Citation: Liang, S. F.; Nie, C.; Yan, J.; Zhang, Q. J.; Wu, S. Photoinduced reversible solid-to-liquid transitions and directional photofluidization of azobenzene-containing polymers. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-021-2519-x doi: 10.1007/s10118-021-2519-x shu

Photoinduced Reversible Solid-to-Liquid Transitions and Directional Photofluidization of Azobenzene-containing Polymers

Figures(9)

  • Photoinduced reversible liquefaction and solidification of polymers enable processing and healing of polymers with light. Some azobenzene-containing polymers (azopolymers) exhibit two types of photoinduced liquefaction properties: photoinduced reversible solid-to-liquid transition and directional photofluidization. For the first type, light switches the glass transition temperature (Tg) values of azopolymers and induces reversible solid-to-liquid transitions. For the second type, polarized light guides solid azopolymers to flow along the polarization direction. Here, we compare the two types of photoliquefaction and discuss their mechanisms. Recent progresses and applications based on photoliquefaction of azopolymers are also highlighted.
  • 加载中
    1. [1]

      Lee, S.; Kang, H. S.; Park, J. K. Directional photofluidization lithography: micro/nanostructural evolution by photofluidic motions of azobenzene materials. Adv. Mater. 2012, 24, 2069−2103. doi: 10.1002/adma.201104826

    2. [2]

      Kravchenko, A.; Shevchenko, A.; Ovchinnikov, V.; Priimagi, A.; Kaivola, M. Optical interference lithography using azobenzene-functionalized polymers for micro- and nanopatterning of silicon. Adv. Mater. 2011, 23, 4174−4177. doi: 10.1002/adma.201101888

    3. [3]

      Yang, B.; Cai, F.; Huang, S.; Yu, H. Athermal and soft multi-nanopatterning of azopolymers: phototunable mechanical properties. Angew. Chem. Int. Ed. 2020, 59, 4035−4042. doi: 10.1002/anie.201914201

    4. [4]

      Yu, H.; Ikeda, T. Photocontrollable liquid-crystalline actuators. Adv. Mater. 2011, 23, 2149−2180. doi: 10.1002/adma.201100131

    5. [5]

      Pang, X.; Lv, J. A.; Zhu, C.; Qin, L.; Yu, Y. Photodeformable azobenzene-containing liquid crystal polymers and soft actuators. Adv. Mater. 2019, 31, 1904224. doi: 10.1002/adma.201904224

    6. [6]

      Ge, F.; Zhao, Y. Microstructured actuation of liquid crystal polymer networks. Adv. Funct. Mater. 2019, 30, 1901890.

    7. [7]

      Jiang, Z. C.; Xiao, Y. Y.; Yin, L.; Han, L.; Zhao, Y. "Self-lockable" liquid crystalline Diels-Alder dynamic network actuators with room temperature programmability and solution reprocessability. Angew. Chem. Int. Ed. 2020, 59, 4925−4931. doi: 10.1002/anie.202000181

    8. [8]

      Qin, C.; Feng, Y.; Luo, W.; Cao, C.; Hu, W.; Feng, W. A supramolecular assembly of cross-linked azobenzene/polymers for a high-performance light-driven actuator. J. Mater. Chem. A 2015, 3, 16453−16460. doi: 10.1039/C5TA01543J

    9. [9]

      Priimagi, A.; Shevchenko, A. Azopolymer-based micro- and nanopatterning for photonic applications. J. Polym. Sci., Part B: Polym. Phys. 2014, 52, 163−182. doi: 10.1002/polb.23390

    10. [10]

      Dong, L.; Feng, Y.; Wang, L.; Feng, W. Azobenzene-based solar thermal fuels: design, properties, and applications. Chem. Soc. Rev. 2018, 47, 7339−7368. doi: 10.1039/C8CS00470F

    11. [11]

      Saydjari, A. K.; Weis, P.; Wu, S. Spanning the solar spectrum: azopolymer solar thermal fuels for simultaneous UV and visible light storage. Adv. Energy Mater. 2017, 7, 1601622. doi: 10.1002/aenm.201601622

