Citation: Xiang, S. Y.; Ye, L. S. Y.; Huang, Y. J.; Lv, Y. D.; Kong, M. Q.; Li, G. X. Coalescence suppression in flowing polymer blends using silica rods with different surface chemistries. Chinese J. Polym. Sci. 2021, 39, 474–483 doi: 10.1007/s10118-021-2526-y shu

Coalescence Suppression in Flowing Polymer Blends Using Silica Rods with Different Surface Chemistries

Figures(7) / Tables(2)

  • Silica rods with homogeneous (hydrophilic or hydrophobic) and amphiphilic surface properties were synthesized and their efficiencies in suppressing the flow-induced droplet coalescence of immiscible polyisobutylene (PIB)/polydimethylsiloxane (PDMS) blends were evaluated via in situ visualization technique. The flow-induced coalescence behavior of blends was found to strongly depend on the surface nature and concentration of silica rods added as well as the blend ratio. While a trace amount of rods promoted coalescence, all kinds of rods demonstrated a morphology refinement effect at high rod concentrations. Good compatibilization effects were obtained at high rod concentrations, especially for hydrophilic and amphiphilic rods. Based on confocal laser scanning microscopy results, these phenomena observed were interpreted reasonably in terms of the selective distribution and aggregation of silica rods, which were suggested to be decisive for the stabilization mechanism and efficiency of these rods.
  • 加载中
    1. [1]

      Binks, B. P. Particles as surfactants—similarities and differences. Curr. Opin. Colloid. Interface Sci. 2002, 7, 21−41. doi: 10.1016/S1359-0294(02)00008-0

    2. [2]

      Ramsden, W. Separation of solids in the surface-layers of solutions and 'suspensions'. Proc. R. Soc. London 1903, 72, 156−164.

    3. [3]

      Pickering, S. U. CXCVI.—Emulsions. J. Chem. Soc., Trans. 1907, 91, 2001−2021. doi: 10.1039/CT9079102001

    4. [4]

      Velankar, S. S. A non-equilibrium state diagram for liquid/fluid/particle mixtures. Soft Matter 2015, 11, 8393−8403. doi: 10.1039/C5SM01901J

    5. [5]

      Fenouillot, F.; Cassagnau, P.; Majesté, J. C. Uneven distribution of nanoparticles in immiscible fluids: morphology development in polymer blends. Polymer 2009, 50, 1333−1350. doi: 10.1016/j.polymer.2008.12.029

    6. [6]

      Kong, J.; Sun, J.; Tong, Y.; Dou, Q.; Wei, Y.; Thitsartarn, W.; Chee, J.; Yeo, C.; He, C. Carbon nanotubes-bridged-fumed silica as an effective binary nanofillers for reinforcement of silicone elastomers. Compos. Sci. Technol. 2019, 169, 232−241. doi: 10.1016/j.compscitech.2018.11.006

    7. [7]

      Jia, E.; Zhao, S.; Shangguan, Y.; Zheng, Q. A facile fabrication of polypropylene composites with excellent low-temperature toughness through tuning interfacial area between matrix and rubber dispersion by silica nanoparticles located at the interface. Compos. Sci. Technol. 2019, 184, 107846. doi: 10.1016/j.compscitech.2019.107846

    8. [8]

      Taguet, A.; Cassagnau, P.; Lopez-Cuesta, J. M. Structuration, selective dispersion and compatibilizing effect of (nano)fillers in polymer blends. Prog. Polym. Sci. 2014, 39, 1526−1563. doi: 10.1016/j.progpolymsci.2014.04.002

    9. [9]

      de Luna, M. S.; Filippone, G. Effects of nanoparticles on the morphology of immiscible polymer blends—challenges and opportunities. Eur. Polym. J. 2016, 79, 198−218. doi: 10.1016/j.eurpolymj.2016.02.023

    10. [10]

      Rousseau, D. Fat crystals and emulsion stability—a review. Food Res. Int. 2000, 33, 3−14. doi: 10.1016/S0963-9969(00)00017-X

    11. [11]

      Vermant, J.; Cioccolo, G.; Golapan Nair, K.; Moldenaers, P. Coalescence suppression in model immiscible polymer blends by nano-sized colloidal particles. Rheol. Acta 2004, 43, 529−538. doi: 10.1007/s00397-004-0381-8

    12. [12]

