Citation: Luo, Q.; Pu, H. T.; Zhang, Z. H.; Zhang, X.; Yu, C. L. Foam/film alternating multilayer structure with high toughness and low thermal conductivity prepared via microlayer coextrusion. Chinese J. Polym. Sci. 2021, 39, 566–572 doi: 10.1007/s10118-021-2524-0 shu

Foam/Film Alternating Multilayer Structure with High Toughness and Low Thermal Conductivity Prepared via Microlayer Coextrusion

  • Corresponding author: Hong-Ting Pu, E-mail: puhongting@tongji.edu.cn
  • Received Date: 2020-09-07
    Available Online: 2020-11-30

Figures(8) / Tables(3)

  • Multilayer membranes prepared via microlayer coextrusion have attracted wide attention due to their unique properties and broad applications. In present study, the foam/film alternating multilayer sheets based on ethylene-vinyl acetate copolymer (EVA) and high-density polyethylene are successfully prepared via microlayer coextrusion. The cells in the sheets are single-cell-array along the foamed EVA layers with uniform cell size. In addition, the effects of layer number and foam relative thickness on morphology, mechanical properties, damping and heat insulation properties are investigated. The cell size decreases significantly with increasing layer number due to the enhanced confine effects. The tensile strength, elongation at break, and heat insulation also increase significantly. However, the mechanical damping properties change little in the observed frequency. Meanwhile, with higher relative thickness of EVA foam, the sheets have lower tensile strength and lower thermal conductivity, while the damping properties are enhanced in a specific frequency scope. The elongation at break of the optimized sample comes to 800% and the thermal conductivity decreases to 61 mW·m−1·K−1, which shows high toughness and low thermal conductivity, indicating a possible method for preparing materials with high toughness and heat-insulating properties.
    1. [1]

      Suh, K. W.; Park, C. P.; Maurer, M. J.; Tusim, M. H.; Genova, D. R.; Broos, R.; Sophiea, D. P. Lightweight cellular plastics. Adv. Mater. 2000, 12, 1779−1789. doi: 10.1002/1521-4095(200012)12:23<1779::AID-ADMA1779>3.0.CO;2-3

    2. [2]

      Rodriguez-Perez, M. A. Crosslinked polyolefin foams: production, structure, properties, and applications. Adv. Polym. Sci. 2005, 184, 97−126.

    3. [3]

      Wang, J.; Zhang, L.; Bao, J. B. Supercritical CO2 assisted preparation of open-cell foams of linear low-density polyethylene and linear low-density polyethylene/carbon nanotube composites. Chinese J. Polym. Sci. 2016, 34, 889−900. doi: 10.1007/s10118-016-1806-4

    4. [4]

      Sorrentino, L.; Aurilia, M.; Iannace, S. Polymeric foams from high-Performance thermoplastics. Adv. Polym. Technol. 2011, 30, 234−243. doi: 10.1002/adv.20219

    5. [5]

      Zhang, R. Z.; Chen, J.; Huang, M. W.; Zhang, J.; Luo, G. Q.; Wang, B. Z.; Li, M. J.; Shen, Q.; Zhang, L. M. Synthesis and compressive response of microcellular foams fabricated from thermally expandable microspheres. Chinese J. Polym. Sci. 2019, 37, 279−288. doi: 10.1007/s10118-019-2187-2

    6. [6]

      Zia, K. M.; Bhatti, H. N.; Bhatti, I. A. Methods for polyurethane and polyurethane composites, recycling and recovery: a review. React. Funct. Polym. 2007, 67, 675−692. doi: 10.1016/j.reactfunctpolym.2007.05.004

    7. [7]

      Shetty, R.; Han, C. D. Study of sandwich foam coextrusion. J. Appl. Polym. Sci. 1978, 22, 2573−2584. doi: 10.1002/app.1978.070220915

    8. [8]

      Passaro, A.; Corvaglia, P.; Manni, O.; Barone, L.; Maffezzoli, A. Processing-properties relationship of sandwich panels with polypropylene-core and polypropylene-matrix composite skins. Polym. Compos. 2004, 25, 307−318. doi: 10.1002/pc.20025

    9. [9]

      Dukess, J. 1979, US4107247-A.

