Citation: Zhang, L. L.; Miao, W. K.; Ren, L. J.; Yan, Y. K.; Wang, W. Visualization of two-dimensional single chains of hybrid polyelectrolytes on solid surface. Chinese J. Polym. Sci. doi: 10.1007/s10118-021-2520-4 shu

Visualization of Two-dimensional Single Chains of Hybrid Polyelectrolytes on Solid Surface

  • Corresponding author: Wei Wang, E-mail:
  • Received Date: 2020-09-20
    Available Online: 2020-11-16


  • The polyacidic character of polyoxometalate (POM) clusters endows high ionic conductivity, making these clusters good candidates for solar and fuel cells. Covalent bonding of clusters to polymer chains creates poly(POM)s that are polyelectrolytes with both cluster functions and polymer performance. Thus, solution-processable poly(POM)s are expected to be used as key materials in advanced devices. Further understanding of poly(POM)s will optimize the preparation process and improve device performance. Herein, we report a study of the first linear poly(POM)s by directly visualizing the chains using scanning transmission electron microscopy. Compared with traditional polymers, individual clusters of poly(POM)s can be directly visualized because of the resistance to electron-beam damage and the high contrast of the tungsten POM pendants. Thus, cluster aggregates with diverse shapes were observed. Counting the number of clusters in the aggregates allowed the degree of polymerization and molecular weight distribution to be determined, and studying the aggregate shapes revealed the presence of a curved semi-rigid chain in solution. Further study of shape diversity revealed that strong interactions between clusters determine the diverse chain shapes formed during solution processing. Fundamental insight is critical to understanding the formation of poly(POM) films from solutions as key functional materials, especially for fuel and solar cells.
  • 加载中
    1. [1]

      González-Moraga, G. Cluster chemistry: introduction to the chemistry of transition metal and main group element molecular clusters. Springer-Verlag, Berlin and Heidelberg, 1993.

    2. [2]

      Fehlner, T.; Halet, J. F.; Saillard, J. Y. Molecular clusters: a bridge to solid-state chemistry. Cambridge University Press, Cambridge, 2007.

    3. [3]

      Jin, R. C.; Zhu, Y.; Qian, H. F. Quantum-sized gold nanoclusters: bridging the gap between organometallics and nanocrystals. Chem. Eur. J. 2011, 17, 6584−6593. doi: 10.1002/chem.201002390

    4. [4]

      Jin, R. C.; Zeng, C. J.; Zhou, M.; Chen, Y. X. Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem. Rev. 2016, 116, 10346−10413. doi: 10.1021/acs.chemrev.5b00703

    5. [5]

      Chakraborty, I.; Pradeep, T. Atomically precise clusters of noble metals: emerging link between atoms and nanoparticles. Chem. Rev. 2017, 117, 8208−8271. doi: 10.1021/acs.chemrev.6b00769

    6. [6]

      Claridge, S. A.; Castleman, A. W. Jr.; Khanna, S. N.; Murray, C. B.; Sen, A.; Weiss, P. S. Cluster-assembled materials. ACS Nano 2009, 3, 244−255. doi: 10.1021/nn800820e

    7. [7]

      Pinkard, A.; Champsaur, A. M.; Roy, X. Molecular clusters: nanoscale building blocks for solid-state materials. Acc. Chem. Res. 2018, 51, 919−929. doi: 10.1021/acs.accounts.8b00016

    8. [8]

      Li, S.; Wang, Z. Y.; Gao, G. G.; Li, B.; Luo, P.; Kong, Y. J.; Liu, H.; Zang, S. Q. Smart transformation of a polyhedral oligomeric silsesquioxane shell controlled by thiolate silver(I) nanocluster core in cluster@clusters dendrimers. Angew. Chem. Int. Ed. 2018, 57, 12775−12779. doi: 10.1002/anie.201807548

    9. [9]

      Kickelbick, G.; Schubert, U. Inorganic clusters in organic polymers and the use of polyfunctional inorganic compounds as polymerization initiators. Monatshefte für Chemie 2001, 132, 13−30. doi: 10.1007/s007060170141

    10. [10]

      Schubert, U. Polymers reinforced by covalently bonded inorganic clusters. Chem. Mater. 2001, 13, 3487−3494. doi: 10.1021/cm001258r

    11. [11]

      Kickelbick, G. Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Prog. Polym. Sci. 2003, 28, 83−114. doi: 10.1016/S0079-6700(02)00019-9

    12. [12]

      Schubert, U. Cluster-based inorganic-organic hybrid materials. Chem. Soc. Rev. 2011, 40, 575−582. doi: 10.1039/C0CS00009D

    13. [13]

      Elias, H. G. An introduction to polymer science. VCH, Weiheim, 1997.

