Citation: Meng, X. Y.; Li, Y.; Yao, S. F.; Wei, X. W.; Ye, H. M. Unusual spherulitic morphology of poly(propylene fumarate). Chinese J. Polym. Sci. 2021, 39, 493–500 doi: 10.1007/s10118-021-2518-y shu

Unusual Spherulitic Morphology of Poly(propylene fumarate)

  • Corresponding author: Hai-Mu Ye, E-mail: yehaimu@cup.edu.cn
  • Received Date: 2020-08-11
    Available Online: 2020-11-04

Figures(9)

  • Spherulites are the most common crystalline morphology and thus the visual expression of crystal structures for polymers. The diversified patterns have provided intuitive morphology probes for various crystallization behaviors, while the correlations between them are still needed to be enriched. In this work, the complicated spherulitic morphology of poly(propylene fumarate) (PPF), which is sensitive to crystallization temperature, is investigated. PPF melt, respectively, crystallizes into rough spherulites, regularly banded spherulites, and spherulites containing both two kinds of morphology at low, high, and mediate temperatures. By systematically assaying, it is clear that the growth axis along the radial direction changes from a-axis to b-axis as the crystallization temperature increases, which leads to the formation of unique crystallization-temperature-dependent spherulites. Based on detailed characterization of Fourier transform infrared spectroscopy, the packing state of the specific hydrogen bonds of “C=C―H···O=C―C=C” in PPF crystal lattices is determined, and furthermore, the mechanism for temperature-dependent selection of growth axes for PPF spherulites in melt is reasonably speculated.
  • 加载中
    1. [1]

      Shtukenberg, A. G.; Punin, Y. O.; Gunn, E.; Kahr, B. Spherulites. Chem. Rev. 2012, 112, 1805−1838. doi: 10.1021/cr200297f

    2. [2]

      Crist, B.; Schultz, J. M. Polymer spherulites: a critical review. Prog. Polym. Sci. 2016, 56, 1−63. doi: 10.1016/j.progpolymsci.2015.11.006

    3. [3]

      Gránásy, L.; Pusztai, T.; Tegze, G.; Warren, J. A.; Douglas, J. F. Growth and form of spherulites. Phys. Rev. E 2005, 72, 011605. doi: 10.1103/PhysRevE.72.011605

    4. [4]

      Cheng, S. Z. D.; Lotz, B. Nucleation control in polymer crystallization: structural and morphological probes in different length- and time-scales for selection processes. Philos. Trans. R. Soc. A 2003, 361, 517−537. doi: 10.1098/rsta.2002.1148

    5. [5]

      Xu, J.; Ye, H.; Zhang, S.; Guo, B. Organization of twisting lamellar crystals in birefringent banded polymer spherulites: a mini-review. Crystals 2017, 7, 241. doi: 10.3390/cryst7080241

    6. [6]

      Lotz, B.; Miyoshi, T.; Cheng, S. Z. D. 50th Anniversary perspective: polymer crystals and crystallization: personal journeys in a challenging research field. Macromolecules 2017, 50, 5995−6025. doi: 10.1021/acs.macromol.7b00907

    7. [7]

      Woo, E. M.; Lee, M. S. Crystallization in arylate polyesters to periodically ringed assembly. Polym. Cryst. 2018, 1, e10018.

    8. [8]

      Xu, J.; Guo, B. H.; Zhou, J. J.; Li, L.; Wu, J.; Kowalczuk, M. Observation of banded spherulites in pure poly(L-lactide) and its miscible blends with amorphous polymers. Polymer 2005, 46, 9176−9185. doi: 10.1016/j.polymer.2005.07.010

    9. [9]

      Wang, X.; Prud’homme, R. E. Differences between stereocomplex spherulites obtained in equimolar and non-equimolar poly(L-lactide)/poly(D-lactide) blends. Macromol. Chem. Phys. 2011, 212, 691−698. doi: 10.1002/macp.201000704

    10. [10]

      Ye, H. M.; Xu, J.; Freudenthal, J.; Kahr, B. On the circular birefringence of polycrystalline polymers: polylactide. J. Am. Chem. Soc. 2011, 133, 13848−13851. doi: 10.1021/ja205159u

    11. [11]

      Point, J. J. Sphérolithes de polyadipate de glycol. Bull. Acad. R. Med. Belg 1953, 39, 455−441.