    10. [10]

      Schrenk, W. J.; Bradley, N. L.; Alfrey, T.; Maack, H. Interafacial flow instability in multilayer coextrusion. Polym. Eng. Sci. 1978, 18, 620−623. doi: 10.1002/pen.760180803

    11. [11]

      Schrenk, W. J.; Wheatley, J. A.; Lewis, R. A.; Arends, C. B. Nanolayer polymeric optical films. Tappi J. 1992, 75, 169−174.

    12. [12]

      Carr, J. M.; Langhe, D. S.; Ponting, M. T.; Hiltner, A.; Baer, E. Confined crystallization in polymer nanolayered films: a review. J. Mater. Res. 2012, 27, 1326−1350. doi: 10.1557/jmr.2012.17

    13. [13]

      Cheng, J. F.; Pu, H. T. Orientation of LDPE crystals from microscale to nanoscale via microlayer or nanolayer coextrusion. Chinese J. Polym. Sci. 2016, 34, 1411−1422. doi: 10.1007/s10118-016-1850-0

    14. [14]

      Rahman, M. A.; Wang, J.; Zhang, C.; Olah, A.; Baer, E. Novel micro-/nano-porous cellular membranes by forced assembly co-extrusion technology. Eur. Polym. J. 2016, 83, 99−113. doi: 10.1016/j.eurpolymj.2016.08.015

    15. [15]

      Cheng, J. F.; You, X. H.; Cao, Z.; Wu, D.; Liu, C. L.; Pu, H. T. Effective control of laser-induced carbonization using low-density polyethylene/polystyrene multilayered structure via nanolayer coextrusion. Mater. Sci. Eng. C 2019, 304, 1800726.

    16. [16]

      Li, Z. P.; Olah, A.; Baer, E. Micro- and nano-layered processing of new polymeric systems. Prog. Polym. Sci. 2020, 102, 101210. doi: 10.1016/j.progpolymsci.2020.101210

    17. [17]

      Li, Y. J.; Pu, H. T. Facile fabrication of multilayer separators for lithium-ion battery via multilayer coextrusion and thermal induced phase separation. J. Power Sources 2018, 384, 408−416. doi: 10.1016/j.jpowsour.2018.02.086

    18. [18]

      Tan, X.; Li, J.; Guo, S. Y. Temperature-dependent order-to-order transition of polystyrene-block-poly(ethylene-co-butylene)-block-polystyrene triblock copolymer under multilayered confinement. Macromolecules 2018, 51, 2099−2109. doi: 10.1021/acs.macromol.7b02651

    19. [19]

      He, Y. N.; Liu, X.; Liao, Q.; Zhou, J. J.; Huo, H.; Li, L. Thickness-dependent orientation structure in poly(ethylene oxide) multi-layer crystals. Chinese J. Polym. Sci. 2014, 32, 1253−1259. doi: 10.1007/s10118-014-1504-z

    20. [20]

      Li, C. H.; Wang, J. F.; Guo, J. W.; Wu, Hong.; Guo, S. Y. The toughening behavior of the PP/POE alternating multilayered blends under EWF and impact tensile methods. Chinese J. Polym. Sci. 2015, 33, 1477−1490. doi: 10.1007/s10118-015-1692-1

    21. [21]

      Montana, J. S.; Roland, S.; Richaud, E.; Miquelard, G. G. From equilibrium lamellae to out-of-equilibrium cylinders in triblock copolymer nanolayers obtained via multilayer coextrusion. Polymer 2018, 136, 27−36. doi: 10.1016/j.polymer.2017.12.044

    22. [22]

      Li, Z. P.; Sun, R. L.; Rahman, M. A.; Feng, J. X.; Olah, A.; Baer, E. Scaling effects on the optical properties of patterned nano-layered shape memory films. Polymer 2019, 167, 182−192. doi: 10.1016/j.polymer.2019.02.002

    23. [23]

      Ryan, C.; Christenson, C. W.; Valle, B.; Saini, A.; Lott, J.; Johnson, J.; Schiraldi, D.; Weder, C.; Baer, E.; Singer, K. D.; Shan, J. Roll-to-roll fabrication of multilayer films for high capacity optical data storage. Adv. Mater. 2012, 24, 5222−5226. doi: 10.1002/adma.201200669

