Citation: Yin, Q. Y.; Dai, C. H.; Chen, H.; Gou, K.; Guan, H. Z.; Wang, P. H.; Jiang, J. T.; Weng, G. S. Tough double metal-ion cross-linked elastomers with temperature-adaptable self-healing and luminescence properties. Chinese J. Polym. Sci. 2021, 39, 554–565 doi: 10.1007/s10118-021-2517-z shu

Tough Double Metal-ion Cross-linked Elastomers with Temperature-adaptable Self-healing and Luminescence Properties

  • Corresponding author: Geng-Sheng Weng, E-mail: wenggengsheng@nbu.edu.cn
  • Received Date: 2020-08-13
    Available Online: 2020-11-05

Figures(9)

  • Smart materials with a combination of tough solid-like properties, fast self-healing and optical responsiveness are of interests for the development of new soft machines and wearable electronics. In this work, tough physically cross-linked elastomers that show high mechanical strength, intriguing temperature-adaptable self-healing and fluorochromic response properties are designed using aluminum (Al) and fluorescent europium (Eu) ions as cross-linkers. The ionic Al-COOH binding is incorporated to construct the strong polymer network which mainly contributes to the mechanical robustness of the elastomer consisting of two interpenetrated networks. The Eu-iminodiacetate (IDA) coordination is mainly used to build the weaker but more dynamic network which dominate the elasticity, self-healing and luminescence of the elastomer. Moderate Eu3+ and Al3+ contents give these supramolecular elastomers high toughness. The temperature-sensitive Eu-IDA coordination enables tunable self-healing rate and efficiency along with fast Eu-centered “ON/OFF” switchable red emission. The mechanical, self-healing and luminescence properties of these elastomers can be adjusted by tuning the ratio of the two types of metal ions. This elastomer is potentially applicable for biosensors, wearable optoelectronics and anticounterfeiting materials.
    1. [1]

      Mozhdehi, D.; Ayala, S.; Cromwell, O. R.; Guan, Z. Self-healing multiphase polymers via dynamic metal-ligand interactions. J. Am. Chem. Soc. 2014, 136, 16128−16131. doi: 10.1021/ja5097094

    2. [2]

      Rao, Y. L.; Chortos, A.; Pfattner, R.; Lissel, F.; Chiu, Y. C.; Feig, V.; Xu, J.; Kurosawa, T.; Gu, X.; Wang, C. Stretchable self-healing polymeric dielectrics cross-linked through metal-ligand coordination. J. Am. Chem. Soc. 2016, 138, 6020−6027. doi: 10.1021/jacs.6b02428

    3. [3]

      Grindy, S. C.; Learsch, R.; Mozhdehi, D.; Cheng, J.; Barrett, D. G.; Guan, Z.; Messersmith, P. B.; Holten-Andersen, N. Control of hierarchical polymer mechanics with bioinspired metal-coordination dynamics. Nat. Mater. 2015, 14, 1210−1216. doi: 10.1038/nmat4401

    4. [4]

      Shi, L.; Wang, F.; Zhu, W.; Xu, Z.; Fuchs, S.; Hilborn, J.; Zhu, L.; Ma, Q.; Wang, Y.; Weng, X. Self-healing silk fibroin-based hydrogel for bone regeneration: dynamic metal-ligand self-assembly approach. Adv. Funct. Mater. 2017, 27, 1700591. doi: 10.1002/adfm.201700591

    5. [5]

      Tang, Z.; Huang, J.; Guo, B.; Zhang, L.; Liu, F. Bioinspired engineering of sacrificial metal-ligand bonds into elastomers with supramechanical performance and adaptive recovery. Macromolecules 2016, 49, 1781−1789. doi: 10.1021/acs.macromol.5b02756

    6. [6]

      Filippidi, E.; Cristiani, T. R.; Eisenbach, C. D.; Waite, J. H.; Israelachvili, J. N.; Ahn, B. K.; Valentine, M. T. Toughening elastomers using mussel-inspired iron-catechol complexes. Science 2017, 358, 502. doi: 10.1126/science.aao0350

    7. [7]

      Ibarra, L.; Alzorriz, M. Ionic elastomers based on carboxylated nitrile rubber (XNBR) and zinc peroxide: influence of carboxylic group content on properties. J. Appl. Polym. Sci. 2002, 84, 605−615. doi: 10.1002/app.10313

