Citation: Lv, X. J.; Xu, L. B.; Qian, L.; Yang, Y. Y.; Xu, Z. Y.; Li, J.; Zhang, C. A conjugated copolymer bearing imidazolium-based ionic liquid: electrochemical synthesis and electrochromic properties. Chinese J. Polym. Sci. 2021, 39, 537–544 doi: 10.1007/s10118-021-2525-z shu

A Conjugated Copolymer Bearing Imidazolium-based Ionic Liquid: Electrochemical Synthesis and Electrochromic Properties

  • Corresponding author: Cheng Zhang, E-mail: czhang@zjut.edu.cn
  • Received Date: 2020-09-09
    Available Online: 2020-11-25

Figures(10) / Tables(1)

  • An imidazolium-based ionic liquid (IL) modified triphenylamine derivative, namely 1-(4-((4-(diphenylamino)benzoyl) oxy)butyl)-3-methyl imidazole tetrafluoroborate (TPAC6IL-BF4), was designed and synthesized, and further applied with 3,4-ethylene dioxythiophene (EDOT) to prepare conjugated copolymer P(EDOT:TPAC6IL-BF4) via electrochemical polymerization. The cyclic voltammetry curves show that the copolymer P(EDOT:TPAC6IL-BF4) possesses two pairs of redox peaks, which should be ascribed to the redox behaviors of EDOT and triphenylamine. The ultraviolet-visible (UV-Vis) absorption spectrum of P(EDOT:TPAC6IL-BF4) exhibits one maximum absorption peak at 580 nm and a small shoulder characteristic peak at 385 nm under neutral state which are assigned to π-π* conjugated structure of EDOT and triphenylamine. After being applied at the positive voltage, the copolymer color changes from dark blue to light blue, which is close to the color of poly(3,4-ethylenedioxythiophene) (PEDOT). Surprisingly, the copolymer P(EDOT:TPAC6IL-BF4) shows shorter switching time of 0.37 s, 0.30 s at 580 nm and 0.38 s, 0.45 s at 1100 nm compared with PEDOT. It is more intriguing that the copolymer P(EDOT:TPAC6IL-BF4) exhibits electrochromism even in free supporting electrolyte. The results confirm that the existence of imidazolium-based ionic liquid has an improvement on the ion diffusion properties and the switching time of conjugated polymer, which may provide a potential direction for the preparation of high-performance electrochromic materials.
    1. [1]

      Macher, S.; Schott, M.; Sassi, M.; Facchinetti, I.; Ruffo, R.; Patriarca, G.; Beverina, L.; Posset, U.; Giffin, G. A. Löbmann P. New roll-to-roll processable PEDOT-based polymer with colorless bleached state for flexible electrochromic devices. Adv. Funct. Mater. 2020, 30, 1906254. doi: 10.1002/adfm.201906254

    2. [2]

      Wang, Z.; Wang, X. Y.; Cong, S.; Chen, J.; Sun, H. Z.; Chen, Z. G.; Song, G.; Geng, F. X.; Chen, Q.; Zhao, Z. G. Towards full-colour tunability of inorganic electrochromic devices using ultracompact fabry-perot nanocavities. Nat. Commun. 2020, 11, 302. doi: 10.1038/s41467-019-14194-y

    3. [3]

      Kim, J.; Rémond, M.; Kim, D.; Jang, H.; Kim, E. Electrochromic conjugated polymers for multifunctional smart windows with integrative functionalities. Adv. Mater. Technol. 2020, 5, 1900890. doi: 10.1002/admt.201900890

    4. [4]

      Yen, H. J.; Chen, C. J.; Liou, G. S. Flexible multi-colored eectrochromic and volatile polymer memory devices derived from starburst triarylamine-based electroactive polyimide. Adv. Funct. Mater. 2013, 23, 5307−5316. doi: 10.1002/adfm.201300569

    5. [5]

      Lv, X. J.; Li, W. J.; Ouyang, M.; Zhang, Y. J.; Wright, D. S.; Zhang, C. Polymeric electrochromic materials with donor-acceptor structures. J. Mater. Chem. C 2017, 5, 12−28. doi: 10.1039/C6TC04002K

    6. [6]

      Han, Y. T.; Xing, Z.; Ma, P. Y.; Li, S.; Wang, C.; Jiang, Z. H.; Zhang,. C. Design rules for improving the cycling stability of high-performance donor-acceptor-type electrochromic polymers. ACS Appl. Mater. Interfaces 2020, 12, 7529−7538. doi: 10.1021/acsami.9b19214

    7. [7]