    12. [12]

      Keith, H. D.; Padden Jr, F. J. The optical behavior of spherulites in crystalline polymers. Part II. The growth and structure of the spherulites. J. Polym. Sci. 1959, 39, 123−138. doi: 10.1002/pol.1959.1203913510

    13. [13]

      Keller, A. Investigations on banded spherulites. J. Polym. Sci. 1959, 39, 151−173. doi: 10.1002/pol.1959.1203913512

    14. [14]

      Price, F. P. On extinction patterns of polymer spherulites. J. Polym. Sci. 1959, 39, 139−150. doi: 10.1002/pol.1959.1203913511

    15. [15]

      Lotz, B.; Cheng, S. Z. D. critical assessment of unbalanced surface stresses as the mechanical origin of twisting and scrolling of polymer crystals. Polymer 2005, 46, 577−610. doi: 10.1016/j.polymer.2004.07.042

    16. [16]

      Ye, H. M.; Wang, J. S.; Tang, S.; Xu, J.; Feng, X. Q.; Guo, B. H.; Xie, X. M.; Zhou, J. J. Li L.; Wu, Q.; Chen, G. Q. Surface stress effects on the bending direction and twisting chirality of lamellar crystals of chiral polymer. Macromolecules 2010, 43, 5762−5770. doi: 10.1021/ma100920u

    17. [17]

      Ye, H. M.; Xu, J.; Guo, B. H.; Iwata, T. Left- or right-handed lamellar twists in poly[(R)-3-hydroxyvalerate] banded spherulite: dependence on growth axis. Macromolecules 2009, 42, 694−701. doi: 10.1021/ma801653p

    18. [18]

      Liu, J.; Ye, H. M.; Xu, J.; Guo, B. H. Formation of ring-banded spherulites of α and β modifications in poly(butylene adipate). Polymer 2011, 52, 4619−4630. doi: 10.1016/j.polymer.2011.08.001

    19. [19]

      Fraschini, C.; Jiménez, L.; Kalala, B.; Prud’homme, R. E. Polymorphism and cross-nucleation in poly(1,3-dioxolan). Polymer 2012, 53, 188−195. doi: 10.1016/j.polymer.2011.11.035

    20. [20]

      Cavallo, D.; Gardella, L.; Portale, G.; Müller, A. J.; Alfonso, G. C. On cross-and self-nucleation in seeded crystallization of isotactic poly(1-butene). Polymer 2013, 54, 4637−4644. doi: 10.1016/j.polymer.2013.06.051

    21. [21]

      Zhang, J.; Li, L.; Song, S.; Feng, H.; Chen, P.; Wang, Z.; Gu, Q. Synchronous architecture of ring-banded and non-ring-banded morphology within one spherulite based on in situ ring-opening polymerization of cyclic butylene terephthalate oligomers. RSC Adv. 2016, 6, 94524−94530. doi: 10.1039/C6RA20471F

    22. [22]

      Fisher, J. P.; Vehof, J. W. M.; Dean, D.; van der Waerden, J. P. C. M.; Holland, T. A.; Mikos, A. G.; Jansen, J. A. Soft and hard tissue response to photocrosslinked poly(propylene fumarate) scaffolds in a rabbit model. J. Biomed. Mater. Res. 2002, 59, 547−556. doi: 10.1002/jbm.1268

    23. [23]

      Fisher, J. P.; Dean, D.; Mikos, A. G. Photocrosslinking characteristics and mechanical properties of diethyl fumarate/poly(propylene fumarate) biomaterials. Biomaterials 2002, 23, 4333−4343. doi: 10.1016/S0142-9612(02)00178-3

    24. [24]

      Lee, K. W.; Wang, S.; Fox, B. C.; Ritman, E. L.; Yaszemski, M. J.; Lu, L. Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: effects of resin formulations and laser parameters. Biomacromolecules 2007, 8, 1077−1084. doi: 10.1021/bm060834v

    25. [25]