    8. [8]

      Takahashi, A.; Rho, Y.; Higashihara, T.; Ahn, B.; Ree, M.; Ueda, M. Preparation of nanoporous poly(3-hexylthiophene) films based on a template system of block copolymers via ionic interaction. Macromolecules 2010, 43, 4843−4852. doi: 10.1021/ma100957q

    9. [9]

      Xu, C.; Cao, L.; Lin, B.; Liang, X.; Chen, Y. Design of self-healing supramolecular rubbers by introducing ionic cross-links into natural rubber via a controlled vulcanization. ACS Appl. Mater. Interfaces 2016, 8, 17728−17737. doi: 10.1021/acsami.6b05941

    10. [10]

      Das, A.; Sallat, A.; Böhme, F.; Suckow, M.; Basu, D.; Wießner, S.; Stöckelhuber, K. W.; Voit, B.; Heinrich, G. Ionic modification turns commercial rubber into a self-healing material. ACS Appl. Mater. Interfaces 2015, 7, 20623−20630. doi: 10.1021/acsami.5b05041

    11. [11]

      Hemmer, J. R.; Mason, B. P.; Casalini, R. Dynamics of novel polybutadiene ionomers. J. Polym. Sci., Part B: Polym. Phys. 2019, 57, 1074−1079. doi: 10.1002/polb.24862

    12. [12]

      Lu, T.; Finkenauer, L.; Wissman, J.; Majidi, C. Rapid prototyping for soft-matter electronics. Adv. Funct. Mater. 2014, 24, 3351−3356. doi: 10.1002/adfm.201303732

    13. [13]

      Wirthl, D.; Pichler, R.; Drack, M.; Kettlguber, G.; Moser, R.; Gerstmayr, R.; Hartmann, F.; Bradt, E.; Kaltseis, R.; Siket, C. M. Instant tough bonding of hydrogels for soft machines and electronics. Sci. Adv. 2017, 3, e1700053. doi: 10.1126/sciadv.1700053

    14. [14]

      Markvicka, E. J.; Bartlett, M. D.; Huang, X.; Majidi, C. An autonomously electrically self-healing liquid metal-elastomer composite for robust soft-matter robotics and electronics. Nat. Mater. 2018, 17, 618. doi: 10.1038/s41563-018-0084-7

    15. [15]

      Lu, N.; Kim, D. H. Flexible and stretchable electronics paving the way for soft robotics. Soft Robot. 2014, 1, 53−62. doi: 10.1089/soro.2013.0005

    16. [16]

      Bartlett, M. D.; Markvicka, E. J.; Majidi, C. Rapid fabrication of soft, multilayered electronics for wearable biomonitoring. Adv. Funct. Mater. 2016, 26, 8496−8504. doi: 10.1002/adfm.201602733

    17. [17]

      Lu, Y.; Biswas, M. C.; Guo, Z.; Jeon, J. W.; Wujcik, E. K. Recent developments in bio-monitoring via advanced polymer nanocomposite-based wearable strain sensors. Biosens. Bioelectron. 2019, 123, 167−177. doi: 10.1016/j.bios.2018.08.037

    18. [18]

      Kou, L.; Huang, T.; Zheng, B.; Han, Y.; Zhao, X.; Gopalsamy, K.; Sun, H.; Gao, C. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 2014, 5, 3754. doi: 10.1038/ncomms4754

    19. [19]

      Ye, G.; Song, Z.; Yu, T.; Tan, Q.; Zhang, Y.; Chen, T.; He, C.; Jin, L.; Liu, N. Dynamic Ag-N bond enhanced stretchable conductor for transparent and self-healing electronic skin. ACS Appl. Mater. Interfaces 2020, 12, 1486−1494. doi: 10.1021/acsami.9b17354

    20. [20]

      Lai, J. C.; Jia, X. Y.; Wang, D. P.; Deng, Y. B.; Zheng, P.; Li, C. H.; Zuo, J. L.; Bao, Z. Thermodynamically stable whilst kinetically labile coordination bonds lead to strong and tough self-healing polymers. Nat. Commun. 2019, 10, 1164. doi: 10.1038/s41467-019-09130-z

    21. [21]

      Hong, G.; Zhang, H.; Lin, Y.; Chen, Y.; Xu, Y.; Weng, W.; Xia, H. Mechanoresponsive healable metallosupramolecular polymers. Macromolecules 2013, 46, 8649−8656. doi: 10.1021/ma4017532