      Elias, L.; Fenouillot, F.; Majeste, J. C.; Alcouffe, P.; Cassagnau, P. Immiscible polymer blends stabilized with nano-silica particles: rheology and effective interfacial tension. Polymer 2008, 49, 4378−4385. doi: 10.1016/j.polymer.2008.07.018

    13. [13]

      Baudouin, A. C.; Auhl, D.; Tao, F.; Devaux, J.; Bailly, C. Polymer blend emulsion stabilization using carbon nanotubes interfacial confinement. Polymer 2011, 52, 149−156. doi: 10.1016/j.polymer.2010.11.004

    14. [14]

      Kalashnikova, I.; Bizot, H.; Bertoncini, P.; Cathala, B.; Capron, I. Cellulosic nanorods of various aspect ratios for oil in water pickering emulsions. Soft Matter 2013, 9, 952−959. doi: 10.1039/C2SM26472B

    15. [15]

      Zhou, W.; Cao, J.; Liu, W.; Stoyanov, S. How rigid rods self-assemble at curved surfaces. Angew. Chem. Int. Ed. 2009, 48, 378−381. doi: 10.1002/anie.200804194

    16. [16]

      Vandebril, S.; Vermant, J.; Moldenaers, P. Efficiently suppressing coalescence in polymer blends using nanoparticles: role of interfacial rheology. Soft Matter 2010, 6, 3353−3362. doi: 10.1039/b927299b

    17. [17]

      Mao, C. Y.; Kong, M. Q.; Yang, Q.; Li, G. X.; Huang, Y. J. Vorticity deformation in polymeric emulsions induced by anisotropic ellipsoids. ACS Macro Lett. 2016, 5, 900−903. doi: 10.1021/acsmacrolett.6b00456

    18. [18]

      Madivala, B.; Vandebril, S.; Fransaer, J.; Vermant, J. Exploiting particle shape in solid stabilized emulsions. Soft Matter 2009, 5, 1717−1727. doi: 10.1039/b816680c

    19. [19]

      Kim, J. W.; Lee, D.; Shum, H. C.; Weitz, D. A. Colloid surfactants for emulsion stabilization. Adv. Mater. 2008, 20, 3239−3243. doi: 10.1002/adma.200800484

    20. [20]

      Jing, J. Y.; Yao, X. H.; Yang, Z. Z. Single polymer chain grafted Fe3O4 composite Janus nanoparticle. Acta Polymerica Sinica (in Chinese) 2018, 1066-1072.

    21. [21]

      Glaser, N.; Adams, D. J.; Böker, A.; Krausch, G. Janus particles at liquid-liquid interfaces. Langmuir 2006, 22, 5227−5229. doi: 10.1021/la060693i

    22. [22]

      Ruhland, T. M.; Gröschel, A. H.; Walther, A.; Müller, A. H. Cylinders at liquid-liquid interfaces. Langmuir 2011, 27, 9807−9814. doi: 10.1021/la201863x

    23. [23]

      Fernandez-Rodriguez, M. A.; Song, Y.; Rodríguez-Valverde, M. A. N.; Chen, S.; Cabrerizo-Vilchez, M. A.; Hidalgo-Alvarez, R. Comparison of the interfacial activity between homogeneous and Janus gold nanoparticles by pendant drop tensiometry. Langmuir 2014, 30, 1799−1804. doi: 10.1021/la404194e

    24. [24]

      Sharifzadeh, E. Modeling of the mechanical properties of blend based polymer nanocomposites considering the effects of janus nanoparticles on polymer/polymer interface. Chinese J. Polym. Sci. 2019, 37, 164−177. doi: 10.1007/s10118-019-2178-3

    25. [25]

      Li, X.; Fu, Z.; Gu, X.; Liu, H.; Wang, H.; Li, Y. Interfacially located nanoparticles: barren nanorods versus polymer grafted nanorods. Compos. B Eng. 2020, 198, 108153. doi: 10.1016/j.compositesb.2020.108153

    26. [26]

      Whitby, C. P.; Fischer, F. E.; Fornasiero, D.; Ralston, J. Shear-induced coalescence of oil-in-water pickering emulsions. J. Colloid Interface Sci. 2011, 361, 170−177. doi: 10.1016/j.jcis.2011.05.046

    27. [27]

      Whitby, C. P.; Krebsz, M. Coalescence in concentrated Pickering emulsions under shear. Soft Matter 2014, 10, 4848−4854. doi: 10.1039/C4SM00491D