    14. [14]

      Flory, P. J. Principles of polymer chemistry. Cornell University Press, Ithaca, NY, 1953.

    15. [15]

      Kumaki, J.; Nishikawa, Y.; Hashimoto, T. Visualization of single-chain conformations of a synthetic polymer with atomic force microscopy. J. Am. Chem. Soc. 1996, 118, 3321−3322. doi: 10.1021/ja9538593

    16. [16]

      Sugihara, K.; Kumaki, J. Visualization of two-dimensional single chain conformations solubilized in a miscible polymer blend monolayer by atomic force microscopy. J. Phys. Chem. B 2012, 116, 6561−6568. doi: 10.1021/jp303063c

    17. [17]

      Wu, J.; Lieser, G.; Wegner, G. Direct imaging of individual shape-persistent macromolecules and their interaction by TEM. Adv. Mater. 1996, 8, 151−154. doi: 10.1002/adma.19960080211

    18. [18]

      Lee, J. K.; Bulut, I.; Rickhaus, M.; Sheng, Y.; Li, X.; Han, G. G. D.; Briggs, G. A. D.; Anderson, H. L.; Warner, J. H. Metal atom markers for imaging epitaxial molecular self-assembly on graphene by scanning transmission electron microscopy. ACS Nano 2019, 13, 7252−7260. doi: 10.1021/acsnano.9b02906

    19. [19]

      Percec, V.; Ahn, C. H.; Ungar, G.; Yeardley, D. J. P.; Möller, M.; Sheiko, S. S. Controlling polymer shape through the self-assembly of dendritic side-groups. Nature 1998, 391, 161−164. doi: 10.1038/34384

    20. [20]

      Stocker, W.; Schürmann, B. L.; Rabe, J. P.; Förster, S.; Lindner, P.; Neubert, I.; Schlüter, A. D. Nanocylinder: shape control through implementation of steric strain. Adv. Mater. 1998, 10, 793−797. doi: 10.1002/(SICI)1521-4095(199807)10:10<793::AID-ADMA793>3.0.CO;2-F

    21. [21]

      Frauenrath, H. Dendronized polymers—building a new bridge from molecules to nanoscopic objects. Prog. Polym. Sci. 2005, 30, 325−384. doi: 10.1016/j.progpolymsci.2005.01.011

    22. [22]

      Sheiko, S. S.; Sumerlin, B. S.; Matyjaszewski, K. Cylindrical molecular brushes: synthesis, characterization, and properties. Prog. Polym. Sci. 2008, 33, 759−785. doi: 10.1016/j.progpolymsci.2008.05.001

    23. [23]

      Lyu, X. L.; Pan, H. B.; Shen, Z. H.; Fan, X. H. Self-assembly and properties of block copolymers containing mesogen-jacketed liquid crystalline polymers as rod blocks. Chinese J. Polym. Sci. 2018, 36, 811−821. doi: 10.1007/s10118-018-2115-x

    24. [24]

      Messmer, D.; Böttcher, C.; Yu, H.; Halperin, A.; Binder, K.; Kröger, M.; Schlüter, A. D. 3D conformations of thick synthetic polymer chains observed by cryogenic electron microscopy. ACS Nano 2019, 13, 3466−3473. doi: 10.1021/acsnano.8b09621

    25. [25]

      Midgley, P. A.; Weyland, M. 3D Electron microscopy in the physical sciences: the development of Z-contrast and EFTEM tomography. Ultramicroscopy 2003, 96, 413−431. doi: 10.1016/S0304-3991(03)00105-0

    26. [26]

      Kübel, C.; Voigt, A.; Schoenmakers, R.; Otten, M.; Su, D.; Lee, T. C.; Carlsson, A.; Bradley, J. Recent advances in electron tomography: TEM and HAADF-STEM tomography for materials science and semiconductor applications. Microsc. Microanal. 2005, 11, 378−400. doi: 10.1017/S1431927605050361

    27. [27]

      Midgley, P. A.; Dunin-Borkowski, R. E. Electron tomography and holography in materials science. Nat. Mater. 2009, 8, 271−280. doi: 10.1038/nmat2406