      Ye, H. M.; Freudenthal, J. H.; Tan, M.; Yang, J.; Kahr, B. Chiroptical differentiation of twisted chiral and achiral polymer crystals. Macromolecules 2019, 52, 8514−8520. doi: 10.1021/acs.macromol.9b01526

    26. [26]

      Ye, H. M.; Wang, R. D.; Liu, J.; Xu, J.; Guo, B. H. Isomorphism in poly(butylene succinate-co-butylene fumarate) and its application as polymeric nucleating agent for poly(butylene succinate). Macromolecules 2012, 45, 5667−5675. doi: 10.1021/ma300685f

    27. [27]

      Kawashima, K.; Kawano, R.; Miyagi, T.; Umemoto, S.; Okui, N. Morphological changes in flat-on and edge-on lamellae of poly(ethylene succinate) crystallized from molten thin films. J. Macromol. Sci., Part B 2003, 42, 889−899. doi: 10.1081/MB-120021613

    28. [28]

      Ye, H. M.; Tang, Y. R.; Song, Y. Y.; Xu, J.; Guo, B. H.; Zhou, Q. Aliphatic copolyester with isomorphism in limited composition range. Polymer 2014, 55, 5811−5820. doi: 10.1016/j.polymer.2014.09.029

    29. [29]

      Ye, H. M.; Liu, P.; Wang, C. X.; Meng, X.; Zhou, Q. Polymorphism regulation in poly(hexamethylene succinate-co-hexamethylene fumarate): altering the hydrogen bonds in crystalline lattice. Polymer 2017, 108, 272−280. doi: 10.1016/j.polymer.2016.11.071

    30. [30]

      Ye, H. M.; Wang, J.; Wang, C. S.; Li, H. F. Unique Isodimorphism of poly(decamethylene succinate-ran-decamethylene fumarate): large pseudoeutectic region and fantastic crystallization/melting behavior. Macromolecules 2019, 52, 1447−1457. doi: 10.1021/acs.macromol.8b01848

    31. [31]

      Qi, Z.; Ye, H.; Xu, J.; Chen, J.; Guo, B. Improved the thermal and mechanical properties of poly(butylene succinate-co-butylene adipate) by forming nanocomposites with attapulgite. Colloid. Surfaces A 2013, 421, 109−117. doi: 10.1016/j.colsurfa.2012.12.051

    32. [32]

      Yao, S. F.; Chen, X. T.; Ye, H. M. Investigation of structure and crystallization behavior of poly(butylene succinate) by Fourier transform infrared spectroscopy. J. Phys. Chem. B 2017, 121, 9476−9485. doi: 10.1021/acs.jpcb.7b07954

    33. [33]

      Mallapragada, S. K.; Narasimhan, B. Infrared spectroscopy in analysis of polymer crystallinity. In Encyclopedia of analytical chemistry: applications, theory and instrumentation, 2006.

    34. [34]

      Hu, J.; Wang, J.; Wang, M.; Ozaki, Y.; Sato, H.; Zhang, J. Investigation of crystallization behavior of asymmetric PLLA/PDLA blend using Raman Imaging measurement. Polymer 2019, 172, 1−6. doi: 10.1016/j.polymer.2019.03.049

    35. [35]

      Xu, Y.; Xu, J.; Sun, Y.; Liu, D.; Guo, B.; Xie, X. Crystallization behavior of poly(butylene succinate-co-propylene succinate)s. Acta Polymerica Sinica (in Chinese) 2006, 1000−1006.

    36. [36]

      Ding, M.; Yu, J.; He, J.; Zhang, J. An unusual spherulite morphology induced by nano-fillers from a concentrated cellulose/ionic liquid solution. RSC Adv. 2015, 5, 44648−44651. doi: 10.1039/C5RA06740E

    37. [37]

      Song, G.; Yu, J.; Ding, M.; Zhang, J. A novel cellulose/ionic liquid complex crystal. Cryst. Growth Des. 2018, 18, 4260−4264. doi: 10.1021/acs.cgd.8b00754

    38. [38]