    12. [12]

      Ikeda, T.; Tsutsumi, O. Optical switching and image storage by means of azobenzene liquid-crystal films. Science 1995, 268, 1873−1875. doi: 10.1126/science.268.5219.1873

    13. [13]

      Wu, S.; Duan, S.; Lei, Z.; Su, W.; Zhang, Z.; Wang, K.; Zhang, Q. Supramolecular bisazopolymers exhibiting enhanced photoinduced birefringence and enhanced stability of birefringence for four-dimensional optical recording. J. Mater. Chem. 2010, 20, 5202−5209. doi: 10.1039/c000073f

    14. [14]

      Zhou, H.; Xue, C.; Weis, P.; Suzuki, Y.; Huang, S.; Koynov, K.; Auernhammer, G. K.; Berger, R.; Butt, H. J.; Wu, S. Photoswitching of glass transition temperatures of azobenzene-containing polymers induces reversible solid-to-liquid transitions. Nat. Chem. 2017, 9, 145−151. doi: 10.1038/nchem.2625

    15. [15]

      Xu, W. C.; Sun, S.; Wu, S. Photoinduced reversible solid-to-liquid transitions for photoswitchable materials. Angew. Chem. Int. Ed. 2019, 58, 9712−9740. doi: 10.1002/anie.201814441

    16. [16]

      Ahmed, R.; Priimagi, A.; Faul, C. F.; Manners, I. Redox-active, organometallic surface-relief gratings from azobenzene-containing polyferrocenylsilane block copolymers. Adv. Mater. 2012, 24, 926−31. doi: 10.1002/adma.201103793

    17. [17]

      Morikawa, Y.; Nagano, S.; Watanabe, K.; Kamata, K.; Iyoda, T.; Seki, T. Optical alignment and patterning of nanoscale microdomains in a block copolymer thin film. Adv. Mater. 2006, 18, 883−886. doi: 10.1002/adma.200502573

    18. [18]

      Zettsu, N.; Ogasawara, T.; Mizoshita, N.; Nagano, S.; Seki, T. Photo-triggered surface relief grating formation in supramolecular liquid crystalline polymer systems with detachable azobenzene unit. Adv. Mater. 2008, 20, 516−521. doi: 10.1002/adma.200701110

    19. [19]

      Gao, J.; He, Y. N.; Liu, F.; Zhang, X.; Wang, Z. Q.; Wang, X. G. Azobenzene-containing supramolecular side-chain polymer films for laser-induced surface relief gratings. Chem. Mater. 2007, 19, 3877−3881. doi: 10.1021/cm0707197

    20. [20]

      Zhou, Y.; Chen, M.; Ban, Q.; Zhang, Z.; Shuang, S.; Koynov, K.; Butt, H. J.; Kong, J.; Wu, S. Light-switchable polymer adhesive based on photoinduced reversible solid-to-liquid transitions. ACS. Macro Lett. 2019, 8, 968−972. doi: 10.1021/acsmacrolett.9b00459

    21. [21]

      Akiyama, H.; Fukata, T.; Yamashita, A.; Yoshida, M.; Kihara, H. Reworkable adhesives composed of photoresponsive azobenzene polymer for glass substrates. J. Adhes. 2016, 93, 823−830.

    22. [22]

      Ito, S.; Yamashita, A.; Akiyama, H.; Kihara, H.; Yoshida, M. Azobenzene-based (meth)acrylates: controlled radical polymerization, photoresponsive solid-liquid phase transition behavior, and application to reworkable adhesives. Macromolecules 2018, 51, 3243−3253. doi: 10.1021/acs.macromol.8b00156

    23. [23]

      Ito, S.; Akiyama, H.; Sekizawa, R.; Mori, M.; Yoshida, M.; Kihara, H. Light-induced reworkable adhesives based on ABA-type triblock copolymers with azopolymer termini. ACS Appl. Mater. Interfaces 2018, 10, 32649−32658. doi: 10.1021/acsami.8b09319

    24. [24]

      Chen, M.; Yao, B.; Kappl, M.; Liu, S.; Yuan, J.; Berger, R.; Zhang, F.; Butt, H. J.; Liu, Y.; Wu, S. Entangled azobenzene-containing polymers with photoinduced reversible solid-to-liquid transitions for healable and reprocessable photoactuators. Adv. Funct. Mater. 2019, 30, 1906752.

