Citation: Kong, X. X.; Chen, W. D.; Cui, F. C.; Li, Y. Q. Conformational and dynamical evolution of block copolymers in shear flow. Chinese J. Polym. Sci. 2021, 39, 640–650 doi: 10.1007/s10118-021-2523-1 shu

Conformational and Dynamical Evolution of Block Copolymers in Shear Flow


  • Conformation and dynamical evolution of block copolymers in shear flow is an important topic in polymer physics that underscores the forming process of various materials. We explored deformation and dynamics of copolymers composed of rigid or flexible blocks in simple shear flow by employing multiparticle collision dynamics integrated with molecular dynamics simulations. We found that compared with the proportion between rigid and flexible blocks, the type of the central blocks plays more important role in the conformational and dynamical evolution of copolymers. That is, if the central block is a coil, the copolymer chain takes end-over-end tumbling motion, while if the central block is a rod, the copolymer chain undergoes U-shape or S-shape deformation at mid shear rate. As the shear strength increases, all copolymers behave similar to flexible polymers at high shear rate. This can be attributed to the fact that shear flow is strong enough to overcome the buckling force of the rigid blocks. These results provide a deeper understanding of the roles played by rod and coil blocks in copolymers for phase interface during forming processing.
    1. [1]

      Branco, M. C.; Nettesheim, F.; Pochan, D. J.; Schneider, J. P.; Wagner, N. J. Fast dynamics of semiflexible chain networks of self-assembled peptides. Biomacromolecules 2009, 10, 1374−1380. doi: 10.1021/bm801396e

    2. [2]

      Cai, S.; Cao, Z.; Lau, C.; Lu, J. Label-free technology for the amplified detection of microRNA based on the allosteric hairpin DNA switch and hybridization chain reaction. Analyst 2014, 139, 6022−6027. doi: 10.1039/C4AN01178C

    3. [3]

      Chen, G.; Kong, X.; Zhu, J.; Lu, D.; Liu, Z. How ABA block polymers activate cytochrome c in toluene: molecular dynamics simulation and experimental observation. Phys. Chem. Chem. Phys. 2015, 17, 10708−10714. doi: 10.1039/C5CP00418G

    4. [4]

      Zhang, H.; Wang, Y.; Zhang, H.; Liu, X.; Lee, A.; Huang, Q.; Wang, F.; Chao, J.; Liu, H.; Li, J.; Shi, J.; Zuo, X.; Wang, L.; Wang, L.; Cao, X.; Bustamante, C.; Tian, Z.; Fan, C. Programming chain-growth copolymerization of DNA hairpin tiles for in-vitro hierarchical supramolecular organization. Nat. Commun. 2019, 10, 1006. doi: 10.1038/s41467-019-09004-4

    5. [5]

      Dai, Y.; Li, Y.; Wang, S. ABC triblock copolymer-stabilized gold nanoparticles for catalytic reduction of 4-nitrophenol. J. Catal. 2015, 329, 425−430. doi: 10.1016/j.jcat.2015.06.006

    6. [6]

      Lu, J.; Ten Brummelhuis, N.; Weck, M. Intramolecular folding of triblock copolymers via quadrupole interactions between poly(styrene) and poly(pentafluorostyrene) blocks. Chem. Commun. 2014, 50, 6225−6227. doi: 10.1039/c4cc01840k

    7. [7]

      Grillo, D. A.; Albano, J. M. R.; Mocskos, E. E.; Facelli, J. C.; Pickholz, M.; Ferraro, M. B. Diblock copolymer bilayers as model for polymersomes: a coarse grain approach. J. Chem. Phys. 2017, 146, 244904. doi: 10.1063/1.4986642

    8. [8]

      Cao, J.; Wen, N.; Zheng, Y. Effect of long chain branching on the rheological behavior, crystallization and mechanical properties of polypropylene random copolymer. Chinese J. Polym. Sci. 2016, 34, 1158−1171. doi: 10.1007/s10118-016-1830-4

    9. [9]

      Srinivas, G.; Discher, D. E.; Klein, M. L. Key roles for chain flexibility in block copolymer membranes that contain pores or make tubes. Nano Lett. 2005, 5, 2343−2349. doi: 10.1021/nl051515x

    10. [10]

