Citation: Chen, L.; Huang, J.; Zhao, C.; Zhou, J. J.; Liu, M. J. Tunable lower critical solution temperature of poly(butyl acrylate) in ionic liquid blends. Chinese J. Polym. Sci. 2021, 39, 585–591 doi: 10.1007/s10118-021-2522-2 shu

Tunable Lower Critical Solution Temperature of Poly(butyl acrylate) in Ionic Liquid Blends

  • Corresponding author: Ming-Jie Liu, E-mail: liumj@buaa.edu.cn
  • Received Date: 2020-09-07
    Available Online: 2020-11-26

Figures(5)

  • We describe the lower critical solution temperature (LCST)-type phase behavior of poly(butyl acrylate) (PBA) dissolved in hydrophobic 1-alkyl-3-methylimidazolium bis{(trifluoromethyl) sulfonyl}amide ionic liquids (ILs). The temperature-composition phase diagrams of these PBA/ILs systems are strongly asymmetric with the critical composition shifted to low concentrations of PBA. As the molecular weight increases from 5.0×103 to 2.0×104, the critical temperature decreases by about 67 °C, and the critical composition shifts to a lower concentration. Furthermore, the LCST of PBA/ILs system increases as increasing the alkyl side chain length in the imidazolium cation. Using IL blends as solvents, the LCST of PBA can be tuned almost linearly over a wide range by varying the mixing ratio of two ionic liquids without modifying the chemical structure of the polymers.
    1. [1]

      Rogers, D. R. Ionic liquids--solvents of the future? Science 2003, 302, 792−793. doi: 10.1126/science.1090313

    2. [2]

      Susan, M. A. B. H.; Kaneko, T.; Noda, A.; Watanabe, M. Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes. J. Am. Chem. Soc. 2005, 127, 4976−4983. doi: 10.1021/ja045155b

    3. [3]

      Wang, M.; Xiao, X.; Zhou, X.; Li, X.; Lin, Y. Investigation of PEO-imidazole ionic liquid oligomer electrolytes for dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 2007, 91, 785−790. doi: 10.1016/j.solmat.2007.01.009

    4. [4]

      Lewandowski, A.; Świderska-Mocek, A. Ionic liquids as electrolytes for Li-ion batteries: an overview of electrochemical studies. J. Power Sources 2009, 194, 601−609. doi: 10.1016/j.jpowsour.2009.06.089

    5. [5]

      Ueki, T.; Nakamura, Y.; Usui, R.; Kitazawa, Y.; So, S.; Lodge, T. P.; Watanabe, M. Photoreversible gelation of a triblock copolymer in an ionic liquid. Angew. Chem. Int. Ed. 2015, 127, 3061−3065. doi: 10.1002/ange.201411526

    6. [6]

      Ding, Y.; Zhang, J.; Chang, L.; Zhang, X.; Liu, H.; Jiang, L. Preparation of high-performance ionogels with excellent transparency, good mechanical strength, and high conductivity. Adv. Mater. 2017, 29, 1704235.

    7. [7]

      Cho, J. H.; Lee, J.; Xia, Y.; Kim, B.; He, Y.; Renn, M. J. Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nat. Mater. 2008, 7, 900−906.

    8. [8]

      Xia, L.; Cui, Q.; Suo, X.; Li, Y.; Cui, X.; Yang, Q. Efficient, selective, and reversible SO2 capture with highly crosslinked ionic microgels via a selective swelling mechanism. Adv. Funct. Mater. 2018, 28, 1704292. doi: 10.1002/adfm.201704292

    9. [9]

      Chen, N.; Zhang, H.; Li, L.; Chen, R.; Guo, S. Ionogel electrolytes for high-performance lithium batteries: a review. Adv. Energy Mater. 2018, 8, 1702675. doi: 10.1002/aenm.201702675

    10. [10]

      Lee, K. H.; Kang, M. S.; Zhang, S.; Gu, Y.; Lodge, T. P.; Frisbie, C. D. "Cut and stick" rubbery ion gels as high capacitance gate dielectrics. Adv. Mater. 2012, 24, 4457−4462. doi: 10.1002/adma.201200950

    11. [11]

      Schild, H. G.; Muthukumar, M.; Tirrell, D. A. Cononsolvency in mixed aqueous solutions of poly(N-isopropylacrylamide). Macromolecules 1991, 24, 948−952. doi: 10.1021/ma00004a022

    12. [12]