      Ji, L. L.; Dai, Y. Y.; Yan, S. M.; Lv, X. J.; Su, C.; Xu, L. H.; Lv, Y. K.; Ouyang, M.; Chen, Z. F.; Zhang, C. A fast electrochromic polymer based on TEMPO substituted polytriphenylamine. Sci. Rep. 2016, 6, 30068. doi: 10.1038/srep30068

    8. [8]

      Ming, S. L.; Li, Z. y.; Zhen, S. J.; Liu, P. P.; Jiang, F. G.; Nie, G. M.; Xu, J. K. High-performance D-A-D type electrochromic polymer with π spacer applied in supercapacitor. Chem. Eng. J. 2020, 390, 124572. doi: 10.1016/j.cej.2020.124572

    9. [9]

      Guo, Q. F.; Li, J. J.; Zhang, B.; Nie, G. M.; Wang, D. B. High-performance asymmetric electrochromic-supercapacitor device based on poly(indole-6-carboxylicacid)/TiO2 nanocom-posites. Appl. Mater. Interfaces 2019, 11, 6491−6501. doi: 10.1021/acsami.8b19505

    10. [10]

      Lv, X. J.; Yan, S. M.; Dai, Y. Y.; Ouyang, M.; Yang, Y.; Yu, P. F.; Zhang, C. Ion diffusion and electrochromic performance of poly(4,4′,4″-tris[4-(2-bithienyl)phenyl]amine) based on ionic liquid as electrolyte. Electrochim. Acta 2015, 186, 85−94. doi: 10.1016/j.electacta.2015.10.127

    11. [11]

      Gaupp, C. L.; Welsh, D. M.; Reynolds, J. R. Poly(ProDOT-Et2): a high-contrast, high-coloration efficiency electrochromic polymer. Macromolecules 2002, 23, 885−889.

    12. [12]

      Argun, A. A.; Aubert, P. H.; Thompson, B. C.; Schwendeman, I.; Gaupp, C. L.; Hwang, J.; Pinto, N. J.; Tanner, D. B. MacDiarmid, A. G.; Reynolds, J. R. Multicolored electrochromism in polymers: structures and devices. Chem. Mater. 2004, 16, 4401−4412. doi: 10.1021/cm049669l

    13. [13]

      Colak, B.; Büyükkoyuncu, A.; Koyuncu, F. B.; Koyuncu, S. Electrochromic properties of phenantrene centered EDOT polymers. Polymer 2017, 123, 366−375. doi: 10.1016/j.polymer.2017.07.035

    14. [14]

      Hacioglu, S. O. Copolymerization of azobenzene-bearing monomer and 3,4-ethylenedioxythiophene (EDOT): improved electrochemical performance for electrochromic device appli-cations. Chinese J. Polym. Sci. 2020, 38, 109−117. doi: 10.1007/s10118-019-2306-0

    15. [15]

      Chen, H. W.; Li, C. PEDOT: fundamentals and its nanocomposites for energy storage. Chinese J. Polym. Sci. 2020, 38, 435−448. doi: 10.1007/s10118-020-2373-2

    16. [16]

      Guo, Q. F.; Zhao, X. Q.; Li, Z. Y.; Wang, B. Y.; Wang, D. B.; Nie, G. M. High performance multicolor intelligent supercapacitor and its quantitative monitoring of energy storage level by electrochromic parameters. Appl. Energy Mater. 2020, 3, 2727−2736. doi: 10.1021/acsaem.9b02392

    17. [17]

      Ming, S. L.; Lin, K. W.; Zhang, H.; Jiang, F. X.; Liu, P. P.; Xu, J. K.; Nie, G. M.; Duan, X. M. Electrochromic polymers with multiple redox couples applied to monitor energy storage states of supercapacitors. Chem. Commun. 2020, 56, 5275−5278. doi: 10.1039/D0CC00690D

    18. [18]

      Arias-Pardilla, J.; Giménez-Gómez, P. A.; Peña, A.; Segura, J. L.; Otero, T. F. Synthesis, electropolymerization and characterization of a cross-linked PEDOT derivative. J. Mater. Chem. 2012, 22, 4944−4952. doi: 10.1039/c2jm14909e

    19. [19]

      Hu, B.; Li, C. Y.; Liu, Z. C.; Zhang, X. L.; Luo, W.; Jin, L. Synthesis and multi-electrochromic properties of asymmetric structure polymers based on carbazole-EDOT and 2,5-dithienylpyrrole derivatives. Electrochim. Acta 2019, 305, 1−10. doi: 10.1016/j.electacta.2019.03.050