    22. [22]

      Zhang, Q.; Niu, S.; Wang, L.; Lopez, J.; Chen, S.; Cai, Y.; Du, R.; Liu, Y.; Lai, J. C.; Liu, L.; Li, C. H.; Yan, X.; Liu, C.; Tok, J. B. H.; Jia, X.; Bao, Z. An elastic autonomous self-healing capacitive sensor based on a dynamic dual crosslinked chemical system. Adv. Mater. 2018, 30, 1801435. doi: 10.1002/adma.201801435

    23. [23]

      Lei, Y.; Huang, W.; Huang, Q.; Zhang, A. A novel polysiloxane elastomer based on reversible aluminum-carboxylate coordination. New J. Chem. 2019, 43, 261−268. doi: 10.1039/C8NJ04761H

    24. [24]

      Wu, J.; Niu, W.; Zhang, S.; Wu, S.; Ma, W.; Tang, B. Polyacrylic acid-based coordination supramolecular elastomer with high strength, excellent fatigue-resistance, and self-recovery properties. Macromol. Chem. Phys. 2019, 220, 1800571. doi: 10.1002/macp.201800571

    25. [25]

      Gai, G.; Liu, L.; Li, C.H.; Bose, R. K.; Li, D.; Guo, N.; Kong, B. A tough metal-coordinated elastomer: a fatigue-resistant, notch-insensitive material with an excellent self-healing capacity. ChemPlusChem 2019, 84, 432−440. doi: 10.1002/cplu.201900095

    26. [26]

      Mozhdehi, D.; Neal, J. A.; Grindy, S. C.; Cordeau, Y.; Ayala, S.; Holten-Andersen, N.; Guan, Z. Tuning dynamic mechanical response in metallopolymer networks through simultaneous control of structural and temporal properties of the networks. Macromolecules 2016, 49, 6310−6321. doi: 10.1021/acs.macromol.6b01626

    27. [27]

      Zheng, S. Y.; Ding, H.; Qian, J.; Yin, J.; Wu, Z. L.; Song, Y.; Zheng, Q. Metal-coordination complexes mediated physical hydrogels with high toughness, stick-slip tearing behavior, and good processability. Macromolecules 2016, 49, 9637−9646. doi: 10.1021/acs.macromol.6b02150

    28. [28]

      Holten-Andersen, N.; Harrington, M. J.; Birkedal, H.; Lee, B. P.; Messersmith, P. B.; Lee, K. Y. C.; Waite, J. H. pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli. Proc. Natl. Acad. Sci. USA 2011, 108, 2651−2655. doi: 10.1073/pnas.1015862108

    29. [29]

      Lai, J. C.; Li, L.; Wang, D.P.; Zhang, M. H.; Mo, S. R.; Wang, X.; Zeng, K. Y.; Li, C. H.; Jiang, Q.; You, X. Z.; Zuo, J. L. A rigid and healable polymer cross-linked by weak but abundant Zn(II)-carboxylate interactions. Nat. Commun. 2018, 9, 2725. doi: 10.1038/s41467-018-05285-3

    30. [30]

      Wang, L.; Di, S.; Wang, W.; Zhou, S. Self-healing and shape memory capabilities of copper-coordination polymer network. RSC Adv. 2015, 5, 28896−28900. doi: 10.1039/C4RA16833J

    31. [31]

      Jia, X. Y.; Mei, J. F.; Lai, J. C.; Li, C.H.; You, X. Z. A self-healing PDMS polymer with solvatochromic properties. Chem. Commun. 2015, 51, 8928−8930. doi: 10.1039/C5CC01956G

    32. [32]

      Zhang, Q.; Zhu, X.; Li, C.H.; Cai, Y.; Jia, X.; Bao, Z. Disassociation and reformation under strain in polymer with dynamic metal-ligand coordination cross-linking. Macromolecules 2019, 52, 660−668. doi: 10.1021/acs.macromol.8b02414

    33. [33]

      Balkenende, D. W. R.; Coulibaly, S.; Balog, S.; Simon, Y. C.; Fiore, G. L.; Weder, C. Mechanochemistry with metallosupramolecular polymers. J. Am. Chem. Soc. 2014, 136, 10493−10498. doi: 10.1021/ja5051633

    34. [34]