    28. [28]

      Hill, C. L. Special thematic issue on polyoxometalates. Chem. Rev. 1998, 98, 1−390. doi: 10.1021/cr960395y

    29. [29]

      Peng, Z. H. Rational synthesis of covalently bonded organic-inorganic hybrids. Angew. Chem. Int. Ed. 2004, 43, 930−935. doi: 10.1002/anie.200301682

    30. [30]

      Qi, W.; Wu, L. X. Polyoxometalate/polymer hybrid materials: fabrication and properties. Polym. Int. 2009, 58, 1217−1225. doi: 10.1002/pi.2654

    31. [31]

      Wu, H.; Yang, H. K.; Wang, W. Polyoxometalate/polymer hybrid materials: fabrication and properties. New J. Chem. 2016, 40, 886−897. doi: 10.1039/C5NJ01257K

    32. [32]

      Yan, J.; Zheng, X. W.; Yao, J. H.; Xu, P.; Miao, Z. L.; Li, J. L.; Lv, Z. D.; Zhang, Q. Y.; Yan, Y. Metallopolymers from organically modified polyoxometalates (MOMPs): a review. J. Organometal. Chem. 2019, 884, 1−16. doi: 10.1016/j.jorganchem.2019.01.012

    33. [33]

      Judeinstein, P. Synthesis and properties of polyoxometalates based inorganic-organic polymers. Chem. Mater. 1992, 4, 4−7. doi: 10.1021/cm00019a002

    34. [34]

      Mayer, C. R.; Cabuil, V.; Lalot, T.; Thouvenot, R. Incorporation of magnetic nanoparticles in new hybrid networks based on heteropolyanions and polyacrylamide. Angew. Chem. Int. Ed. 1999, 38, 3672−3675. doi: 10.1002/(SICI)1521-3773(19991216)38:24<3672::AID-ANIE3672>3.0.CO;2-#

    35. [35]

      Mayer, C. R.; Thouvenot, R. New hybrid covalent networks based on polyoxometalates: Part 1. Hybrid networks based on poly(ethyl methacrylate) chains covalently cross-linked by heteropolyanions: synthesis and swelling properties. Chem. Mater. 2000, 12, 257−260. doi: 10.1021/cm991078l

    36. [36]

      Mayer, C. R.; Thouvenot, R. Hybrid hydrogels obtained by the copolymerization of acrylamide with aggregates of methacryloyl derivatives of polyoxotungstates. A comparison with polyacrylamide hydrogels with trapped aggregates. Macromolecules 2000, 33, 4433−4437. doi: 10.1021/ma991918h

    37. [37]

      Xu, B. B.; Lu, M.; Kang, J. H.; Wang, D. G.; Brown, J.; Peng, Z. H. Synthesis and optical properties of conjugated polymers clusters as side-chain pendants. Chem. Mater. 2005, 17, 2841−2851. doi: 10.1021/cm050188r

    38. [38]

      Horan, J. L.; Genupur, A.; Ren, H.; Sikora, B. J.; Kuo, M. C.; Meng, F. Q.; Dec, S. F.; Haugen, G. M.; Yandrasits, M. A.; Hamrock, S. J.; Frey, M. H.; M. Herring, A. Copolymerization of divinylsilyl-11-silicotungstic acid with butyl acrylate and hexanediol diacrylate: synthesis of a highly proton-conductive membrane for fuel-cell applications. ChemSusChem 2009, 2, 226−229. doi: 10.1002/cssc.200800237

    39. [39]

      Chakraborty, S.; Keightley, A.; Dusevich, V.; Wang, Y.; Peng, Z. H. Synthesis and optical properties of a rod-coil diblock copolymer with polyoxometalate clusters covalently attached to the coil block. Chem. Mater. 2010, 22, 3995−4006. doi: 10.1021/cm1007075

    40. [40]

      Carraro, M.; Fiorani, G.; Mognon, L.; Caneva, F.; Gardan, M.; Maccato, C.; Bonchio, M. Hybrid polyoxotungstates as functional comonomers in new cross-linked catalytic polymers for sustainable oxidation with hydrogen peroxide. Chem. Eur. J. 2012, 18, 13195−13202. doi: 10.1002/chem.201201849

    41. [41]