    24. [24]

      Wang, H. P.; Keum, J. K.; Hiltner, A.; Baer, E.; Freeman, B.; Rozanski, A.; Galeski, A. Confined crystallization of polyethylene oxide in nanolayer assemblies. Science 2009, 323, 757−760. doi: 10.1126/science.1164601

    25. [25]

      Messin, T.; Follain, N.; Guinault, A.; Sollogoub, C.; Gaucher, V.; Delpouve, N.; Marais, S. Structure and barrier properties of multinanolayered biodegradable PLA/PBSA films: confinement effect via forced assembly coextrusion. ACS Appl. Mater. Interfaces 2017, 9, 29101−29112. doi: 10.1021/acsami.7b08404

    26. [26]

      Messin, T.; Marais, S.; Follain, N.; Chappey, C.; Guinault, A.; Miquelard-Garnier, G.; Delpouve, N.; Gaucher, V.; Sollogoub, C. Impact of of water and thermal induced crystallizations in a PC/MXD6 multilayer film on barrier properties. Eur. Polym. J. 2019, 111, 152−160. doi: 10.1016/j.eurpolymj.2018.12.021

    27. [27]

      Mackey, M.; Schuele, D. E.; Zhu, L.; Flandin, L.; Wolak, M. A.; Shirk, J. S.; Hiltner, A.; Baer, E. Reduction of dielectric hysteresis in multi layered films via nanoconfinement. Macromolecules 2012, 45, 1954−1962. doi: 10.1021/ma202267r

    28. [28]

      Ji, X. Y.; Chen, D. Y; Shen, J. B.; Guo, S. Y. Flexible and flame-retarding thermoplastic polyurethane-based electromagnetic interference shielding composites. Chem. Eng. J. 2019, 370, 1341−1349. doi: 10.1016/j.cej.2019.03.293

    29. [29]

      Ranade, A. P.; Hiltner, A.; Baer, E.; Bland, D. G. Structure-property relationships in coextruded foam/film microlayers. J. Cell. Plast. 2004, 40, 497−507. doi: 10.1177/0021955X04048425

    30. [30]

      Rahman, M. A.; Andrade, R.; Maia, J.; Baer, E. Viscosity contrast effects on the structure—property relationship of multilayer soft film/foams. Polymer 2015, 69, 110−122. doi: 10.1016/j.polymer.2015.05.051

    31. [31]

      Sun, X. J.; Liang, W. B. Cellular structure control and sound absorption of polyolefin microlayer sheets. Compos. Part B 2016, 87, 21−26. doi: 10.1016/j.compositesb.2015.09.052

    32. [32]

      Li, Y. J.; Pu, H. T.; Wei, Y. L. Polypropylene/polyethylene multilayer separators with enhanced thermal stability for lithium-ion battery via multilayer coextrusion. Electrochim. Acta 2018, 264, 140−149. doi: 10.1016/j.electacta.2018.01.114

    33. [33]

      Zhang, X. X.; Lu, Z. X.; Tian, D.; Li, H.; Lu, C. H. Mechanochemical devulcanization of ground tire rubber and its application in acoustic absorbent polyurethane foamed composites. J. Appl. Polym. Sci. 2013, 127, 4006−4014. doi: 10.1002/app.37721

    34. [34]

      Xu, K. M.; Hu, Q. M.; Wu, H.; Guo, S. Y.; Zhang, F. S. Designing a polymer-based hybrid with simultaneously improved mechanical and damping properties via a multilayer structure construction: structure evolution and a damping mechanism. Polymers 2020, 12, 446.