      Rabbel, H.; Werner, M.; Sommer, J. U. Interactions of amphiphilic triblock copolymers with lipid membranes: modes of interaction and effect on permeability examined by generic Monte Carlo simulations. Macromolecules 2015, 48, 4724−4732. doi: 10.1021/acs.macromol.5b00720

    11. [11]

      Chen, S.; Shi, P.; Zhang, W. In situ synthesis of block copolymer nano-assemblies by polymerization-induced self-assembly under heterogeneous condition. Chinese J. Polym. Sci. 2017, 35, 455−479. doi: 10.1007/s10118-017-1907-8

    12. [12]

      Chen, Q. Conformational evolution under steady shear flow: a comparison between cyclic and linear block copolymers. Rheol. Acta 2011, 51, 343−355.

    13. [13]

      Chen, Q. Creep dynamics of non-entangled miscible polymer blends and block copolymers. Rheol. Acta 2012, 51, 569−577. doi: 10.1007/s00397-012-0623-0

    14. [14]

      Weiss, L. B.; Nikoubashman, A.; Likos, C. N. Topology-sensitive microfluidic filter for polymers of varying stiffness. ACS Macro Lett. 2017, 6, 1426−1431. doi: 10.1021/acsmacrolett.7b00768

    15. [15]

      Baarda, R. A.; Marianchuk, T. L.; Toney, M. D.; Cox, D. L. In silico stress-strain measurements on self-assembled protein lattices. Soft Matter 2018, 14, 8095−8104. doi: 10.1039/C8SM00412A

    16. [16]

      Gao, Y.; Duan, X.; Jiang, P.; Zhang, H.; Liu, J.; Wen, S.; Zhao, X.; Zhang, L. Molecular dynamics simulation of the electrical conductive network formation of polymer nanocomposites by utilizing diblock copolymer-mediated nanoparticles. Soft Matter 2019, 15, 6331−6339. doi: 10.1039/C9SM01166H

    17. [17]

      Jiang, W.; Ji, Y.; Lang, W.; Li, S.; Wang, X. Surface-induced morphologies of ABC star triblock copolymer in spherical cavities. Chinese J. Polym. Sci. 2015, 33, 1503−1515. doi: 10.1007/s10118-015-1706-z

    18. [18]

      Reddig, S.; Stark, H. Cross-streamline migration of a semiflexible polymer in a pressure driven flow. J. Chem. Phys. 2011, 135, 165101. doi: 10.1063/1.3656070

    19. [19]

      Pedersen, J. N.; Luscher, C. J.; Marie, R.; Thamdrup, L. H.; Kristensen, A.; Flyvbjerg, H. Thermophoretic forces on DNA measured with a single-molecule spring balance. Phys. Rev. Lett. 2014, 113, 268301. doi: 10.1103/PhysRevLett.113.268301

    20. [20]

      Streets, A. M.; Huang, Y. Y. Microfluidics for biological measurements with single-molecule resolution. Curr. Opin. Biotech. 2014, 25, 69−77. doi: 10.1016/j.copbio.2013.08.013

    21. [21]

      Graham, R. S. Understanding flow-induced crystallization in polymers: A perspective on the role of molecular simulations. J. Rheol. 2019, 63, 203−214. doi: 10.1122/1.5056170

    22. [22]

      Huang, D.; Zhang, T.; Xiong, G.; Xu, L.; Qu, Z.; Lee, E.; Luo, T. Tuning water slip behavior in nanochannels using self-assembled monolayers. ACS Appl. Mater. Interfaces 2019, 11, 32481−32488. doi: 10.1021/acsami.9b09509

    23. [23]

      Bates, F. S.; Fredrickson, G. H. Block copolymer thermodynamics: theory and experiment. Annu. Rev. Phys. Cher. 1990, 41, 525−557. doi: 10.1146/annurev.pc.41.100190.002521

    24. [24]

      Fredrickson, G. H.; Bates, F. S. Dynamics of block copolymers: theory and experiment. Annu. Rev. Muter. Sci. 1996, 26, 501−550. doi: 10.1146/

    25. [25]

      Bates, F. S.; Fredrickson, G. H. Block copolymers—designer soft materials. Phys. Today 1999, 52, 32−38.

    26. [26]

      Bucknall, D. G.; Anderson, H. L. Polymers get organized. Science 2003, 12, 1904−1905.