    28. [28]

      Mei, Y.; Li, G.; Moldenaers, P.; Cardinaels, R. Dynamics of particle-covered droplets in shear flow: unusual breakup and deformation hysteresis. Soft Matter 2016, 12, 9407−9412. doi: 10.1039/C6SM02031C

    29. [29]

      Mao, C.; Huang, Y.; Yang, J.; Kong, M.; Wang, Y.; Yang, Q.; Li, G. Controlling the orientation of droplets in ellipsoid-filled polymeric emulsions with particle parameters and flow conditions. Langmuir 2017, 33, 10577−10587. doi: 10.1021/acs.langmuir.7b02240

    30. [30]

      Ye, L. S. Y.; Huang, Y. J.; Kong, M. Q.; Lou, F. L.; Yang, Q.; Li, G. X. Effect of amphiphilic silica rods on the morphology of immiscible polyisobutylene/polydimethylsiloxane blends under simple shear flow. Chem. J. Chinese Univ. 2017, 38, 1470−1476.

    31. [31]

      Kuijk, A.; van Blaaderen, A.; Imhof, A. Synthesis of monodisperse, rodlike silica colloids with tunable aspect ratio. J. Am. Chem. Soc. 2011, 133, 2346−2349. doi: 10.1021/ja109524h

    32. [32]

      He, J.; Yu, B.; Hourwitz, M. J.; Liu, Y.; Perez, M. T.; Yang, J.; Nie, Z. Wet-chemical synthesis of amphiphilic rodlike silica particles and their molecular mimetic assembly in selective solvents. Angew. Chem. Int. Ed. 2012, 51, 3628−3633. doi: 10.1002/anie.201105821

    33. [33]

      Thareja, P.; Velankar, S. S. Interfacial activity of particles at PI/PDMS and PI/PIB interfaces: analysis based on girifalco–good theory. Colloid. Polym. Sci. 2008, 286, 1257−1264. doi: 10.1007/s00396-008-1884-0

    34. [34]

      Tong, W.; Huang, Y. J.; Liu, C. L.; Chen, X. L.; Yang, Q.; Li, G. X. The morphology of immiscible PDMS/PIB blends filled with silica nanoparticles under shear flow. Colloid. Polym. Sci. 2010, 288, 753−760. doi: 10.1007/s00396-010-2201-2

    35. [35]

      Nagarkar, S. P.; Velankar, S. S. Morphology and rheology of ternary fluid-fluid-solid systems. Soft Matter 2012, 8, 8464−8477. doi: 10.1039/c2sm25758k

    36. [36]

      Studart, A. R.; Shum, H. C.; Weitz, D. A. Arrested coalescence of particle-coated droplets into nonspherical supracolloidal structures. J. Phys. Chem. B 2009, 113, 3914−3919. doi: 10.1021/jp806795c

    37. [37]

      Pawar, A. B.; Caggioni, M.; Ergun, R.; Hartel, R. W.; Spicer, P. T. Arrested coalescence in Pickering emulsions. Soft Matter 2011, 7, 7710−7716. doi: 10.1039/c1sm05457k

    38. [38]

      Xiang, S.; Qiao, Y.; Mao, C.; Huang, Y.; Kong, M.; Yang, Q.; Li, G. Effect of roughness-regulated migration and distribution of particles on the structural evolution of flowing polymer blends. Colloids Surf. Physicochem. Eng. Aspects 2020, 589, 124454. doi: 10.1016/j.colsurfa.2020.124454

    39. [39]

      Mao, C. Y.; Huang, Y. J.; Qiao, Y. J.; Zhang, J. Y.; Kong, M. Q.; Yang, Q.; Li, G. X. Vorticity-aligned droplet bands in sheared immiscible polymer blends induced by solid particles. Langmuir 2020, 36, 4383−4395. doi: 10.1021/acs.langmuir.0c00511

    40. [40]

      Jeffery, G. B. The motion of ellipsoidal particles in a viscous fluid. Proc. Royal Soc. London Ser. A 1922, 102, 161−179.