      Lai, Y.; Wang, Y.; Wang, L. L.; Li, X.; Zhao, J. B.; Dong, X.; Wang, D. J. Optical inversion characteristics of PA56 spherulites. Acta Polymerica Sinica (in Chinese) 2020, 51, 1267−1274. doi: 10.11777/j.issn1000-3304.2020.20057

  • 加载中
    1. [1]

      Ya-qiong ZhangZhi-gang Wang . INCREASED SPHERULITIC GROWTH RATES OF SEMICRYSTALLINE POLYMER DUE TO ENHANCED LIMITED LOCAL CHAIN SEGMENTAL MOBILITY AT THE INTERFACE OF DOUBLE-LAYER THIN FILMS. Chinese J. Polym. Sci, 2013, 31(9): 1276-1283. doi: 10.1007/s10118-013-1326-4

    2. [2]

      Wen-Kai LiuYun ZhaoRong WangFeng LuoJian-Shu LiJie-Hua LiHong Tan . Effect of Chain Extender on Hydrogen Bond and Microphase Structure of Biodegradable Thermoplastic Polyurethanes. Chinese J. Polym. Sci, 2018, 36(4): 514-520. doi: 10.1007/s10118-018-2020-3

    3. [3]

      Ying-jie XuYi-hu SongQiang Zheng . Effects of Nanosilica on Crystallization and Thermal Ageing Behaviors of Polyethylene Terephthalate. Chinese J. Polym. Sci, 2015, 33(5): 697-708. doi: 10.1007/s10118-015-1619-x

    4. [4]

      Hai-jun WangHui-ping FengXue-chuan WangQing-chuan DuChao Yan . Crystallization of Poly(ethylene adipate) within -Phase Poly(vinylidene fluoride) Matrix. Chinese J. Polym. Sci, 2015, 33(6): 823-829. doi: 10.1007/s10118-015-1627-x

    5. [5]

      Zhi-liang WangJia-li XuLian-jia WuXin ChenShu-guang YangHui-chao LiuXian-ju Zhou . Dissolution, Hydrolysis and Crystallization Behavior of Polyamide 6 in Superheated Water. Chinese J. Polym. Sci, 2015, 33(9): 1334-1343. doi: 10.1007/s10118-015-1682-3

    6. [6]

      Li LiJun-teng LiuZhong-jie RenShou-ke Yan . Crystallization Behavior of Disproportionately High and Low Molecular Weight PEO Blends. Chinese J. Polym. Sci, 2014, 32(9): 1199-1209. doi: 10.1007/s10118-014-1497-7

    7. [7]

      Hong YaoJun-teng LiuLi-qun ZhangShou-ke Yan . Phase Structure and Crystallization Behavior of Polyethylene in Its Blends with cis-1,4-Butadiene Rubber. Chinese J. Polym. Sci, 2015, 33(3): 386-394. doi: 10.1007/s10118-015-1592-4

    8. [8]

      Mu DongMing-yin JiaZhao-xia GuoJian Yu . EFFECT OF FINAL HEATING TEMPERATURE ON CRYSTALLIZATION OF ISOTACTIC POLYPROPYLENE NUCLEATED WITH AN ARYL AMIDE DERIVATIVE AS b-FORM NUCLEATING AGENT. Chinese J. Polym. Sci, 2011, 29(3): 308-317. doi: 10.1007/s10118-011-1031-0

    9. [9]

      Cong-de QiaoShi-chun JiangXiang-ling JiLi-jia An . IN SITU OBSERVATION OF MELTING AND CRYSTALLIZATION BEHAVIORS OF POLY(-CAPROLACTONE) ULTRA-THIN FILMS BY AFM TECHNIQUE. Chinese J. Polym. Sci, 2013, 31(9): 1321-1328. doi: 10.1007/s10118-013-1333-5

    10. [10]

      Li CaoDun-fan SuZhi-qiang SuXiao-nong Chen . Morphology, Crystallization Behavior and Tensile Properties of -Nucleated Isotactic Polypropylene Fibrous Membranes Prepared by Melt Electrospinning. Chinese J. Polym. Sci, 2014, 32(9): 1167-1175. doi: 10.1007/s10118-014-1465-2

    11. [11]