    27. [27]

      Guvendiren, M.; Lu, H. D.; Burdick, J. A. Shear-thinning hydrogels for biomedical applications. Soft Matter 2012, 8, 260−272. doi: 10.1039/C1SM06513K

    28. [28]

      Meng, H.; Li, G. A review of stimuli-responsive shape memory polymer composites. Polymer 2013, 54, 2199−2221. doi: 10.1016/j.polymer.2013.02.023

    29. [29]

      Yadav, M.; Bates, F. S.; Morse, D. C. Network model of the disordered phase in symmetric diblock copolymer melts. Phys. Rev. Lett. 2018, 121, 127802. doi: 10.1103/PhysRevLett.121.127802

    30. [30]

      Shim, J.; Bates, F. S.; Lodge, T. P. Superlattice by charged block copolymer self-assembly. Nat. Commun. 2019, 10, 2108. doi: 10.1038/s41467-019-10141-z

    31. [31]

      Xu, R.; Dehghan, A.; Shi, A. C.; Zhou, J. Elastic property of membranes self-assembled from diblock and triblock copolymers. Chem. Phys. Lipids. 2019, 221, 83−92. doi: 10.1016/j.chemphyslip.2019.03.015

    32. [32]

      Jaramillo-Cano, D.; Likos, C. N.; Camargo, M. Rotation dynamics of star block copolymers under shear flow. Polymers 2018, 10, 860. doi: 10.3390/polym10080860

    33. [33]

      Li, C.; Xie, D.; Pei, X.; Song, B.; Cui, Z. Self-assembly and rheological behavior of oleic acid-based pseudo-tetrameric surfactants. Colloid Polym. Sci. 2018, 297, 125−132.

    34. [34]

      Wilsens, C.; Hawke, L. G. D.; Troisi, E. M.; Hermida-Merino, D.; de Kort, G.; Leone, N.; Saralidze, K.; Peters, G. W. M.; Rastogi, S. Effect of self-assembly of oxalamide based organic compounds on melt behavior, nucleation, and crystallization of isotactic polypropylene. Macromolecules 2018, 51, 4882−4895. doi: 10.1021/acs.macromol.8b00489

    35. [35]

      Arens, L.; Wilhelm, M. Self-assembled acrylic ABA triblock copolymer hydrogels with various block compositions: water absorbency, rheology, and SAXS. Macromol. Chem. Phys. 2019, 220, 1900093. doi: 10.1002/macp.201900093

    36. [36]

      Zhou, L.; Yu, W.; Chen, Y.; Luo, K. Ejection dynamics of semiflexible polymers out of a nanochannel. Chinese J. Polym. Sci. 2016, 34, 1196−1207. doi: 10.1007/s10118-016-1842-0

    37. [37]

      De Gennes, P. G. Coil-stretch transition of dilute flexible polymers under ultrahigh velocity gradients. J. Chem. Phys. 1974, 60, 5030−5042. doi: 10.1063/1.1681018

    38. [38]

      Link, A.; Springer, J. Light-scattering from dilute polymer-solutions in shear-flow. Macromolecules 1993, 26, 464−471. doi: 10.1021/ma00055a010

    39. [39]

      Lee, E. C.; Muller, S. J. Flow light scattering studies of polymer coil conformation in solutions in extensional flow. Macromolecules 1999, 32, 3295−3305. doi: 10.1021/ma981277a

    40. [40]

      Lee, E. C.; Muller, S. J. Flow light scattering studies of polymer coil conformation in solutions under shear: effect of solvent quality. Polymer 1999, 40, 2501−2510. doi: 10.1016/S0032-3861(98)00471-6

    41. [41]

      LeDuc, P.; Haber, C.; Bao, G.; Wirtz, D. Dynamics of individual flexible polymers in a shear flow. Nature 1999, 399, 564−566. doi: 10.1038/21148

    42. [42]

      Schroeder, C. M.; Teixeira, R. E.; Shaqfeh, E. S.; Chu, S. Characteristic periodic motion of polymers in shear flow. Phys. Rev. Lett. 2005, 95, 018301. doi: 10.1103/PhysRevLett.95.018301

    43. [43]

      Teixeira, R. E.; Babcock, H. P.; Shaqfeh, E. S. G.; Chu, S. Shear thinning and tumbling dynamics of single polymers in the flow-gradient plane. Macromolecules 2005, 38, 581−592. doi: 10.1021/ma048077l