      Zou, F.; Chen, H.; Chen, S.; Zhuo, H. Development of supramolecular shape-memory polyurethanes based on Cu(II)-pyridine coordination interactions. J. Mater. Sci. 2019, 54, 5136−5148. doi: 10.1007/s10853-018-3179-2

    35. [35]

      Lin, Q.; Sun, B.; Yang, Q. P.; Fu, Y. P.; Zhu, X.; Zhang, Y. M.; Wei, T. B. A novel strategy for the design of smart supramolecular gels: controlling stimuli-response properties through competitive coordination of two different metal ions. Chem. Commun. 2014, 50, 10669−10671. doi: 10.1039/C4CC03753G

    36. [36]

      Beck, J. B.; Rowan, S. J. Multistimuli, multiresponsive metallo-supramolecular polymers. J. Am. Chem. Soc. 2003, 125, 13922−13923. doi: 10.1021/ja038521k

    37. [37]

      Chen, P.; Li, Q.; Grindy, S.; Holten-Andersen, N. White-light-emitting lanthanide metallogels with tunable luminescence and reversible stimuli-responsive properties. J. Am. Chem. Soc. 2015, 137, 11590−11593. doi: 10.1021/jacs.5b07394

    38. [38]

      Lin, Q.; Lu, T. T.; Zhu, X.; Wei, T. B.; Li, H.; Zhang, Y. M. Rationally introduce multi-competitive binding interactions in supramolecular gels: a simple and efficient approach to develop multi-analyte sensor array. Chem. Sci. 2016, 7, 5341−5346. doi: 10.1039/C6SC00955G

    39. [39]

      Weng, W.; Beck, J. B.; Jamieson, A. M.; Rowan, S. J. Understanding the mechanism of gelation and stimuli-responsive nature of a class of metallo-supramolecular gels. J. Am. Chem. Soc. 2006, 128, 11663−11672. doi: 10.1021/ja063408q

    40. [40]

      Kumpfer, J. R.; Jin, J.; Rowan, S. J. Stimuli-responsive europium-containing metallo-supramolecular polymers. J. Mater. Chem. 2010, 20, 145−151. doi: 10.1039/B915490F

    41. [41]

      Shunmugam, R.; Tew, G. N. Polymers that contain ligated metals in their side chain: building a foundation for functional materials in opto-electronic applications with an emphasis on lanthanide ions. Macromol. Rapid Commun. 2008, 29, 1355−1362. doi: 10.1002/marc.200800083

    42. [42]

      Wang, X. H.; Song, F.; Xue, J.; Qian, D.; Wang, X. L.; Wang, Y. Z. Mechanically strong and tough hydrogels with excellent anti-fatigue, self-healing and reprocessing performance enabled by dynamic metal-coordination chemistry. Polymer 2018, 153, 637−642. doi: 10.1016/j.polymer.2018.08.063

    43. [43]

      Zhao, Y.; Beck, J. B.; Rowan, S. J.; Jamieson, A. M. Rheological behavior of shear-responsive metallo-supramolecular gels. Macromolecules 2004, 37, 3529−3531. doi: 10.1021/ma0497005

    44. [44]

      Grindy, S. C.; Holten-Andersen, N. Bio-inspired metal-coordinate hydrogels with programmable viscoelastic material functions controlled by longwave UV light. Soft Matter 2017, 13, 4057−4065. doi: 10.1039/C7SM00617A

    45. [45]

      Yang, B.; Zhang, H.; Peng, H.; Xu, Y.; Wu, B.; Weng, W.; Li, L. Self-healing metallo-supramolecular polymers from a ligand macromolecule synthesized via copper-catalyzed azide-alkyne cycloaddition and thiol-ene double “click” reactions. Polym. Chem. 2014, 5, 1945−1953. doi: 10.1039/C3PY00975K

    46. [46]

      Li, Y. X.; Li, S. J.; Yan, P. F.; Wang, X. Y.; Yao, X.; An, G. H.; Li, G. M. Luminescence-colour-changing sensing of Mn2+ and Ag+ ions based on a white-light-emitting lanthanide coordination polymer. Chem. Commun. 2017, 53, 5067−5070. doi: 10.1039/C7CC00258K

    47. [47]