    25. [25]

      Xu, B.; Zhu, C.; Qin, L.; Wei, J.; Yu, Y. Light-directed liquid manipulation in flexible bilayer microtubes. Small 2019, 15, 1901847. doi: 10.1002/smll.201901847

    26. [26]

      Yue, Y.; Norikane, Y.; Azumi, R.; Koyama, E. Light-induced mechanical response in crosslinked liquid-crystalline polymers with photoswitchable glass transition temperatures. Nat. Commun. 2018, 9, 1−8. doi: 10.1038/s41467-017-02088-w

    27. [27]

      Lin, K. T.; Chen, Y. J.; Huang, M. R.; Karapala, V. K.; Ho, J. H.; Chen, J. T. Light-induced nanowetting: erasable and rewritable polymer nanoarrays via solid-to-liquid transitions. Nano Lett. 2020, 8, 5853−5859.

    28. [28]

      Natansohn, A.; Rochon, P. Photoinduced motions in azo-containing polymers. Chem. Rev. 2002, 102, 4139−4175. doi: 10.1021/cr970155y

    29. [29]

      Weis, P.; Tian, W.; Wu, S. Photoinduced liquefaction of azobenzene-containing polymers. Chem. Eur. J. 2018, 24, 6494−6505. doi: 10.1002/chem.201704162

    30. [30]

      Rau, H. in Photochemistry and photophysics. Vol. II, Ed. by Rabek, J. F.; Scott, G. W. CRC, Boca Raton, 1990, p. 119−141.

    31. [31]

      Pipertzis, A.; Hess, A.; Weis, P.; Papamokos, G.; Koynov, K.; Wu, S.; Floudas, G. Multiple segmental processes in polymers with cis and trans stereoregular configurations. ACS Macro Lett. 2017, 7, 11−15.

    32. [32]

      Hartley, G. S. J. N. The cis-form of azobenzene. Nature 1937, 140, 281−281.

    33. [33]

      Okui, Y.; Han, M. Rational design of light-directed dynamic spheres. Chem. Commun. 2012, 48, 11763−11765. doi: 10.1039/c2cc36443c

    34. [34]

      Akiyama, H.; Yoshida, M. Photochemically reversible liquefaction and solidification of single compounds based on a sugar alcohol scaffold with multi azo-arms. Adv. Mater. 2012, 24, 2353−2356. doi: 10.1002/adma.201104880

    35. [35]

      Uchida, E.; Sakaki, K.; Nakamura, Y.; Azumi, R.; Hirai, Y.; Akiyama, H.; Yoshida, M.; Norikane, Y. Control of the orientation and photoinduced phase transitions of macrocyclic azobenzene. Chem. Eur. J. 2013, 19, 17391−17397. doi: 10.1002/chem.201302674

    36. [36]

      Hoshino, M.; Uchida, E.; Norikane, Y.; Azumi, R.; Nozawa, S.; Tomita, A.; Sato, T.; Adachi, S.; Koshihara, S. Y. Crystal melting by light: X-ray crystal structure analysis of an azo crystal showing photoinduced crystal-melt transition. J. Am. Chem. Soc. 2014, 136, 9158−9164. doi: 10.1021/ja503652c

    37. [37]

      Norikane, Y.; Uchida, E.; Tanaka, S.; Fujiwara, K.; Koyama, E.; Azumi, R.; Akiyama, H.; Kihara, H.; Yoshida, M. Photoinduced crystal-to-liquid phase transitions of azobenzene derivatives and their application in photolithography processes through a solid-liquid patterning. Org. Lett. 2014, 16, 5012−5015. doi: 10.1021/ol502223u