    44. [44]

      Kong, X.; Han, Y.; Chen, W.; Cui, F.; Li, Y. Understanding conformational and dynamical evolution of semiflexible polymers in shear flow. Soft Matter 2019, 15, 6353−6361. doi: 10.1039/C9SM00600A

    45. [45]

      Jeffery, G. B. The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. London, Ser. A 1922, 102, 161−179. doi: 10.1098/rspa.1922.0078

    46. [46]

      Winkler, R. G. Semiflexible polymers in shear flow. Phys. Rev. Lett. 2006, 97, 128301. doi: 10.1103/PhysRevLett.97.128301

    47. [47]

      Liu, Y.; Chakrabarti, B.; Saintillan, D.; Lindner, A.; de Roure, O. Morphological transitions of elastic filaments in shear flow. Proc. Natl. Acad. Sci. 2018, 115, 9438−9443. doi: 10.1073/pnas.1805399115

    48. [48]

      Munk, T.; Hallatschek, O.; Wiggins, C. H.; Frey, E. Dynamics of semiflexible polymers in a flow field. Phys. Rev. E 2006, 74, 041911. doi: 10.1103/PhysRevE.74.041911

    49. [49]

      Harasim, M.; Wunderlich, B.; Peleg, O.; Kroger, M.; Bausch, A. R. Direct observation of the dynamics of semiflexible polymers in shear flow. Phys. Rev. Lett. 2013, 110, 108302. doi: 10.1103/PhysRevLett.110.108302

    50. [50]

      Saha Dalal, I.; Albaugh, A.; Hoda, N.; Larson, R. G. Tumbling and deformation of isolated polymer chains in shearing flow. Macromolecules 2012, 45, 9493−9499. doi: 10.1021/ma3014349

    51. [51]

      Li, K.; Wang, Q. Multiple self-assembled nanostructures from an oligo(p-phenyleneethynylene) containing rod-coil-rod triblock copolymer. Chem. Commun. 2005, 4786−4788.

    52. [52]

      Shahinur Rahman, M.; Changez, M.; Min, J.; Shah, P. N.; Samal, S.; Lee, J. S. Functionalization of amphiphilic coil-rod-coil triblock copolymer poly(2-vinylpyridine)-b-poly(n-hexyl isocyanate)-b-poly(2-vinylpyridine) with fluorescence moiety and C60. Polymer 2011, 52, 1925−1931. doi: 10.1016/j.polymer.2011.03.011

    53. [53]

      Hannon, A. F.; Kline, R. J.; DeLongchamp, D. Advancing the computational methodology of rigid rod and semiflexible polymer systems: a new solution to the wormlike chain model with rodcoil copolymer calculations. J. Polym. Sci., Part B: Polym. Phys. 2018, 57, 29−39.

    54. [54]

      Cabral, H.; Miyata, K.; Osada, K.; Kataoka, K. Block copolymer micelles in nanomedicine applications. Chem. Rev. 2018, 118, 6844−6892. doi: 10.1021/acs.chemrev.8b00199

    55. [55]

      Huang, C.; Winkler, R. G.; Sutmann, G.; Gompper, G. Semidilute polymer solutions at equilibrium and under shear flow. Macromolecules 2010, 43, 10107−10116. doi: 10.1021/ma101836x

    56. [56]

      Chen, W.; Zhang, K.; Liu, L.; Chen, J.; Li, Y.; An, L. Conformation and dynamics of individual star in shear flow and comparison with linear and ring polymers. Macromolecules 2017, 50, 1236−1244. doi: 10.1021/acs.macromol.6b02636

    57. [57]

      Chen, W.; Chen, J.; Liu, L.; Xu, X.; An, L. Effects of chain stiffness on conformational and dynamical properties of individual ring polymers in shear flow. Macromolecules 2013, 46, 7542−7549. doi: 10.1021/ma401137c

    58. [58]

      Chen, W.; Li, Y.; Zhao, H.; Liu, L.; Chen, J.; An, L. Conformations and dynamics of single flexible ring polymers in simple shear flow. Polymer 2015, 64, 93−99. doi: 10.1016/j.polymer.2015.03.034

    59. [59]

      Gompper, G.; Ihle, T.; Kroll, D. M.; Winkler, R. G. Multi-particle collision dynamics: a particle-based mesoscale simulation approach to the hydrodynamics of complex fluids. Adv. Polym. Sci. 2009, 221, 1−87.