      Crespy, D.; Rossi, R. M. Temperature-responsive polymers with LCST in the physiological range and their applications in textiles. Polym. Int. 2007, 56, 1461−1468. doi: 10.1002/pi.2277

    13. [13]

      Ueki, T.; Watanabe, M. Upper critical solution temperature behavior of poly(N-isopropylacrylamide) in an ionic liquid and preparation of thermo-sensitive nonvolatile gels. Chem. Lett. 2006, 35, 964−965. doi: 10.1246/cl.2006.964

    14. [14]

      Ueki, T.; Watanabe, M. Lower critical solution temperature behavior of linear polymers in ionic liquids and the corresponding volume phase transition of polymer gels. Langmuir 2007, 23, 988−990. doi: 10.1021/la062986h

    15. [15]

      Ueki, T.; Karino, T.; Kobayashi, Y.; Shibayama, M.; Watanabe, M. Difference in lower critical solution temperature behavior between random copolymers and a homopolymer having solvatophilic and solvatophobic structures in an ionic liquid. J. Phys. Chem. B 2007, 111, 4750−4754. doi: 10.1021/jp0670900

    16. [16]

      Tsuda, R.; Kodama, K.; Ueki, T.; Kokubo, H.; Imabayashi, S. I.; Watanabe, M. LCST-type liquid-liquid phase separation behaviour of poly(ethylene oxide) derivatives in an ionic liquid. Chem. Commun. 2008, 40, 4939−4941.

    17. [17]

      Lee, H. N.; Lodge, T. P. Poly(n-butyl methacrylate) in ionic liquids with tunable lower critical solution temperatures (LCST). J. Phys. Chem. B 2011, 115, 1971−1977.

    18. [18]

      Lee, H. N.; Lodge, T. P. Lower critical solution temperature (LCST) phase behavior of poly(ethylene oxide) in ionic liquids. J. Phys. Chem. Lett. 2010, 1, 1962−1966. doi: 10.1021/jz100617t

    19. [19]

      Lee, H. N.; Newell, N.; Bai, Z.; Lodge, T. P. Unusual lower critical solution temperature phase behavior of poly(ethylene oxide) in ionic liquids. Macromolecules 2012, 45, 3627−3633. doi: 10.1021/ma300335p

    20. [20]

      Hoarfrost, M. L.; He, Y.; Lodge, T. P. Lower critical solution temperature phase behavior of poly(n-butyl methacrylate) in ionic liquid mixtures. Macromolecules 2013, 46, 9464−9472. doi: 10.1021/ma401450w

    21. [21]

      Ueki, T. Stimuli-responsive polymers in ionic liquids. Polym. J. 2014, 46, 646−655. doi: 10.1038/pj.2014.37

    22. [22]

      Qiao, Y.; Ma, W.; Theyssen, N.; Chen, C.; Hou, Z. Temperature-responsive ionic liquids: fundamental behaviors and catalytic applications. Chem. Rev. 2017, 117, 6881−6928. doi: 10.1021/acs.chemrev.6b00652

    23. [23]

      Ueki, T.; Watanabe, M. Polymers in ionic liquids: dawn of neoteric solvents and innovative materials. Bull. Chem. Soc. Jpn. 2012, 85, 33−50. doi: 10.1246/bcsj.20110225

    24. [24]

      Nguyen, H. H.; El Ezzi, M.; Mingotaud, C.; Destarac, M.; Marty, J. D.; Lauth-de Viguerie, N. Doubly thermo-responsive copolymers in ionic liquid. Soft Matter 2016, 12, 3246−3251. doi: 10.1039/C5SM03063C

    25. [25]

      Daniel, W. F. M.; Burdyńska, J.; Vatankhah-Varnoosfaderani, M.; Matyjaszewski, K.; Paturej, J.; Rubinstein, M. Solvent-free, supersoft and superelastic bottlebrush melts and networks. Nat. Mater. 2016, 15, 183. doi: 10.1038/nmat4508

    26. [26]

      Jung, J. G.; Bae, Y. C. Liquid-liquid equilibria of polymer solutions: Flory-Huggins with specific interaction. J. Polym. Sci., Part B: Polym. Phys. 2010, 48, 162−167. doi: 10.1002/polb.21883

    27. [27]

      Lachwa, J.; Szydlowski, J.; Najdanovic-Visak, V.; Rebelo, L. P. N.; Seddon, K. R.; Nunes da Ponte, M. Evidence for lower critical solution behavior in ionic liquid solutions. J. Am. Chem. Soc. 2015, 127, 6542−6543.