      Ramya, A.; Varughese, S.; Reddy, M. Tunable white-light emission from mixed lanthanide (Eu3+, Gd3+, Tb3+) coordination polymers derived from 4-(dipyridin-2-yl) aminobenzoate. Dalton Trans. 2014, 43, 10940−10946. doi: 10.1039/C4DT00871E

    48. [48]

      Trung, T. Q.; Lee, N. E. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare. Adv. Mater. 2016, 28, 4338−4372. doi: 10.1002/adma.201504244

    49. [49]

      Chou, H. H.; Nguyen, A.; Chortos, A.; To, J. W.; Lu, C.; Mei, J.; Kurosawa, T.; Bae, W. G.; Tok, J. B. H.; Bao, Z. A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nat. Commun. 2015, 6, 8011. doi: 10.1038/ncomms9011

    50. [50]

      Choi, M. K.; Yang, J.; Kang, K.; Kim, D. C.; Choi, C.; Park, C.; Kim, S. J.; Chae, S. I.; Kim, T. H.; Kim, J. H. Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nat. Commun. 2015, 6, 7149. doi: 10.1038/ncomms8149

    51. [51]

      Choi, M. K.; Park, I.; Kim, D. C.; Joh, E.; Park, O. K.; Kim, J.; Kim, M.; Choi, C.; Yang, J.; Cho, K. W. Thermally controlled, patterned graphene transfer printing for transparent and wearable electronic/optoelectronic system. Adv. Funct. Mater. 2015, 25, 7109−7118. doi: 10.1002/adfm.201502956

    52. [52]

      Hu, H.; Tang, J.; Zhong, H.; Xi, Z.; Chen, C.; Chen, Q. Invisible photonic printing: computer designing graphics, UV printing and shown by a magnetic field. Sci. Rep. 2013, 3, 1484. doi: 10.1038/srep01484

    53. [53]

      Han, S.; Bae, H. J.; Kim, J.; Shin, S.; Choi, S. E.; Lee, S. H.; Kwon, S.; Park, W. Lithographically encoded polymer microtaggant using high-capacity and error-correctable QR code for anti-counterfeiting of drugs. Adv. Mater. 2012, 24, 5924−5929. doi: 10.1002/adma.201201486

    54. [54]

      Thanneeru, S.; Duay, S. S.; Jin, L.; Fu, Y.; Angeles-Boza, A. M.; He, J. Single chain polymeric nanoparticles to promote selective hydroxylation reactions of phenol catalyzed by copper. ACS Macro Lett. 2017, 6, 652−656. doi: 10.1021/acsmacrolett.7b00300

    55. [55]

      Zhou, X.; Wang, L.; Wei, Z.; Weng, G.; He, J. An adaptable tough elastomer with moisture-triggered switchable mechanical and fluorescent properties. Adv. Funct. Mater. 2019, 29, 1903543. doi: 10.1002/adfm.201903543

    56. [56]

      Weng, G.; Thanneeru, S.; He, J. Dynamic coordination of eu–iminodiacetate to control fluorochromic response of polymer hydrogels to multistimuli. Adv. Mater. 2018, 30, 1706526. doi: 10.1002/adma.201706526

    57. [57]

      Weng, G.; Yao, H.; Chang, A.; Fu, K.; Liu, Y.; Chen, Z. Crack growth mechanism of natural rubber under fatigue loading studied by a real-time crack tip morphology monitoring method. RSC Adv. 2014, 4, 43942−43950. doi: 10.1039/C4RA06518B

    58. [58]

      Eliseeva, S. V.; Bünzli, J. C. G. Lanthanide luminescence for functional materials and bio-sciences. Chem. Soc. Rev. 2010, 39, 189−227. doi: 10.1039/B905604C

    59. [59]

      Binnemans, K. Interpretation of europium(III) spectra. Coordin. Chem. Rev. 2015, 295, 1−45. doi: 10.1016/j.ccr.2015.02.015

    60. [60]

      Gent, A. N.; Kawahara, S.; Zhao, J. Crystallization and strength of natural rubber and synthetic cis-1,4-polyisoprene. Rubber Chem. Technol. 1998, 71, 668−678. doi: 10.5254/1.3538496

    61. [61]

      Zhang, L.; Liu, Z.; Wu, X.; Guan, Q.; Chen, S.; Sun, L.; Guo, Y.; Wang, S.; Song, J.; Jeffries, E. M.; He, C.; Qing, F. L.; Bao, X.; You, Z. A highly efficient self-healing elastomer with unprecedented mechanical properties. Adv. Mater. 2019, 31, 1901402. doi: 10.1002/adma.201901402