    60. [60]

      Huang, C. C.; Chatterji, A.; Sutmann, G.; Gompper, G.; Winkler, R. G. Cell-level canonical sampling by velocity scaling for multiparticle collision dynamics simulations. J. Comput. Phys. 2010, 229, 168−177. doi: 10.1016/

    61. [61]

      Ripoll, M.; Mussawisade, K.; Winkler, R. G.; Gompper, G. Low-Reynolds-number hydrodynamics of complex fluids by multi-particle-collision dynamics. Europhys. Lett. 2004, 68, 106. doi: 10.1209/epl/i2003-10310-1

    62. [62]

      Zhang, Y.; Wiesner, U.; Spiess, H. W. Frequency dependence of orientation in dynamically sheared diblock copolymers. Macromolecules 1995, 28, 778−781. doi: 10.1021/ma00107a015

    63. [63]

      Nikoubashman, A.; Howard, M. P. Equilibrium dynamics and shear rheology of semiflexible polymers in solution. Macromolecules 2017, 50, 8279−8289. doi: 10.1021/acs.macromol.7b01876

    64. [64]

      Aust, C.; Kroger, M.; Hess, S. Structure and dynamics of dilute polymer solutions under shear flow via nonequilibrium molecular dynamics. Macromolecules 1999, 32, 5660−5672. doi: 10.1021/ma981683u

  • 加载中
    1. [1]

      Zhen-yu DengDong ZhangLin-xi Zhang . Dynamics of Attractive Vesicles in Shear Flow. Chinese J. Polym. Sci, 2016, 34(5): 623-636. doi: 10.1007/s10118-016-1785-5

    2. [2]

      Li-Rong ZhengLiang Hong . Combining Neutron Scattering, Deuteration Technique, and Molecular Dynamics Simulations to Study Dynamics of Protein and Its Surface Water Molecules. Chinese J. Polym. Sci, 2019, 37(11): 1083-1091. doi: 10.1007/s10118-019-2312-2

    3. [3]

      Bin LiBo YuXiao-long WangFeng GuoFeng Zhou . Correlation between Conformation Change of Polyelectrolyte Brushes and Lubrication. Chinese J. Polym. Sci, 2015, 33(1): 163-172. doi: 10.1007/s10118-015-1564-8

    4. [4]

      Juan LiYi-jing NieYu MaWen-bing Hu . STRESS-INDUCED POLYMER DEFORMATION IN SHEAR FLOWS. Chinese J. Polym. Sci, 2013, 31(11): 1590-1598. doi: 10.1007/s10118-013-1354-0

    5. [5]

      Zhi-da WangChang-feng YanYing HuangLi-qi Yi . Dependence of Size and Morphology on Shear Flow for PS-based Amphiphilic Block Copolymer Micelles in Aqueous Solution. Chinese J. Polym. Sci, 2017, 35(5): 641-648. doi: 10.1007/s10118-017-1927-4

    6. [6]

      Feng ZhouQing-han ZhouHai-jian TianChang-sheng LiYu-dong ZhangXing-he FanZhi-hao Shen . Synthesis and Self-assembly of a Triarm Star-shaped Rod-Rod Block Copolymer. Chinese J. Polym. Sci, 2015, 33(5): 709-720. doi: 10.1007/s10118-015-1621-3

    7. [7]

      Zhi GengSong GuanHe-ming JiangLong-cheng GaoZhi-wen LiuLei Jiang . pH-Sensitive Wettability Induced by Topological and Chemical Transition on the Self Assembled Surface of Block Copolymer. Chinese J. Polym. Sci, 2014, 32(1): 92-97. doi: 10.1007/s10118-014-1376-2

    8. [8]

      Wen-jin FanGuo-qiang FanXiao-hua ZhangZhao-hui Yang . Getting to the Bottom Morphology of Block Copolymer Thin Films. Chinese J. Polym. Sci, 2016, 34(1): 88-93. doi: 10.1007/s10118-016-1731-6

    9. [9]