    35. [35]

      Long, L. S.; Ye, H. The roles of thermal insulation and heat storage in the energy performance of the wall materials: a simulation study. Sci. Rep. 2016, 6, 24181. doi: 10.1038/srep24181

    36. [36]

      Wang, Z.; Zhang, T.; Park, B. K.; Lee, W. I.; Hwang, D. J. Minimal contact formation between hollow glass microparticles toward low-density and thermally insulating composite materials. J. Mater. Sci. 2017, 52, 6726−6740. doi: 10.1007/s10853-017-0908-x

    37. [37]

      Kim, G.-H.; Lee, D.; Shanker, A.; Shao, L.; Kwon, M. S.; Gidley, D.; Kim, J.; Pipe, K. P. High thermal conductivity in amorphous polymer blends by engineered interchain interactions. Nat. Mater. 2015, 14, 295−300. doi: 10.1038/nmat4141

    38. [38]

      Xie, X.; Li, D. Y.; Tsai, T. H.; Liu, J.; Braun, P. V.; Cahill, D. G. Thermal conductivity, heat capacity, and elastic constants of water soluble polymers and polymer blends. Macromolecules 2016, 49, 972−978. doi: 10.1021/acs.macromol.5b02477

  • 加载中
    1. [1]

      Rui-lei YuLi-sheng ZhangYu-hong FengRuo-yu ZhangJin Zhu . Improvement in Toughness of Polylactide by Melt Blending with Bio-based Poly(ester)urethane. Chinese J. Polym. Sci, 2014, 32(8): 1099-1110. doi: 10.1007/s10118-014-1487-9

    2. [2]

      Chun-hai LiJian-feng WangJi-wei GuoHong WuShao-yun Guo . The Toughening Behavior of the PP/POE Alternating Multilayered Blends under EWF and Impact Tensile Methods. Chinese J. Polym. Sci, 2015, 33(10): 1477-1490. doi: 10.1007/s10118-015-1692-1

    3. [3]

      Bi-qiang JinXin-peng LiMing JinDa-shan MiFei-fei WangChao XiaJie Zhang . Enhanced Mechanics in Injection Molded Isotactic Polypropylene/Polypropylene Random Copolymer Blends via Introducing Network-like Crystal Structure. Chinese J. Polym. Sci, 2016, 34(2): 164-173. doi: 10.1007/s10118-016-1747-y

    4. [4]

      Jin-hua LengHeng LiuBo-bing HeBin YangXian ChenQing-quan Qin . COMBINED EFFECT OF MODIFIED ZEOLITE 13X AND -NUCLEATING AGENT ON IMPROVING -CRYSTAL CONTENT AND TOUGHENING POLYPROPYLENE RANDOM COPOLYMER. Chinese J. Polym. Sci, 2013, 31(11): 1563-1578. doi: 10.1007/s10118-013-1311-y

    5. [5]

      Xiang ZhangYu WangRu XiaBin WuPeng ChenJia-Sheng QianHao-Jun Liang . Effect of Chain Configuration on Thermal Conductivity of Polyethylene—A Molecular Dynamic Simulation Study. Chinese J. Polym. Sci, 2020, 38(12): 1418-1425. doi: 10.1007/s10118-020-2466-y

    6. [6]

      Guo-Dong ZhangLin FanLan BaiMin-Hui HeLei ZhaiSong Mo . Mesoscopic Simulation Assistant Design of Immiscible Polyimide/BN Blend Films with Enhanced Thermal Conductivity. Chinese J. Polym. Sci, 2018, 36(12): 1394-1402. doi: 10.1007/s10118-018-2155-2

    7. [7]

      Bo YangShuang-Hong ZhangYi-Feng ZouWen-Shi MaGuo-Jia HuangMao-Dong Li . Improving the Thermal Conductivity and Mechanical Properties of Two-component Room Temperature Vulcanized Silicone Rubber by Filling with Hydrophobically Modified SiO2-Graphene Nanohybrids. Chinese J. Polym. Sci, 2019, 37(2): 189-196. doi: 10.1007/s10118-019-2185-4

    8. [8]

      Feng Li-dongXiang ShengSun BinLiu Yan-longSun Zhi-qiangBian Xin-chaoLi GaoChen Xue-si . Thermal, Morphological, Mechanical and Aging Properties of Polylactide Blends with Poly(ether urethane) Based on Chain-extension Reaction of Poly(ethylene glycol) Using Diisocyanate. Chinese J. Polym. Sci, 2016, 34(9): 1070-1078. doi: 10.1007/s10118-016-1822-4

    9. [9]

      Morteza KhalinaMohammad Hosain BeheshtyAli Salimi . Preparation and Characterization of DGEBA/EPN Epoxy Blends with Improved Fracture Toughness. Chinese J. Polym. Sci, 2018, 36(5): 632-640. doi: 10.1007/s10118-018-2022-1