    38. [38]

      Xu, G.; Li, S.; Liu, C.; Wu, S. Photoswitchable adhesives using azobenzene-containing materials. Chem. Asian J. 2020, 15, 547−554. doi: 10.1002/asia.201901655

    39. [39]

      Weis, P.; Hess, A.; Kircher, G.; Huang, S.; Auernhammer, G. K.; Koynov, K.; Butt, H. J.; Wu, S. Effects of spacers on photoinduced reversible solid-to-liquid transitions of azobenzene-containing polymers. Chem. Eur. J. 2019, 25, 10946−10953. doi: 10.1002/chem.201902273

    40. [40]

      Shin, J.; Sung, J.; Kang, M.; Xie, X.; Lee, B.; Lee, K. M.; White, T. J.; Leal, C.; Sottos, N. R.; Braun, P. V.; Cahill, D. G. Light-triggered thermal conductivity switching in azobenzene polymers. Proc. Natl. Acad. Sci. USA 2019, 116, 5973−5978. doi: 10.1073/pnas.1817082116

    41. [41]

      Kuenstler, A. S.; Clark, K. D.; de Alaniz, J. R.; Hayward, R. C. Reversible actuation via photoisomerization-induced melting of a semicrystalline poly(azobenzene). ACS Macro Lett. 2020, 9, 902−909. doi: 10.1021/acsmacrolett.0c00328

    42. [42]

      Seki, T. Meso- and microscopic motions in photoresponsive liquid crystalline polymer films. Macromol. Rapid Commun. 2014, 35, 271−290. doi: 10.1002/marc.201300763

    43. [43]

      Kim, D. Y.; Tripathy, S. K.; Li, L.; Kumar, J. Laser-induced holographic surface relief gratings on nonlinear optical polymer films. Appl. Phys. Lett. 1995, 66, 1166−1168. doi: 10.1063/1.113845

    44. [44]

      Rochon, P.; Batalla, E.; Natansohn, A. Optically induced surface gratings on azoaromatic polymer films. Appl. Phys. Lett. 1995, 66, 136−138. doi: 10.1063/1.113541

    45. [45]

      Li, Y.; He, Y.; Tong, X.; Wang, X. Photoinduced deformation of amphiphilic azo polymer colloidal spheres. J. Am. Chem. Soc. 2005, 127, 2402−2403. doi: 10.1021/ja0424981

    46. [46]

      Karageorgiev, P.; Neher, D.; Schulz, B.; Stiller, B.; Pietsch, U.; Giersig, M.; Brehmer, L. From anisotropic photo-fluidity towards nanomanipulation in the optical near-field. Nat. Mater. 2005, 4, 699−703. doi: 10.1038/nmat1459

    47. [47]

      Wang, J.; Wang, X.; He, Y. Fabrication of fluorescent surface relief patterns using AIE polymer through a soft lithographic approach. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 1838−1845. doi: 10.1002/polb.24086

    48. [48]

      Koskela, J. E.; Liljestrom, V.; Lim, J.; Simanek, E. E.; Ras, R. H.; Priimagi, A.; Kostiainen, M. A. Light-fuelled transport of large dendrimers and proteins. J. Am. Chem. Soc. 2014, 136, 6850−6853. doi: 10.1021/ja502623m

    49. [49]

      Gao, F.; Yao, Y.; Wang, W.; Wang, X.; Li, L.; Zhuang, Q.; Lin, S. Light-driven transformation of bio-inspired superhydrophobic structure via reconfigurable PAzoMA microarrays: from lotus leaf to rice leaf. Macromolecules 2018, 51, 2742−2749. doi: 10.1021/acs.macromol.8b00059

    50. [50]

      Kong, X.; Wang, X.; Luo, T.; Yao, Y.; Li, L.; Lin, S. Photomanipulated architecture and patterning of azopolymer array. ACS Appl. Mater. Interfaces 2017, 9, 19345−19353. doi: 10.1021/acsami.7b04273