    28. [28]

      Matsugami, M.; Fujii, K.; Ueki, T.; Kitazawa. Y,; Umebayashi, Y.; Watanabe, M. Specific solvation of benzyl methacrylate in 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ionic liquid. Anal. Sci. 2013, 29, 311−314. doi: 10.2116/analsci.29.311

    29. [29]

      Ma, J. C.; Dougherty, D. A. The cation-π interaction. Chem. Rev. 1997, 97, 1303−1324. doi: 10.1021/cr9603744

    30. [30]

      Kodama, K.; Nanashima, H.; Ueki, T.; Kokubo, H.; Watanabe, M. Lower critical solution temperature phase behavior of linear polymers in imidazolium-based ionic liquids: effects of structural modifications. Langmuir 2009, 25, 3820−3824. doi: 10.1021/la803945n

    31. [31]

      Canongia Lopes, J. N.; Costa Gomes, M. F.; Pádua, A. A. H. Nonpolar, polar, and associating solutes in ionic liquids. J. Phys. Chem. B 2006, 110, 16816−16818. doi: 10.1021/jp063603r

    32. [32]

      Wang, Y.; Voth, G. A. Unique spatial heterogeneity in ionic liquids. J. Am. Chem. Soc. 2005, 127, 12192−12193. doi: 10.1021/ja053796g

  • 加载中
    1. [1]

      Guo-liang YueQian-ling CuiYu-xi ZhangEr-jian WangFei-peng Wu . THERMO-RESPONSIVE BLOCK COPOLYMERS BASED ON LINEAR-TYPE POLY(ETHYLENE GLYCOL): TUNABLE LCST WITHIN THE PHYSIOLOGICAL RANGE. Chinese J. Polym. Sci, 2012, 30(5): 770-776. doi: 10.1007/s10118-012-1179-2

    2. [2]

      Qing ZhouJian-hua LiBang-feng YanDong WuQi-qing Zhang . Thermo-responsive and Antifouling PVDF Nanocomposited Membranes Based on PNIPAAm Modified TiO2 Nanoparticles. Chinese J. Polym. Sci, 2014, 32(7): 892-905. doi: 10.1007/s10118-014-1457-2

    3. [3]

      De-liang HeFei LiSan-bao XiaFu-rong LiuYing XiongQuan Zhang . Synthesis and Characterization of a Novel Ionic Liquid Polymer:Poly(1-(3-aminobenzyl)-3-methylimidazolium chloride). Chinese J. Polym. Sci, 2014, 32(2): 163-168. doi: 10.1007/s10118-014-1385-1

    4. [4]

      Wei-wei ChenMei-chun DingMei ZhangJin-ming ZhangXia GaoJia-song HeJun Zhang . Chiral Separation Abilities of Homogeneously Synthesized Cellulose 3,5-Dimethylphenylcarbamates:Influences of Degree of Substitution and Molecular Weight. Chinese J. Polym. Sci, 2015, 33(12): 1633-1639. doi: 10.1007/s10118-015-1695-y

    5. [5]

      Lin YeShao-Feng ZhangYi-Chao LinJia-Kang MinLi MaTao Tang . Synthesis and Characterization of Butyl Acrylate-based Graft Polymers with Thermo-responsive Branching Sites via the Diels-Alder Reaction of Furan/Maleimide. Chinese J. Polym. Sci, 2018, 36(9): 1011-1018. doi: 10.1007/s10118-018-2107-x

    6. [6]

      Kai ShiDi ShaJiu-Duo XuXu YangBao-Long WangYan-Xiong PanXiang-Ling Ji . Hofmeister Effect on Thermo-responsive Poly(N-isopropylacrylamide) Hydrogels Grafted on Macroporous Poly(vinyl alcohol) Formaldehyde Sponges. Chinese J. Polym. Sci, 2020, 38(3): 257-267. doi: 10.1007/s10118-019-2320-2

    7. [7]

      Quan-long LiLei LiHong-song WangRui WangWei WangYong-jing JiangQian TianJia-ping Liu . The Doubly Thermo-responsive Triblock Copolymer Nanoparticles Prepared through Seeded RAFT Polymerization. Chinese J. Polym. Sci, 2017, 35(1): 66-77. doi: 10.1007/s10118-016-1859-4

    8. [8]

      Pei XuZhao-Pei CuiGang RuanYun-Sheng Ding . Enhanced Crystallization Kinetics of PLLA by Ethoxycarbonyl Ionic Liquid Modified Graphene. Chinese J. Polym. Sci, 2019, 37(3): 243-252. doi: 10.1007/s10118-019-2192-5