    62. [62]

      Sandmann, B.; Happ, B.; Kupfer, S.; Schacher, F. H.; Hager, M. D.; Schubert, U. S. The self-healing potential of triazole-pyridine-based metallopolymers. Macromol. Rapid Commun. 2015, 36, 604−609. doi: 10.1002/marc.201400468

    63. [63]

      Wang, Z.; Xie, C.; Yu, C.; Fei, G.; Wang, Z.; Xia, H. A facile strategy for self-healing polyurethanes containing multiple metal-ligand bonds. Macromol. Rapid Commun. 2018, 39, 1700678. doi: 10.1002/marc.201700678

    64. [64]

      Liu, J.; Liu, J.; Wang, S.; Huang, J.; Wu, S.; Tang, Z.; Guo, B.; Zhang, L. An advanced elastomer with an unprecedented combination of excellent mechanical properties and high self-healing capability. J. Mater. Chem. A 2017, 5, 25660−25671. doi: 10.1039/C7TA08255J

  • 加载中
    1. [1]

      Li-li YangJin-ming ZhangJia-song HeJun ZhangZhi-hua Gan . Synthesis and Characterization of Temperature-sensitive Cellulose-graft-Poly(N-isopropylacrylamide) Copolymers. Chinese J. Polym. Sci, 2015, 33(12): 1640-1649. doi: 10.1007/s10118-015-1703-2

    2. [2]

      Xiu-yu SunXiang-lan LiuFa-qiang XuLi XueYing-zhi Cheng . Size Effects on the Luminescence Properties of Polymer Nanowires. Chinese J. Polym. Sci, 2014, 32(2): 130-136. doi: 10.1007/s10118-014-1396-y

    3. [3]

      Liu-qing YangLu LuChao-wen ZhangChang-ren Zhou . Highly Stretchable and Self-healing Hydrogels Based on Poly(acrylic acid) and Functional POSS. Chinese J. Polym. Sci, 2016, 34(2): 185-194. doi: 10.1007/s10118-016-1744-1

    4. [4]

      Jun LingMin-zhi RongMing-qiu Zhang . Effect of Molecular Weight of PEG Soft Segments on Photo-stimulated Self-healing Performance of Coumarin Functionalized Polyurethanes. Chinese J. Polym. Sci, 2014, 32(10): 1286-1297. doi: 10.1007/s10118-014-1522-x

    5. [5]

      Rui-bin WangWang-zhang YuanXin-yuan Zhu . Aggregation-induced Emission of Non-conjugated Poly(amido amine)s: Discovering, Luminescent Mechanism Understanding and Bioapplication. Chinese J. Polym. Sci, 2015, 33(5): 680-687. doi: 10.1007/s10118-015-1635-x

    6. [6]

      Jun-wu ZhangFei LiuJing-gang WangHai-ning NaJin Zhu . Synthesis of Poly(butylene terephthalate)-Poly(tetramethylene glycol) Copolymers Using Terephthalic Acid as Starting Material: A Comparation between Two Synthetic Strategies. Chinese J. Polym. Sci, 2015, 33(9): 1283-1293. doi: 10.1007/s10118-015-1673-4

    7. [7]

      William ImamuraÉrik Oda UsudaLucas Soares PaixãoNicolau Molina BomAngelo Marcio GomesAlexandre Magnus Gomes Carvalho . Supergiant Barocaloric Effects in Acetoxy Silicone Rubber over a Wide Temperature Range: Great Potential for Solid-state Cooling. Chinese J. Polym. Sci, 2020, 38(9): 999-1005. doi: 10.1007/s10118-020-2423-9

    8. [8]

      Yan SongKai-Feng ChenJing-Jing WangYuan LiuTao QiGuo Liang Li . Synthesis of Polyurethane/Poly(urea-formaldehyde) Double-shelled Microcapsules for Self-healing Anticorrosion Coatings. Chinese J. Polym. Sci, 2020, 38(1): 45-52. doi: 10.1007/s10118-019-2317-x

    9. [9]

      Han JiaKun ChangShu-Ying Gu . Synthesis and Properties of Reversible Disulfide Bond-based Self-healing Polyurethane with Triple Shape Memory Properties. Chinese J. Polym. Sci, 2019, 37(11): 1119-1129. doi: 10.1007/s10118-019-2268-2