    10. [10]

      Ting LiTian-Ze ZhengZhao-Xia GuoJun XuBao-Hua Guo . A Well-defined Hierarchical Hydrogen Bonding Strategy to Polyureas with Simultaneously Improved Strength and Toughness. Chinese J. Polym. Sci, 2019, 37(12): 1257-1266. doi: 10.1007/s10118-019-2275-3

    11. [11]

      Bao-Gou WuWei-Jun YangDe-Yu NiuWei-Fu DongMing-Qing ChenTian-Xi LiuMing-Liang DuPi-Ming Ma . Stereocomplexed Poly(lactide) Composites toward Engineering Plastics with Superior Toughness, Heat Resistance and Anti-hydrolysis. Chinese J. Polym. Sci, 2020, 38(10): 1107-1116. doi: 10.1007/s10118-020-2443-5

    12. [12]

      Jia WangLi ZhangJin-biao Bao . Supercritical CO2 Assisted Preparation of Open-cell Foams of Linear Low-density Polyethylene and Linear Low-density Polyethylene/Carbon Nanotube Composites. Chinese J. Polym. Sci, 2016, 34(7): 889-900. doi: 10.1007/s10118-016-1806-4

    13. [13]

      Qi ChenShun WangFeng QinKuan LiuQian LiuQing ZhaoXing-Yi WangYan-Hong Hu . Soluble Polyimide-reinforced TGDDM and DGEBA Epoxy Composites. Chinese J. Polym. Sci, 2020, 38(8): 867-876. doi: 10.1007/s10118-020-2395-9

    14. [14]

      Gao-lai DuYang CongLong ChenJing ChenJun Fu . Tough and Multi-responsive Hydrogels Based on Core-Shell Structured Macro-crosslinkers. Chinese J. Polym. Sci, 2017, 35(10): 1286-1296. doi: 10.1007/s10118-017-1979-5

    15. [15]

      Shoujun Li Jingchao Li Peizhi Ji Wenfeng Zhang Yonglai Lu Liqun Zhang . Bubble-Templated Construction of Three-Dimensional Ceramic Network for Enhanced Thermal Conductivity of Silicone Rubber Composites. Chinese J. Polym. Sci, 2021, (): -. doi: 10.1007/s10118-021-2581-4

    16. [16]

      Lei Song Li-Shuai Zong Jin-Yan Wang Xi-Gao Jian . Preparation and Performance of HGM/PPENK-based High Temperature-Resistant Thermal Insulating Coatings. Chinese J. Polym. Sci, 2021, (): -. doi: 10.1007/s10118-021-2551-x

    17. [17]

      Hong-ting PuJun-feng Cheng . Orientation of LDPE Crystals from Microscale to Nanoscale via Microlayer or Nanolayer Coextrusion. Chinese J. Polym. Sci, 2016, 34(12): 1411-1422. doi: 10.1007/s10118-016-1850-0

    18. [18]

      Hao-yu ZhangXin-yang LiXiao-gong Wang . NANOMECHANICAL PROPERTIES OF POLYANILINE AND AZO POLYELECTROLYTE MULTILAYER FILMS. Chinese J. Polym. Sci, 2010, 28(2): 269-275. doi: 10.1007/s10118-010-9066-1

    19. [19]

      Chao ZhouJun-Tao ZhouCheng-Ju ShengDicky PranantyoYan PanXiao-Jia Huang . Robust and Self-healable Antibiofilm Multilayer Coatings. Chinese J. Polym. Sci, 2021, 39(4): 425-440. doi: 10.1007/s10118-021-2513-3

    20. [20]

      Zhong-bin Xu abWei-wei Kong aMing-xing Zhou aMao Peng a . EFFECT OF SURFACE MODIFICATION OF MONTMORILLONITE ON THE PROPERTIES OF RIGID POLYURETHANE FOAM COMPOSITES. Chinese J. Polym. Sci, 2010, 28(4): 615-624. doi: 10.1007/s10118-010-9111-0

Article Metrics
  • PDF Downloads(0)
  • Abstract views(373)
  • HTML views(227)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return