    51. [51]

      Wang, W.; Yao, Y.; Luo, T.; Chen, L.; Lin, J.; Li, L.; Lin, S. Deterministic reshaping of breath figure arrays by directional photomanipulation. ACS Appl. Mater. Interfaces 2017, 9, 4223−4230. doi: 10.1021/acsami.6b14024

    52. [52]

      Huang, J.; Wu, S.; Beckemper, S.; Gillner, A.; Zhang, Q.; Wang, K. All-optical fabrication of ellipsoidal caps on azobenzene functional polymers. Opt. Lett. 2010, 35, 2711−2713. doi: 10.1364/OL.35.002711

    53. [53]

      Huang, J.; Beckemper, S.; Wu, S.; Shen, J.; Zhang, Q.; Wang, K.; Gillner, A. Light driving force for surface patterning on azobenzene-containing polymers. Phys. Chem. Chem. Phys. 2011, 13, 16150−16158. doi: 10.1039/c1cp21098j

    54. [54]

      Lee, S.; Shin, J.; Lee, Y. H.; Park, J. K. Fabrication of the funnel-shaped three-dimensional plasmonic tip arrays by directional photofluidization lithography. ACS Nano 2010, 4, 7175−7184. doi: 10.1021/nn1017507

    55. [55]

      Lee, S.; Shin, J.; Lee, Y. H.; Fan, S.; Park, J. K. Directional photofluidization lithography for nanoarchitectures with controlled shapes and sizes. Nano Lett. 2010, 10, 296−304. doi: 10.1021/nl903570c

    56. [56]

      Lee, S.; Kang, H. S.; Park, J. K. High-resolution patterning of various large-area, highly ordered structural motifs by directional photofluidization lithography: sub-30-nm line, ellipsoid, rectangle, and circle arrays. Adv. Funct. Mater. 2011, 21, 1770−1778. doi: 10.1002/adfm.201001927

    57. [57]

      Kang, H. S.; Kim, H. T.; Park, J. K.; Lee, S. Light-powered healing of a wearable electrical conductor. Adv. Funct. Mater. 2014, 24, 7273−7283. doi: 10.1002/adfm.201401666

    58. [58]

      Wang, W.; Du, C.; Wang, X.; He, X.; Lin, J.; Li, L.; Lin, S. Directional photomanipulation of breath figure arrays. Angew. Chem. Int. Ed. 2014, 53, 12116−12119. doi: 10.1002/anie.201407230

    59. [59]

      Wang, W.; Shen, D.; Li, X.; Yao, Y.; Lin, J.; Wang, A.; Yu, J.; Wang, Z. L.; Hong, S. W.; Lin, Z.; Lin, S. Light-driven shape-memory porous films with precisely controlled dimensions. Angew. Chem. Int. Ed. 2018, 57, 2139−2143. doi: 10.1002/anie.201712100

    60. [60]

      Saphiannikova, M.; Toshchevikov, V. Optical deformations of azobenzene polymers: orientation approach vs. photofluidization concept. J. Soc. Inf. Disp. 2015, 23, 146−153. doi: 10.1002/jsid.294

    61. [61]

      Vapaavuori, J.; Laventure, A.; Bazuin, C. G.; Lebel, O.; Pellerin, C. Submolecular plasticization induced by photons in azobenzene materials. J. Am. Chem. Soc. 2015, 137, 13510−13517. doi: 10.1021/jacs.5b06611

    62. [62]

      Teboul, V.; Rajonson, G. Breakdown of the scallop theorem for an asymmetrical folding molecular motor in soft matter. J. Chem. Phys. 2019, 150, 144502. doi: 10.1063/1.5086267

    63. [63]

      Ciobotarescu, S.; Hurduc, N.; Teboul, V. How does the motion of the surrounding molecules depend on the shape of a folding molecular motor? Phys. Chem. Chem. Phys. 2016, 18, 14654−14661. doi: 10.1039/C6CP00023A

    64. [64]

      Juan, M. L.; Plain, J.; Bachelot, R.; Royer, P.; Gray, S. K.; Wiederrecht, G. P. Multiscale model for photoinduced molecular motion in azo polymers. ACS Nano 2009, 3, 1573−1579. doi: 10.1021/nn900262e

    65. [65]

      Yager, K. G.; Barrett, C. J. in Light-induced nanostructure formation using azobenzene polymers. Vol. 0, Ed. by Nalwa, H. S. American Scientific, New York, 2006, p. 1−38.