    20. [20]

      Cheng, X. F.; Zhao, J. S.; Cui, C. S.; Fu, Y. Z.; Zhang, X. X. Star-shaped conjugated systems derived from thienyl-derivatized poly(triphenylamine)s as active materials for electrochromic devices. J. Electroanal. Chem. 2012, 677-680, 24−30. doi: 10.1016/j.jelechem.2012.04.017

    21. [21]

      Zhen, S. J.; Xu, J. K.; Lu, B. Y.; Zhang, S. M.; Zhao, L.; Li, J. Tuning the optoelectronic properties of polyfuran by design of furan-EDOT monomers and free-standing films with enhanced redox stability and electrochromic performances. Electrochim. Acta 2014, 146, 666−678. doi: 10.1016/j.electacta.2014.09.034

    22. [22]

      Liu, F. H.; Bai, J.; Yu, G.; Ma, F. H.; Hou, Y. J.; Niu, H. J. Synthesis, electrochromic properties and flash memory behaviors of novel D-A-D polyazomethines containing EDOT and thiophene units. Org. Electron. 2020, 77, 105538. doi: 10.1016/j.orgel.2019.105538

    23. [23]

      Wang, B. S.; Qin, L.; Mu, T. C.; Xue, Z. M; Gao, G. H. Are ionic liquids chemically stable? Chem. Rev. 2017, 117, 7113−7131. doi: 10.1021/acs.chemrev.6b00594

    24. [24]

      Maruyama, S.; Prastiawan, I. B. H.; Toyabe, K.; Higuchi, Y.; Koganezawa, T.; Kubo, M.; Matsumoto, Y. Ionic conductivity in ionic liquid nano thin films. ACS Nano 2018, 12, 10509−10517. doi: 10.1021/acsnano.8b06386

    25. [25]

      Xiao, W. C.; Yang, Q.; Zhu, S. L. Comparing ion transport in ionic liquids and polymerized ionic liquids. Sci. Rep. 2020, 10, 7825. doi: 10.1038/s41598-020-64689-8

    26. [26]

      Ouyang, M.; Yang, Y.; Lv, X. J.; Han, Y. G.; Huang, S. B.; Dai, Y. Y.; Su, C.; Lv, Y. K.; Sumita, M.; Zhang, C. Enhanced electrochromic switching speed and electrochemical stability of conducting polymer film on an ionic liquid functionalized ITO electrode. New J. Chem. 2015, 39, 5329−5335. doi: 10.1039/C5NJ00703H

    27. [27]

      Qian, L.; Lv, X. J.; Ouyang, M.; Tameev, A.; Katin, K.; Maslov, M.; Bi, Q.; Huang, C. H.; Zhu, R.; Zhang, C. Fast switching properties and ion diffusion behavior of polytriphenylamine derivative with pendent ionic liquid unit. ACS Appl. Mater. Interfaces 2018, 10, 32404−32412. doi: 10.1021/acsami.8b09878

    28. [28]

      Lo, C. K.; Shen, D. E.; Reynolds, J. R. Fine-tuning the color hue of π-conjugated black-to-clear electrochromic random copolymers. Macromolecules 2019, 52, 6773−6779. doi: 10.1021/acs.macromol.9b01443

    29. [29]

      Gaupp, C. L.; Reynolds, J. R. Multichromic copolymers based on 3,6-bis(2-(3,4-ethylenedioxythiophene))-N-alkylcarbazole derivatives. Macromolecules 2003, 36, 6305−6315. doi: 10.1021/ma034493e

    30. [30]

      Lv, X. J.; Huang, C. H.; Tameev, A.; Qian, L.; Zhu R.; Katin, K.; Maslov, M.;. Nekrasov, A; Zhang, C. Electrochemical polymeri-zation process and excellent electrochromic properties of fer-rocene-functionalized polytriphenylamine derivative. Dyes Pigment 2019, 163, 433−440. doi: 10.1016/j.dyepig.2018.12.019

    31. [31]

      Zhang, C.; Hua, C.; Wang, G. H.; Ouyang, M.; Ma, C. A. A novel multichromic copolymer via electrochemical copolymerization of (S)-1,1′-binaphthyl-2,2′-diyl bis(N-(6-hexanoic acid-1-yl) pyrrole) and 3,4-ethylenedioxythiophene. Electrochim. Acta 2010, 55, 4103−4111. doi: 10.1016/j.electacta.2010.02.086

    32. [32]