    41. [41]

      Feng, J.; Chan, C. M.; Li, J. X. A method to control the dispersion of carbon black in an immiscible polymer blend. Polym. Eng. Sci. 2003, 43, 1058−1063. doi: 10.1002/pen.10089

    42. [42]

      Jalali Dil, E.; Carreau, P. J.; Favis, B. D. Morphology, miscibility and continuity development in poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends. Polymer 2015, 68, 202−212. doi: 10.1016/j.polymer.2015.05.012

    43. [43]

      Jalali Dil, E.; Favis, B. D. Localization of micro- and nano-silica particles in heterophase poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends. Polymer 2015, 76, 295−306. doi: 10.1016/j.polymer.2015.08.046

    44. [44]

      Thareja, P.; Moritz, K.; Velankar, S. S. Interfacially active particles in droplet/matrix blends of model immiscible homopolymers: particles can increase or decrease drop size. Rheol. Acta 2010, 49, 285−298. doi: 10.1007/s00397-009-0421-5

    45. [45]

      Basavaraj, M. G.; Fuller, G. G.; Fransaer, J.; Vermant, J. Packing, flipping, and buckling transitions in compressed monolayers of ellipsoidal latex particles. Langmuir 2006, 22, 6605−6612. doi: 10.1021/la060465o

    46. [46]

      Goldel, A.; Marmur, A.; Kasaliwal, G. R.; Potschke, P.; Heinrich, G. Shape-dependent localization of carbon nanotubes and carbon black in an immiscible polymer blend during melt mixing. Macromolecules 2011, 44, 6094−6102. doi: 10.1021/ma200793a

  • 加载中
    1. [1]

      Zhi-ming ZouZhao-yan SunLi-jia An . Studies on Droplet Size Distributions during Coalescence in Immiscible Polymer Blends Filled with Silica Nanoparticles. Chinese J. Polym. Sci, 2014, 32(3): 255-267. doi: 10.1007/s10118-014-1411-3

    2. [2]

      Xing-xun LiuYan-fei WangNuo-zi ZhangRobert A. ShanksHong-sheng LiuZhen TongLing ChenLong Yu . Morphology and Phase Composition of Gelatin-Starch Blends. Chinese J. Polym. Sci, 2014, 32(1): 108-114. doi: 10.1007/s10118-014-1377-1

    3. [3]

      De-zheng PangMin ZuoJi-shi ZhaoQiang Zheng . INFLUENCE OF CLAY ON THE MORPHOLOGY AND PHASE SEPARATION BEHAVIOR OF POLY(METHYL METHACRYLATE)/POLY(STYRENE-co-ACRYLONITRILE) BLENDS. Chinese J. Polym. Sci, 2013, 31(11): 1470-1483. doi: 10.1007/s10118-013-1356-y

    4. [4]

      Xun-fan LiaoJing WangShuang-ying ChenLie ChenYi-wang Chen . Diketopyrrolopyrrole-based Conjugated Polymers as Additives to Optimize Morphology for Polymer Solar Cells. Chinese J. Polym. Sci, 2016, 34(4): 491-504. doi: 10.1007/s10118-016-1761-0

    5. [5]

      Ji-shi ZhaoMin ZuoChao-ying LinQiang Zheng . Effect of Nanoclay on the Phase Separation Behavior of Poly(methyl methacrylate)/Poly(vinyl acetate) Binary Polymer Blends. Chinese J. Polym. Sci, 2014, 32(11): 1419-1430. doi: 10.1007/s10118-014-1527-5

    6. [6]

      Wen-bo JiangYong-yun JiWen-chang LangShi-ben LiXiang-hong Wang . Surface-induced Morphologies of ABC Star Triblock Copolymer in Spherical Cavities. Chinese J. Polym. Sci, 2015, 33(11): 1503-1515. doi: 10.1007/s10118-015-1706-z

    7. [7]

      Li LiJun-teng LiuZhong-jie RenShou-ke Yan . Crystallization Behavior of Disproportionately High and Low Molecular Weight PEO Blends. Chinese J. Polym. Sci, 2014, 32(9): 1199-1209. doi: 10.1007/s10118-014-1497-7

    8. [8]

      Hong YaoJun-teng LiuLi-qun ZhangShou-ke Yan . Phase Structure and Crystallization Behavior of Polyethylene in Its Blends with cis-1,4-Butadiene Rubber. Chinese J. Polym. Sci, 2015, 33(3): 386-394. doi: 10.1007/s10118-015-1592-4

    9. [9]