      Jie-xin YangWei-na HeJun-ting XuBin-yang DuZhi-qiang Fan . Influence of Different Inorganic Salts on Crystallization-driven Morphological Transformation of PCL-b-PEO Micelles in Aqueous Solutions. Chinese J. Polym. Sci, 2014, 32(9): 1128-1138. doi: 10.1007/s10118-014-1512-z

    12. [12]

      Yu-han WeiCai-yuan PanBin-yao LiXin-hong YuYan-chun Han . EFFECT OF MOLECULAR WEIGHT AND FILM THICKNESS ON THE CRYSTALLIZATION AND MICROPHASE SEPARATION IN POLYSTYRENE-BLOCK-POLY(L-LACTIC ACID) THIN FILMS AT THE EARLY STAGE. Chinese J. Polym. Sci, 2011, 29(3): 325-335. doi: 10.1007/s10118-011-1040-z

    13. [13]

      Bi-wei QiuFeng ChenYong-gang ShangguanYu LinQiang Zheng . Effects of Composition on Microstructure and Crystallization Behavior for Impact Polypropylene Copolymer Investigated by Restructuring the Complex Core-Shell Dispersed Particles in Ternary Blends. Chinese J. Polym. Sci, 2015, 33(1): 95-108. doi: 10.1007/s10118-015-1556-8

    14. [14]

      Hai-jun WangHui-ping FengXue-chuan WangPei-ying GuoTing-shan ZhaoLong-fang RenXi-huai QiangYu-hao XiangChao Yan . Effects of Crystallization Temperature and Blend Ratio on the Crystal Structure of Poly(butylene adipate) in the Poly(butylene adipate)/Poly(butylene succinate) Blends. Chinese J. Polym. Sci, 2014, 32(4): 488-496. doi: 10.1007/s10118-014-1420-2

    15. [15]

      Zhuo-ye ChaiZhong XiePeng ZhangXiao OuyangRui LiShan GaoHao WeiLian-he LiuZhi-jun Shuai . High Impact Resistance Epoxy Resins by Incorporation of Quadruply Hydrogen Bonded Supramolecular Polymers. Chinese J. Polym. Sci, 2016, 34(7): 850-857. doi: 10.1007/s10118-016-1809-1

    16. [16]

      Tetsuji KawazuraOraphin ChaikumpollertSeiichi Kawahara . MORPHOLOGY DEPENDENCE OF CRYSTALLIZATION OF NATURAL RUBBER IN BLENDS. Chinese J. Polym. Sci, 2013, 31(10): 1424-1431. doi: 10.1007/s10118-013-1314-8

    17. [17]

      Li-fen ZhaoQi LiRu-liang ZhangXiu-juan TianLei Liu . Effects of Functionalized Graphenes on the Isothermal Crystallization of Poly(L-lactide) Nanocomposites. Chinese J. Polym. Sci, 2016, 34(1): 111-121. doi: 10.1007/s10118-016-1732-5

    18. [18]

      Jian-qiang ZhangZhi-fang LiZheng ZhangHui-xia FengZong-bao WangYa LiPeng ChenQun Gu . Correlation between Polymerization of Cyclic Butylene Terephthalate (CBT) and Crystallization of Polymerized CBT. Chinese J. Polym. Sci, 2015, 33(8): 1104-1113. doi: 10.1007/s10118-015-1662-7

    19. [19]

      Zhi-liang WangJia-li XuQian YuanMahmoud H. M. A. ShibraenJian XuShu-guang Yang . Hydrothermal Treatment of Polyamide 6 with Presence of Lanthanum Chloride. Chinese J. Polym. Sci, 2016, 34(4): 399-406. doi: 10.1007/s10118-016-1764-x

    20. [20]

      Xuan-bo LiuYong-feng ZhaoXing-he FanEr-qiang Chen . CRYSTAL ORIENTATION AND MELTING BEHAVIOR OF POLY(-CAPROLACTONE) UNDER ONE-DIMENSIONALLY HARD CONFINED MICROENVIRONMENT. Chinese J. Polym. Sci, 2013, 31(6): 946-958. doi: 10.1007/s10118-013-1285-9

Article Metrics
  • PDF Downloads(5)
  • Abstract views(441)
  • HTML views(206)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return