      Dai, Y. Y.; Li, W. J.; Qu, X. X.; Liu, J.; Yan, S. M.; Ouyang, M.; Lv, X. J.; Zhang C. Electrochemistry, electrochromic and color memory properties of polymer/copolymer based on novel dithienylpyrrole structure. Electrochima. Acta 2017, 229, 271−280. doi: 10.1016/j.electacta.2017.01.156

    33. [33]

      Lv, X. J.; Zha, L.X.; Qian, L.; Xu, X. J.; Bi, Q.; Xu, Z. Y.; Wright, D. S.; Zhang, C. Controllable fabrication of perylene bisimide self-assembled film and patterned all-solid-state electrochromic device. Chem. Eng. J. 2020, 386, 123939. doi: 10.1016/j.cej.2019.123939

    34. [34]

      Lv, X. J.; Bi, Q.; Tameev, A.; Zhang, Y. J.; Qian L.; Ouyang, M.; Zhang, C. A new green-to-transmissive polymer with electroactive poly(3,4-ethylene dioxythiophene): poly(styrene sulfonate) as an interface layer for achieving high-performance electrochromic device. J. Polym. Sci. 2020, 58, 937−947. doi: 10.1002/pol.20190284

  • 加载中
    1. [1]

      Yang ZouYuan LiuJin-gui QinChu-luo Yang . SYNTHESIS, PROPERTIES AND ELECTROPOLYMERIZATION OF STAR-SHAPED OLIGOTHIOPHENES WITH HEXAKIS(FLUOREN-2-YL)BENZENE AS CORE. Chinese J. Polym. Sci, 2013, 31(6): 938-945. doi: 10.1007/s10118-013-1286-8

    2. [2]

      De-liang HeFei LiSan-bao XiaFu-rong LiuYing XiongQuan Zhang . Synthesis and Characterization of a Novel Ionic Liquid Polymer:Poly(1-(3-aminobenzyl)-3-methylimidazolium chloride). Chinese J. Polym. Sci, 2014, 32(2): 163-168. doi: 10.1007/s10118-014-1385-1

    3. [3]

      Xu-feng NiuFeng TianLi-zhen WangXiao-ming LiGang ZhouYu-bo Fan . Synthesis and Characterization of Chitosan-graft-Poly(lactic acid) Copolymer. Chinese J. Polym. Sci, 2014, 32(1): 43-50. doi: 10.1007/s10118-014-1369-1

    4. [4]

      Hui ZhangGe ZhangJing-kun XuYang-ping WenWan-chuan DingJie ZhangShou-li MingShi-jie Zhen . Electrosynthesis, Characterization and Optical Sensing Application of Amino Acid Functionalized Polyfluorene. Chinese J. Polym. Sci, 2016, 34(2): 229-241. doi: 10.1007/s10118-016-1742-3

    5. [5]

      Wei-wei ChenMei-chun DingMei ZhangJin-ming ZhangXia GaoJia-song HeJun Zhang . Chiral Separation Abilities of Homogeneously Synthesized Cellulose 3,5-Dimethylphenylcarbamates:Influences of Degree of Substitution and Molecular Weight. Chinese J. Polym. Sci, 2015, 33(12): 1633-1639. doi: 10.1007/s10118-015-1695-y

    6. [6]

      Xiu-bo JiangQing-fei ZhangAi-hua He . Synthesis and Characterization of Trans-1,4-butadiene/Isoprene Copolymers: Determination of Sequence Distribution and Thermal Properties. Chinese J. Polym. Sci, 2015, 33(6): 815-822. doi: 10.1007/s10118-015-1626-y

    7. [7]

      Qing-fei ZhangXiu-bo JiangAi-hua He . Synthesis and Characterization of trans-1,4-Butadiene/Isoprene Copolymers:Determination of Monomer Reactivity Ratios and Temperature Dependence. Chinese J. Polym. Sci, 2014, 32(8): 1068-1076. doi: 10.1007/s10118-014-1467-0

    8. [8]

      Wei-xi YangLing-ling WangHan ZhuRi-wei XuYi-xian Wu . SYNTHESIS OF POLY(GLUTAMIC ACID-co-ASPARTIC ACID) VIA COMBINATION OF N-CARBOXYANHYDRIDE RING OPENING POLYMERIZATION WITH DEBENZYLATION. Chinese J. Polym. Sci, 2013, 31(12): 1706-1716. doi: 10.1007/s10118-013-1363-z

    9. [9]