      Bi-qiang JinXin-peng LiMing JinDa-shan MiFei-fei WangChao XiaJie Zhang . Enhanced Mechanics in Injection Molded Isotactic Polypropylene/Polypropylene Random Copolymer Blends via Introducing Network-like Crystal Structure. Chinese J. Polym. Sci, 2016, 34(2): 164-173. doi: 10.1007/s10118-016-1747-y

    10. [10]

      Rui-ping QinYu-rong JiangHao-xing ZhangKai-xuan ZhangQun-ying ZhangFang-gao Chang . Fine-tuning of Polymer Photovoltaic Properties by the Length of Alkyl Side Chains. Chinese J. Polym. Sci, 2015, 33(3): 490-498. doi: 10.1007/s10118-015-1603-5

    11. [11]

      Ji-shuai WangYang HuJie ShenXin-yi HuangCheng-you Kan . A Novel Approach to Prepare Core/Shell Polymer Latex Particles with High Sulphonate Contents. Chinese J. Polym. Sci, 2014, 32(5): 519-523. doi: 10.1007/s10118-014-1438-5

    12. [12]

      Ran NiuJiang GongDong-hua XuTao TangZhao-yan Sun . The Effect of Particle Shape on the Structure and Rheological Properties of Carbon-based Particle Suspensions. Chinese J. Polym. Sci, 2015, 33(11): 1550-1561. doi: 10.1007/s10118-015-1704-1

    13. [13]

      Xin-yu WeiWei-yin GuXiao-bo ShenJoseph StrzalkaZhang JiangThomas P Russell . DEVIATIONS FROM BULK MORPHOLOGIES IN THIN FILMS OF BLOCK COPOLYMER/ADDITIVE BINARY BLENDS. Chinese J. Polym. Sci, 2013, 31(9): 1250-1259. doi: 10.1007/s10118-013-1320-x

    14. [14]

      Wei DengHua-Chao GuoWei-Li YuCheng-You Kan . Effects of Shell Composition, Dosage and Alkali Type on the Morphology of Polymer Hollow Microspheres. Chinese J. Polym. Sci, 2018, 36(1): 43-48. doi: 10.1007/s10118-018-2012-3

    15. [15]

      Guang-shuo WangZhi-yong WeiLin SangGuang-yi ChenWan-xi ZhangXu-feng DongMin Qi . MORPHOLOGY, CRYSTALLIZATION AND MECHANICAL PROPERTIES OF POLY(-CAPROLACTONE)/GRAPHENE OXIDE NANOCOMPOSITES. Chinese J. Polym. Sci, 2013, 31(8): 1148-1160. doi: 10.1007/s10118-013-1278-8

    16. [16]

      Wang LiGuo Zhao-xiaYu Jian . Effects of Zinc Oxide Nanoparticles on the Morphology and Viscoelastic Properties of Polyamide 6/Poly(butylene terephthalate) Blends. Chinese J. Polym. Sci, 2017, 35(3): 434-445. doi: 10.1007/s10118-017-1905-x

    17. [17]

      Da-wei LinZhi ZhongYi-ren TangYang GaoYa-ning HeBao-hua GuoJun Xu . Morphology and Crystalline Structure of Inclusion Compounds Formed between Poly(ethylene glycol) and Urea. Chinese J. Polym. Sci, 2014, 32(9): 1234-1242. doi: 10.1007/s10118-014-1496-8

    18. [18]

      Yan-hui XiangFu LiuLi-xin XueJian-hui ShenHai-bo Lin . Morphology Evolution of Poly(vinylidene fluoride) Membranes during Supercritical CO2 Assisted Phase Inversion. Chinese J. Polym. Sci, 2014, 32(12): 1628-1638. doi: 10.1007/s10118-014-1554-2

    19. [19]

      Wen-jin FanGuo-qiang FanXiao-hua ZhangZhao-hui Yang . Getting to the Bottom Morphology of Block Copolymer Thin Films. Chinese J. Polym. Sci, 2016, 34(1): 88-93. doi: 10.1007/s10118-016-1731-6

    20. [20]

      Shui-bin FengDe-hao FuLei NiePeng ZouJin-ping Suo . A Detailed View of PLGA-mPEG Microsphere Formation by Double Emulsion Solvent Evaporation Method. Chinese J. Polym. Sci, 2015, 33(7): 955-963. doi: 10.1007/s10118-015-1660-9

Article Metrics
  • PDF Downloads(1)
  • Abstract views(402)
  • HTML views(198)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return