    66. [66]

      Vapaavuori, J.; Mahimwalla, Z.; Chromik, R. R.; Kaivola, M.; Priimagi, A.; Barret, C. J. Nanoindentation study of light-induced softening of supramolecular and covalently functionalized azo polymers. J. Mater. Chem. C 2013, 1, 2806−2810.

    67. [67]

      Harrison, J. M.; Goldbaum, D.; Corkery, T. C.; Barret, C. J.; Chromik, R. R. Nanoindentation studies to separate thermal and optical effects in photo-softening of azo polymers. J. Mater. Chem. C 2015, 3, 995−1003. doi: 10.1039/C4TC02336F

    68. [68]

      Sorelli, L.; Fabbri, F.; Frech-Baronet, J.; Vu, A.; Fafard, M.; Gacoin, T.; Lahlil, K.; Martinelli, L.; Lassailly, Y.; Peretti, J. A closer look at the light-induced changes in the mechanical properties of azobenzene-containing polymers by statistical nanoindentation. J. Mater. Chem. C 2015, 3, 11055−11065. doi: 10.1039/C5TC01917F

    69. [69]

      Kumar, J.; Li, L.; Jiang, X. L.; Kim, D.; Lee, T. S.; Tripathy, S. Gradient force: the mechanism for surface relief grating formation in azobenzene functionalized polymers. Appl. Phys. Lett. 1998, 72, 2096. doi: 10.1063/1.121287

  • 加载中
    1. [1]

      Yi-Jun LiuDong LiuSi-Han LiHua-Qing LiangFang-Ming Zhu . Investigation on Viscoelasticity of Waterborne Polyurethane with Azobenzene-containing Pendant Groups under Ultraviolet and Visible-light Irradiation. Chinese J. Polym. Sci, doi: 10.1007/s10118-019-2289-x

    2. [2]

      Qing ZhaoJing-yu QianYing LiangZhi-cheng ZhongSong WangKe LiuWen-jing TianZai-fang Li . Synthesis and Properties of Novel Polymers Based on PD Electron-withdrawing Unit. Chinese J. Polym. Sci, doi: 10.1007/s10118-016-1738-z

    3. [3]

      Xiao-Qiu DouChang-Li ZhaoNabila MehwishPing LiChuan-Liang FengHolger Schönherr . Photoresponsive Supramolecular Hydrogel Co-assembled from Fmoc-Phe-OH and 4,4′-Azopyridine for Controllable Dye Release. Chinese J. Polym. Sci, doi: 10.1007/s10118-019-2223-2

    4. [4]

      Serife O. Hacioglu . Copolymerization of Azobenzene-bearing Monomer and 3,4-Ethylenedioxythiophene (EDOT): Improved Electrochemical Performance for Electrochromic Device Applications. Chinese J. Polym. Sci, doi: 10.1007/s10118-019-2306-0

    5. [5]

      Chun-Yan YuJia-Hui MuYun-Lei FuYun-Chao ZhangJi-Shu HanRui-Yang ZhaoJia ZhaoZi-Hao WangZhong-Cheng ZhaoWei-Jun LiFu-Sheng Liu . Azobenzene Based Photo-responsive Mechanical Actuator Fabricated by Intermolecular H-bond Interaction. Chinese J. Polym. Sci, doi: 10.1007/s10118-021-2504-4

    6. [6]