      Yao-hui XingShao-liang LinJia-ping LinXiao-hua He . SYNTHESIS, SELF-ASSEMBLY AND RESPONSIVE PROPERTIES OF PEG-b-PDMAEMA-b-PMMAzo TRIBLOCK COPOLYMERS. Chinese J. Polym. Sci, 2013, 31(5): 833-840. doi: 10.1007/s10118-013-1283-y

    10. [10]

      Pei XuZhao-Pei CuiGang RuanYun-Sheng Ding . Enhanced Crystallization Kinetics of PLLA by Ethoxycarbonyl Ionic Liquid Modified Graphene. Chinese J. Polym. Sci, 2019, 37(3): 243-252. doi: 10.1007/s10118-019-2192-5

    11. [11]

      Jing WangYing WuZheng-ping Liu . A Facile and Highly Efficient Protocol for Synthesis of Poly(ether sulfone)s in Ionic Liquid/Zwitterion. Chinese J. Polym. Sci, 2016, 34(8): 981-990. doi: 10.1007/s10118-016-1818-0

    12. [12]

      Long ChenXiao WuXiao-Fang ZhangJian-Ming Zhang . Enhanced Reproducibility of Positive Temperature Coefficient Effect of CB/HDPE/PVDF Composites with the Addition of Ionic Liquid. Chinese J. Polym. Sci, 2021, 39(2): 228-236. doi: 10.1007/s10118-020-2475-x

    13. [13]

      Lie ChenJin HuangCong ZhaoJia-Jia ZhouMing-Jie Liu . Tunable Lower Critical Solution Temperature of Poly(butyl acrylate) in Ionic Liquid Blends. Chinese J. Polym. Sci, 2021, 39(5): 585-591. doi: 10.1007/s10118-021-2522-2

    14. [14]

      Wen-Qian YaoPei-Pei LiuWei-Qiang ZhouXue-Min DuanJing-Kun XuJia-Ji YangShou-Li MingMeng LiFeng-Xing Jiang . Flexible Electrochromic Poly(thiophene-furan) Film via Electrodeposition with High Stability. Chinese J. Polym. Sci, 2021, 39(3): 344-354. doi: 10.1007/s10118-021-2501-7

    15. [15]

      Yu HeWen-juan GuoMei-shan PeiGuang-you Zhang . ELECTROSYNTHESES OF FREE-STANDING POLY(THIOPHENE-3-ACETIC ACID) FILM IN MIXED ELECTROLYTES OF BORON TRIFLUORIDE DIETHYL ETHERATE AND TRIFLUOROACETIC ACID. Chinese J. Polym. Sci, 2012, 30(4): 537-547. doi: 10.1007/s10118-012-1150-2

    16. [16]

      Ji-jie WenHong-guang LuDe-e LiuHui Gao . Fabrication of Macroporous Protein-containing Films through the Reverse Emulsions Approach Featuring β-Cyclodextrin-conjugated PEG-PLGA Copolymers. Chinese J. Polym. Sci, 2016, 34(6): 730-738. doi: 10.1007/s10118-016-1789-1

    17. [17]

      Yuan-lin LiSai LiLi-jie JiBin HeZhong-wei Gu . STUDIES ON THE DEGRADATION OF POLY(L-LACTIDE-r-TRIMETHENE CARBONATE) COPOLYMERS. Chinese J. Polym. Sci, 2013, 31(7): 966-973. doi: 10.1007/s10118-013-1299-3

    18. [18]

      Na LiXing-Ke ZhangJun-Rong YuYan WangJing ZhuZu-Ming Hu . Increased Hydrogen-bonding of Poly(m-phenylene isophthalamide) (PMIA) with Sulfonate Moiety for High-performance Easily Dyeable Fiber

      . Chinese J. Polym. Sci, 2020, 38(11): 1230-1238. doi: 10.1007/s10118-020-2416-8

    19. [19]

      You-Hao WangJin GongWen-Bing Hu . Transparency of Temperature-responsive Shape-memory Gels Tuned by a Competition between Crystallization and Glass Transition. Chinese J. Polym. Sci, 2020, 38(12): 1374-1381. doi: 10.1007/s10118-020-2456-0

    20. [20]

      Peng ZhouXuan-Geng DaiJie KongJun Ling . Synthesis of Well-defined Poly(tetrahydrofuran)-b-Poly(α-amino acid)s via Cationic Ring-opening Polymerization (ROP) of Tetrahydrofuran and Nucleophilic ROP of N-thiocarboxyanhydrides. Chinese J. Polym. Sci, 2020, 38(): 1-7. doi: 10.1007/s10118-021-2539-6

Article Metrics
  • PDF Downloads(1)
  • Abstract views(540)
  • HTML views(244)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return