      Miao, W. K.; Yan, Y. K.; Wang, X. L.; Xiao, Y.; Ren, L. J.; Zheng, P.; Wang, C. H.; Ren, L. X.; Wang, W. Incorporation of polyoxometalates into polymers to create linear poly(polyoxometalate)s with catalytic function. ACS Macro Lett. 2014, 3, 211−215. doi: 10.1021/mz5000202

    42. [42]

      Tong, U S.; Chen, W.; Ritchie, C.; Wang, X. T.; Song, Y. F. Reversible light-driven polymerization of polyoxometalate tethered with coumarin molecules. Chem. Eur. J. 2014, 20, 1500−1504. doi: 10.1002/chem.201303933

    43. [43]

      Horan, J. L.; Lingutla, A.; Ren, H.; Kuo, M. C.; Sachdeva, S.; Yang, Y.; Seifert, S.; Greenlee, L. F.; Yandrasits, M. A.; Hamrock, S. J.; Frey, M. H.; Herring, A. M. Fast proton conduction facilitated by minimum water in a series of divinylsilyl-11-silicotungstic acid-co-butyl acrylate-co-hexanediol diacrylate polymers. J. Phys. Chem. C 2014, 118, 135−144. doi: 10.1021/jp4089657

    44. [44]

      Miao, W. K.; Yi, A.; Yan, Y. K.; Ren, L. J.; Chen, D.; Wang, C. H.; Wang, W. A poly(polyoxometalate)-b-poly(hexanoic acid) block copolymer: synthesis, self-assembled micelles and catalytic activity. Polym. Chem. 2015, 6, 7418−7426. doi: 10.1039/C5PY00855G

    45. [45]

      Cheng, Q.; Miao, W. K.; Yan, Y. K.; Wang, W. Synthesis of solution-processable block and random copolymers of poly(polyoxometalate norbornene) and poly(hexanoic acid norbornene) and study on their catalytic activity. Acta Polymerica Sinica (in Chinese) 2017, 1159−1168.

    46. [46]

      Guan, W.; Wang, G.; Ding, J.; Li, B.; Wu, L. A Supramolecular approach of modified polyoxometalate polymerization and visualization of a single polymer chain. Chem. Commun. 2019, 55, 10788−10791. doi: 10.1039/C9CC05056F

    47. [47]

      Zhang, L. L.; Miao, W. K.; Ren, L. J.; Yan, Y. K.; Lin, Y.; Wang, W. Twining poly(polyoxometalate) chains into nanoropes. Chem. Eur. J. 2019, 25, 13396−13401. doi: 10.1002/chem.201902875

    48. [48]

      Vasilopoulou, M.; Douvas, A. M.; Palilis, L. C.; Kennou, S.; Argitis, P. Old metal oxide clusters in new applications: spontaneous reduction of Keggin and Dawson polyoxometalate layers by a metallic electrode for improving efficiency in organic optoelectronics. J. Am. Chem. Soc. 2015, 137, 6844−6865. doi: 10.1021/jacs.5b01889

    49. [49]

      Kolesov, V. A.; Fuentes-Hernandez, C.; Chou, W. F.; Aizawa, N.; Larrain, F. A.; Wang, M.; Perrotta, A.; Choi, S.; Graham, S.; Bazan, G. C.; Nguyen, T. Q.; Marder, S. R.; Kippelen, B. Solution-based electrical doping of semiconducting polymer films over a limited depth. Nat. Mater. 2017, 16, 474−481. doi: 10.1038/nmat4818

    50. [50]

      Hou, Y. Q.; Hill, C. L. Ydrolytically stable organic triester capped polyoxometalates with catalytic oxygenation activity of formula [RC(CH2O)3V3P2W15O59]6 (R = CH3, NO2, CH2OH). J. Am. Chem. Soc. 1993, 115, 11823−11830. doi: 10.1021/ja00078a022

    51. [51]

      Hu, M. B.; Hou, Z. Y.; Hao, W. Q.; Xiao, Y.; Yu, W.; Ma, C.; Ren, L. J.; Zheng, P.; Wang, W. POM-organic-POSS cocluster: creating a dumbbell-shaped hybrid molecule for programming hierarchical supramolecular nanostructures. Langmuir 2013, 29, 5714−4722. doi: 10.1021/la400802p

  • 加载中
    1. [1]