      Lin TangFu-xin LiangQian WangXiao-zhong QuBing-yin JiangZhen-zhong Yang . Polymer/Metal Segmental Janus Nanoparticles. Chinese J. Polym. Sci, doi: 10.1007/s10118-017-1946-1

    7. [7]

      Li-Wang SunHong LiXiao-Qin ZhangHe-Bei GaoMeng-Bo Luo . Identifying Conformation States of Polymer through Unsupervised Machine Learning. Chinese J. Polym. Sci, doi: 10.1007/s10118-020-2442-6

    8. [8]

      He-Bei GaoHong LiXiao-Qin ZhangXiang-Hong WangChao-Yang LiMeng-Bo Luo . Computer Simulation Study on Adsorption and Conformation of Polymer Chains Driven by External Force. Chinese J. Polym. Sci, doi: 10.1007/s10118-020-2491-x

    9. [9]

      Cheng-Huan XuJi-Ping WangWen-Bing Hu . Kinetic Monte Carlo Simulations of Polymer Cold Crystallization. Chinese J. Polym. Sci, doi: 10.1007/s10118-019-2222-3

    10. [10]

      Jia-Long WuChi ZhangWei QinDa-Ping QuanMing-Liang GeGuo-Dong Liang . Thermoresponsive Fluorescent Semicrystalline Polymers Decorated with Aggregation Induced Emission Luminogens. Chinese J. Polym. Sci, doi: 10.1007/s10118-019-2201-8

    11. [11]

      Ying LuYong-Feng Men . Initiation, Development and Stabilization of Cavities during Tensile Deformation of Semicrystalline Polymers. Chinese J. Polym. Sci, doi: 10.1007/s10118-018-2123-x

    12. [12]

      Raziyeh AkbarzadehHossein Dehghani . POLYROTAXANE WITH π-CONJUGATED PORPHYRIN AND POLYAZOMETHINE SYSTEMS PREPARED FROM A TYPE OF PORPHYRIN-DIALDEHYDE AND COMPLEX OF β-CYCLODEXTRIN WITH 1,4-PHENYLENEDIAMINE. Chinese J. Polym. Sci, doi: 10.1007/s10118-013-1198-7

    13. [13]

      Yong-wei WuAn-jun QinBen Zhong Tang . AIE-active Polymers for Explosive Detection. Chinese J. Polym. Sci, doi: 10.1007/s10118-017-1882-0

    14. [14]

      Shu-Qiang HanYing-Ying ChenBo XuJia WeiYan-Lei Yu . An Azoester-containing Photoresponsive Linear Liquid Crystal Polymer with Good Mesophase Stability. Chinese J. Polym. Sci, doi: 10.1007/s10118-020-2383-0

    15. [15]

      . POLYMER SCAFFOLDS BEARING AZOBENZENE-POTENTIAL FOR OPTICAL INFORMATION STORAGE. Chinese J. Polym. Sci,

    16. [16]

      . DESIGN AND STUDY OF NEW AZOBENZENE LIQUID CRYSTAL/POLYMER MATERIALS. Chinese J. Polym. Sci,

    17. [17]

      . OPTICAL PHASE CONJUGATION RESPONSE OF PHOTOINDUCED POLYMER FILMS CONTAINING AZOBENZENE MOIETIES WITH CHIRAL GROUP*. Chinese J. Polym. Sci,

    18. [18]

      . SYNTHESIS AND PROPERTIES OF A NEW AZOBENZENE SIDE-CHAIN POLYMER CONTAINING A TEMPO RADICAL*. Chinese J. Polym. Sci,

    19. [19]

      . PHOTOINDUCED HOLOGRAPHIC PHASE GRATINGS BURIED IN AZOBENZENE SIDE-CHAIN POLYMER FILMS WITH A CHIRAL GROUP. Chinese J. Polym. Sci,

    20. [20]

      . STUDY ON PHOTODYNAMIC AND PHOTORESPONSIVE AZO POLYELECTROLYTES*. Chinese J. Polym. Sci,

Article Metrics
  • PDF Downloads(0)
  • Abstract views(486)
  • HTML views(243)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return