZhuHong Xu . Fabrication of Hydrophilic and Sponge-like PVDF/Brush-like Copolymer Blend Membranes Using Triethylphosphate as Solvent. Chinese J. Polym. Sci, 2014, 32(2): 143-150. doi: 10.1007/s10118-014-1371-7

    2. [2]

      Hou YiDuan Chun-tingZhao NingZhang HuanZhao Yi-pingChen LiDai Hong-junXu Jian . A Versatile Coating Approach to Fabricate Superwetting Membranes for Separation of Water-in-Oil Emulsions. Chinese J. Polym. Sci, 2016, 34(10): 1234-1239. doi: 10.1007/s10118-016-1828-y

    3. [3]

      Meng-tan CaiJia-xing ZhangYuan-wei ChenJun CaoMeng-tian LengShao-dong HuXiang-lin Luo . Preparation and Characterization of Chitosan Composite Membranes Crosslinked by Carboxyl-capped Poly(ethylene glycol). Chinese J. Polym. Sci, 2014, 32(2): 236-244. doi: 10.1007/s10118-014-1373-5

    4. [4]

      Jian-Hua CaoBao-Ku ZhuYou-Yi Xu . PREPARATION AND CHARACTERIZATION OF PVDF-HFP MICROPOROUS MEMBRANE BY TEMPLATE METHOD. Chinese J. Polym. Sci, 2006, 24(2): 205-211.

    5. [5]

      Jian-hua CaoBao-ku ZhuDan-ying ZuoYou-yi XuJi-ding Li . MICROPOROUS PVDF-HFP-BASED POLYMER MEMBRANES FORMED FROM SUPERCRITICAL CO2 INDUCED PHASE SEPARATION. Chinese J. Polym. Sci, 2008, 26(1): 13-21.

    6. [6]

      Ye WangTing-Ting HuXiao-Long HanYu-Qi WangJi-Ding Li . Fabrication of Cu(OH)2 Nanowires Blended Poly(vinylidene fluoride) Ultrafiltration Membranes for Oil-Water Separation. Chinese J. Polym. Sci, 2018, 36(5): 612-619. doi: 10.1007/s10118-018-2041-y

    7. [7]

      Jiang-Yong-Quan CaoSi-Chong ChenJie ZhangYang-Yang XieYu-Zhong Wang . A Self-supporting, Surface Carbonized Filter Paper Membrane for Efficient Water-in-Oil Emulsion Separation. Chinese J. Polym. Sci, 2021, 39(2): 181-188. doi: 10.1007/s10118-020-2492-9

    8. [8]

      Hong-qing LiangHao-nan LiHao-hao YuYong-ting ZhouZhi-kang Xu . Polysulfone Membranes via Thermally Induced Phase Separation. Chinese J. Polym. Sci, 2017, 35(7): 846-856. doi: 10.1007/s10118-017-1943-4

    9. [9]

      N. HamzahC. P. LeoB. S. Ooi . Superhydrophobic PVDF/TiO2-SiO2 Membrane with Hierarchical Roughness in Membrane Distillation for Water Recovery from Phenolic Rich Solution Containing Surfactant. Chinese J. Polym. Sci, 2019, 37(6): 609-616. doi: 10.1007/s10118-019-2235-y

    10. [10]

      Ding-guo TangLu QiYun-xiang Ci . PREPARATION AND ELECTROCHEMICAL CHARACTERISTICS OF POLYMER ELECTROLYTE MEMBRANES BASED ON SAN/PVDF-HFP BLENDS. Chinese J. Polym. Sci, 2006, 24(2): 213-220.

    11. [11]

      Prabakaran PradeepaPrabhu Manimuthu RameshGurusamy SowmyaSebasthiyan Edwinraj . Plasticized Polymer Electrolyte Membranes Based on PEO/PVdF-HFP for Use as an Effective Electrolyte in Lithium-ion Batteries. Chinese J. Polym. Sci, 2017, 35(3): 407-421. doi: 10.1007/s10118-017-1906-9

    12. [12]

      LI WenjunYUAN YouxinCABASSO Israel . FORMATION AND MICROSTRUCTURE OF POLYETHYLENE MICROPOROUS MEMBRANES THROUGH THERMALLY INDUCED PHASE SEPARATION*. Chinese J. Polym. Sci, 1995, 13(1): 7-19.

    13. [13]

      Gen-liang JiLi-ping ZhuBao-ku ZhuYou-yi Xu . EFFECT OF DILUENTS ON CRYSTALLIZATION OF POLY(VINYLIDENE FLUORIDE) AND PHASE SEPARATED STRUCTURE IN A TERNARY SYSTEM via THERMALLY INDUCED PHASE SEPARATION. Chinese J. Polym. Sci, 2008, 26(3): 291-298.

    14. [14]

      . STUDIES ON REVERSE OSMOSIS SEPARATION OF AQUEOUS ORGANIC SOLUTIONS BY PAA/PSF COMPOSITE MEMBRANE. Chinese J. Polym. Sci, 2000, 18(2): 115-122.

    15. [15]

      . STUDY OF COMPOSITE MEMBRANE OF CELLULOSE ACETATE OR POLYVINYL ALCOHOL BLENDED WITH METHYLMETHACRYLATE-ACRYLIC ACID COPOLYMER FOR PERVAPORATION SEPARATION*. Chinese J. Polym. Sci, 1999, 17(3): 299-302.

    16. [16]

      Pei-Yao ZhengXian-Wu ZhangZhi-Wei SunChen-Hui ZhuQuan-Fu An . Nanostructured Polyelectrolyte-surfactant Complex Pervaporation Membranes for Ethanol Recovery: the Relationship between the Membrane Structure and Separation Performance. Chinese J. Polym. Sci, 2018, 36(1): 25-33. doi: 10.1007/s10118-018-2006-1

    17. [17]

      Ying-Ying MaMin LiuJing-Tao WangBin ZhuYi-Fan Li . Enhanced Gas Separation Performance by Embedding Submicron Poly(ethylene glycol) Capsules into Polyetherimide Membrane. Chinese J. Polym. Sci, 2021, 39(3): 355-364. doi: 10.1007/s10118-021-2521-3

    18. [18]

      Fumihiko TanakaTsuyoshi KogaHiroyuki KojimaFrancoise M. Winnik . HYDRATION AND PHASE SEPARATION OF TEMPERATURE-SENSITIVE WATER-SOLUBLE POLYMERS. Chinese J. Polym. Sci, 2011, 29(1): 13-21. doi: 10.1007/s10118-010-1018-2

    19. [19]

      Jie YinRui LvJing ZhouQiang-guo DuWei Zhong . PREPARATION OF EVOH MICROPOROUS MEMBRANES via THERMALLY INDUCED PHASE SEPARATION USING BINARY SOLVENTS. Chinese J. Polym. Sci, 2007, 25(4): 379-386.

    20. [20]

      Miao DuJian-hua GongMin ZuoQiang Zheng . Study on Phase-Separation of Pmma/San Blends Induced by Glass Beads Through Dynamic Rheological Measurements. Chinese J. Polym. Sci, 2006, 24(1): 53-60.

Article Metrics
  • PDF Downloads(2)
  • Abstract views(446)
  • HTML views(225)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return