      Dong-Lei LiuFeng ZhouKun Fang . A Theoretical Study on Transitional Shear Flow Behavior of the Compressible and Isothermal Thermoplastic Polymer. Chinese J. Polym. Sci, 2019, 37(5): 518-526. doi: 10.1007/s10118-019-2214-3

    10. [10]

      Hui-jing HanSha ZhangRu-yi SunJian-hua WuMei-ran XieXiao-juan Liao . Photocrosslinkable Polynorbornene-based Block Copolymers with Enhanced Dielectric and Thermal Properties. Chinese J. Polym. Sci, 2016, 34(3): 378-389. doi: 10.1007/s10118-016-1753-0

    11. [11]

      Kai-qiang ZhangJing-zhe CaiXiao-hui LiHui LiYun-hui ZhaoXiao-yan Yuan . Balance of Polyacrylate-Fluorosilicone Block Copolymers as Icephobic Coatings. Chinese J. Polym. Sci, 2015, 33(1): 153-162. doi: 10.1007/s10118-015-1563-9

    12. [12]

      Xin-yu WeiWei-yin GuXiao-bo ShenJoseph StrzalkaZhang JiangThomas P Russell . DEVIATIONS FROM BULK MORPHOLOGIES IN THIN FILMS OF BLOCK COPOLYMER/ADDITIVE BINARY BLENDS. Chinese J. Polym. Sci, 2013, 31(9): 1250-1259. doi: 10.1007/s10118-013-1320-x

    13. [13]

      Chun-yan WangQian YuanShu-guang YangJian Xu . Effect of Water Content on the Size and Membrane Thickness of Polystyrene-block-Poly(ethylene oxide) Vesicles. Chinese J. Polym. Sci, 2015, 33(4): 661-668. doi: 10.1007/s10118-015-1618-y

    14. [14]

      Weichao Shi . Scattering Function and Spinodal Transition of Linear and Nonlinear Block Copolymers Based on a Unified Molecular Model. Chinese J. Polym. Sci, 2021, 39(): 1-10. doi: 10.1007/s10118-021-2544-9

    15. [15]

      Dao-hong MeiDong Qiu . A Self-consistent Field Study on the Adsorption of Symmetrical Triblock Copolymers between Two Parallel Planes. Chinese J. Polym. Sci, 2015, 33(12): 1691-1701. doi: 10.1007/s10118-015-1721-0

    16. [16]

      Zhu LiuZhi-Bin JiangHong YangShu-Ming BaiRong WangGi Xue . CROWDING EFFECT INDUCED PHASE TRANSITION OF AMPHIPHILIC DIBLOCK COPOLYMER IN SOLUTION. Chinese J. Polym. Sci, 2013, 31(11): 1491-1500. doi: 10.1007/s10118-013-1346-0

    17. [17]

      Quan-you FengYe-long HanMeng-na YuBin LiYing WeiLing-hai XieWei Huang . A Robust and Soluble Nanopolymer Based on Molecular Grid-based Nanomonomer. Chinese J. Polym. Sci, 2017, 35(1): 87-97. doi: 10.1007/s10118-016-1856-7

    18. [18]

      Xin-Xin WangJian-Jun YiLi WangYuan YuanJia-Chun Feng . Investigating the Nucleation Effect of DMDBS on Syndiotactic Polypropylene from the Perspective of Chain Conformation. Chinese J. Polym. Sci, 2020, 38(12): 1355-1364. doi: 10.1007/s10118-020-2447-1

    19. [19]

      He-Bei GaoHong LiXiao-Qin ZhangXiang-Hong WangChao-Yang LiMeng-Bo Luo . Computer Simulation Study on Adsorption and Conformation of Polymer Chains Driven by External Force. Chinese J. Polym. Sci, 2021, 39(2): 258-266. doi: 10.1007/s10118-020-2491-x

    20. [20]

      Ming-zhi WangTao WangKang YuanJianzhong Du . Preparation of Water Dispersible Poly(methyl methacrylate)-based Vesicles for Facile Persistent Antibacterial Applications. Chinese J. Polym. Sci, 2016, 34(1): 44-51. doi: 10.1007/s10118-016-1725-4

Article Metrics
  • PDF Downloads(0)
  • Abstract views(423)
  • HTML views(220)
  • Cited By(0)

通讯作者: 陈斌,
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索


DownLoad:  Full-Size Img  PowerPoint