    10. [10]

      Zhi-Fei ZhangKun YangShu-Gao ZhaoLai-Na Guo . Self-healing Behavior of Ethylene Propylene Diene Rubbers Based on Ionic Association. Chinese J. Polym. Sci, 2019, 37(7): 700-707. doi: 10.1007/s10118-019-2241-0

    11. [11]

      Yi SunYong-Yuan RenQi LiRong-Wei ShiYin HuJiang-Na GuoZhe SunFeng Yan . Conductive, Stretchable, and Self-healing Ionic Gel Based on Dynamic Covalent Bonds and Electrostatic Interaction. Chinese J. Polym. Sci, 2019, 37(11): 1053-1059. doi: 10.1007/s10118-019-2325-x

    12. [12]

      Su-Su LiuZe-Hong XiangZhi-Fang MaXue-Wen WuQiang ShiShing-Chung WongJing-Hua Yin . Surface Patterning of Self-healing P(MMA/nBA) Copolymer for Dynamic Control Cell Behaviors. Chinese J. Polym. Sci, 2020, 38(7): 696-703. doi: 10.1007/s10118-020-2382-1

    13. [13]

      Yi-Gang LuanXiao-A ZhangSheng-Ling JiangJian-Huan ChenYa-Fei Lyu . Self-Healing Supramolecular Polymer Composites by Hydrogen Bonding Interactions between Hyperbranched Polymer and Graphene Oxide. Chinese J. Polym. Sci, 2018, 36(5): 584-591. doi: 10.1007/s10118-018-2025-y

    14. [14]

      Ya-kun GuoHan LiPeng-xiang ZhaoXiao-fang WangDidier AstrucMao-bing Shuai . Thermo-reversible MWCNTs/Epoxy Polymer for Use in Self-healing and Recyclable Epoxy Adhesive. Chinese J. Polym. Sci, 2017, 35(6): 728-738. doi: 10.1007/s10118-017-1920-y

    15. [15]

      Ji-Jun WangQiang ZhangXing-Xiang JiLi-Bin Liu . Highly Stretchable, Compressible, Adhesive, Conductive Self-healing Composite Hydrogels with Sensor Capacity

      . Chinese J. Polym. Sci, 2020, 38(11): 1221-1229. doi: 10.1007/s10118-020-2472-0

    16. [16]

      Ji-Yu YangYu XiaJin ZhaoLong-Fei YiYong-Jiao SongHong WuShao-Yun GuoLi-Juan ZhaoJin-Rong Wu . Flame-retardant and Self-healing Biomass Aerogels Based on Electrostatic Assembly. Chinese J. Polym. Sci, 2020, 38(12): 1294-1304. doi: 10.1007/s10118-020-2444-4

    17. [17]

      Xiao-ju LuXiang-yu YangYuan MengShao-zhen Li . Temperature and pH Dually-responsive Poly (β-amino ester) Nanoparticles for Drug Delivery. Chinese J. Polym. Sci, 2017, 35(4): 534-546. doi: 10.1007/s10118-017-1916-7

    18. [18]

      Zi-Jian LiJiang ZhongMao-Chen LiuJin-Chuang RongKun YangJi-Yong ZhouLiang ShenFei GaoHai-Feng He . Investigation on Self-healing Property of Epoxy Resins Based on Disulfide Dynamic Links. Chinese J. Polym. Sci, 2020, 38(9): 932-940. doi: 10.1007/s10118-020-2406-x

    19. [19]

      Yong ZhuJing-Li GaoLin-Jun ZhangYan PengHao WangFang-Wei LingGuang-Su HuangJin-Rong Wu . An Interfacial Dynamic Crosslinking Approach toward Catalyst-free and Mechanically Robust Elastomeric Vitrimer with a Segregated Structure. Chinese J. Polym. Sci, 2021, 39(2): 201-210. doi: 10.1007/s10118-020-2479-6

    20. [20]

      Xiao-ying LiuMing ZhongFu-kuan ShiHao XuXu-ming Xie . Multi-bond Network Hydrogels with Robust Mechanical and Self-healable Properties. Chinese J. Polym. Sci, 2017, 35(10): 1253-1267. doi: 10.1007/s10118-017-1971-0

Article Metrics
  • PDF Downloads(1)
  • Abstract views(567)
  • HTML views(257)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return