    9. [9]

      Jing WangYing WuZheng-ping Liu . A Facile and Highly Efficient Protocol for Synthesis of Poly(ether sulfone)s in Ionic Liquid/Zwitterion. Chinese J. Polym. Sci, 2016, 34(8): 981-990. doi: 10.1007/s10118-016-1818-0

    10. [10]

      Long ChenXiao WuXiao-Fang ZhangJian-Ming Zhang . Enhanced Reproducibility of Positive Temperature Coefficient Effect of CB/HDPE/PVDF Composites with the Addition of Ionic Liquid. Chinese J. Polym. Sci, 2021, 39(2): 228-236. doi: 10.1007/s10118-020-2475-x

    11. [11]

      Xiao-Jing LvLi-Bin XuLiang QianYuan-Yuan YangZhi-Yi XuJin LiCheng Zhang . A Conjugated Copolymer Bearing Imidazolium-based Ionic Liquid: Electrochemical Synthesis and Electrochromic Properties. Chinese J. Polym. Sci, 2021, 39(5): 537-544. doi: 10.1007/s10118-021-2525-z

    12. [12]

      Jin-Long ZhangJun-Yan TanXin-Hua WanJie Zhang . A Luminescent Thermometer Based on Linearly Thermo-responsive Copolymer and Polyoxometalates. Chinese J. Polym. Sci, 2019, 37(11): 1113-1118. doi: 10.1007/s10118-019-2287-z

    13. [13]

      Yu LinYong-gang ShangguanBi-wei QiuWen-wen YuFeng ChenZhen-wu GuoQiang Zheng . Effects of Chain Entanglement on Liquid-Liquid Phase Separation Behavior of LCST-type Polymer Blends: Cloud Point and Decomposition Rate. Chinese J. Polym. Sci, 2015, 33(6): 869-879. doi: 10.1007/s10118-015-1637-8

    14. [14]

      Xin PengTian-qi LiuCong ShangChen JiaoHui-liang Wang . Mechanically Strong Janus Poly(N-isopropylacrylamide)/Graphene Oxide Hydrogels as Thermo-responsive Soft Robots. Chinese J. Polym. Sci, 2017, 35(10): 1268-1275. doi: 10.1007/s10118-017-1970-1

    15. [15]

      Yang BaiFang-Yuan XieWei Tian . Controlled Self-assembly of Thermo-responsive Amphiphilic H-shaped Polymer for Adjustable Drug Release. Chinese J. Polym. Sci, 2018, 36(3): 406-416. doi: 10.1007/s10118-018-2086-y

    16. [16]

      Wei-guo YaoLi-qin WangDa-yong HeShi-chun JiangLi-jia AnHui-xuan Zhang . TOUGHENING OF POLYCARBONATE WITH PBA-PMMA CORE-SHELL PARTICLES. Chinese J. Polym. Sci, 2005, 23(3): 337-340.

    17. [17]

      Deng-Zhou ZhangYong-Yuan RenYin HuLiang LiFeng Yan . Ionic Liquid/Poly(ionic liquid)-based Semi-solid State Electrolytes for Lithium-ion Batteries. Chinese J. Polym. Sci, 2020, 38(5): 506-513. doi: 10.1007/s10118-020-2390-1

    18. [18]

      YAN XinXU XiaolongZHANG BaozhenYAO ShurenQIAN Baogong . DMS AND 13C NMR STUDIES ON THE COMPATIBILITY AND DYNAMICS OF LATEX BIDIRECTIONAL IPNS AND LATEX IPN OF PVAc/PBA. Chinese J. Polym. Sci, 1993, 11(1): 84-91.

    19. [19]

      Dong-xia HuoXian-yong YuanDa-zhuang LiuLi ZhangFang Wang . EFFECT OF THE PHASE STRUCTURE EVOLUTION ON THE PROPERTIES OF FILMS FORMED FROM PBA/P(St-co-MMA) COMPOSITE LATEX. Chinese J. Polym. Sci, 2008, 26(1): 39-45.

    20. [20]

      . A QUICK AND GREEN IONIC LIQUID-MEDIATED APPROACH FOR THE SYNTHESIS OF HIGH-PERFORMANCE, ORGANOSOLUBLE AND THERMALLY STABLE POLYIMIDES. Chinese J. Polym. Sci, 2013, 31(4): 679-690. doi: 10.1007/s10118-013-1258-z

Article Metrics
  • PDF Downloads(1)
  • Abstract views(531)
  • HTML views(230)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return