      Yu MaoXiao-a ZhangHai-peng XuWang-zhang YuanHui ZhaoAn-jun QinJing-zhi SunBen Zhong Tang . SYNTHESIS OF POLYELECTROLYTIC POLYACETYLENE DERIVATIVES BY QUATERNIZATION OF POLY(PYRIDYLACETYLENE). Chinese J. Polym. Sci, doi: 10.1007/s10118-011-1032-z

    2. [2]

      Xiao-peng XiongQi-rong KeShi-qin Zhu . Introduction of a Reliable Method for Determination of Intrinsic Viscosity for Any Polymer with High Precision. Chinese J. Polym. Sci, doi: 10.1007/s10118-014-1388-y

    3. [3]

      Kai LiuChun-Ming YangBo-Ming YangLan ZhangWen-Chao HuangXiao-Ping OuyangFu-Gang QiNie ZhaoFeng-Gang Bian . Directed Self-assembly of Vertical PS-b-PMMA Nanodomains Grown on Multilayered Polyelectrolyte Films. Chinese J. Polym. Sci, doi: 10.1007/s10118-019-2315-z

    4. [4]


    5. [5]


    6. [6]

      Zerrin AltıntaşEmrah ÇakmakçıM. Vezir KahramanNilhan Kayaman-Apohan . Thioether Functional Chain Extender for Thermoplastic Polyurethanes. Chinese J. Polym. Sci, doi: 10.1007/s10118-015-1636-9

    7. [7]

      Zhong-chuan PengQian LiHua-yi LiYou-liang Hu . Layered Nanoparticles Modified by Chain End Functional PE and Their Nanocomposites with PE. Chinese J. Polym. Sci, doi: 10.1007/s10118-017-1931-8

    8. [8]


    9. [9]


    10. [10]

      Hao-yu ZhangXin-yang LiXiao-gong Wang . NANOMECHANICAL PROPERTIES OF POLYANILINE AND AZO POLYELECTROLYTE MULTILAYER FILMS. Chinese J. Polym. Sci, doi: 10.1007/s10118-010-9066-1

    11. [11]


    12. [12]

      Bin LiBo YuXiao-long WangFeng GuoFeng Zhou . Correlation between Conformation Change of Polyelectrolyte Brushes and Lubrication. Chinese J. Polym. Sci, doi: 10.1007/s10118-015-1564-8

    13. [13]

      Yan-hu XueYan-hui WangYan-di FanHe-ran YangTao TangShu-qin BoXiang-ling Ji . Microstructure Characterization of Short-chain Branching Polyethylene with Differential Scanning Calorimetry and Successive Self-nucleation/Annealing Thermal Fractionation. Chinese J. Polym. Sci, doi: 10.1007/s10118-014-1444-7

    14. [14]

      Xin-jun ZhangFei YuanYong-liang WangZi-jian ZhangWei Wang . A CONFORMATION STUDY OF POLYELECTROLYTE-DENDRITIC SURFACTANT COMPLEXES IN DILUTE SOLUTIONS. Chinese J. Polym. Sci, doi: 10.1007/s10118-010-9037-6

    15. [15]


    16. [16]

      Hong-Ge TanGang XiaLi-Xiang LiuXiao-Hui NiuQing-Hai Hao . Surface Patterns of a Tetrahedral Polyelectrolyte Brush Induced by Grafting Density and Charge Fraction. Chinese J. Polym. Sci, doi: 10.1007/s10118-020-2351-8

    17. [17]

      Qing-Hai HaoZhen ZhengGang XiaHong-Ge Tan . Brownian Dynamics Simulations of Rigid Polyelectrolyte Chains Grafting to Spherical Colloid. Chinese J. Polym. Sci, doi: 10.1007/s10118-018-2042-x

    18. [18]


    19. [19]

      Xuan-ji YuWei-hua WangLi LiXu-hong GuoZhi-min ZhouFu-chen Wang . Analysis of Spherical Polyelectrolyte Brushes by Small Angle X-ray Scattering. Chinese J. Polym. Sci, doi: 10.1007/s10118-014-1456-3

    20. [20]

      Xin-jun ZhaoGuo-liang Zhang . A Theoretical Investigation on the pH-induced Switching of Mixed Polyelectrolyte Brushes. Chinese J. Polym. Sci, doi: 10.1007/s10118-014-1429-6

Article Metrics
  • PDF Downloads(0)
  • Abstract views(375)
  • HTML views(218)
  • Cited By(0)

通讯作者: 陈斌,
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索


DownLoad:  Full-Size Img  PowerPoint