Citation: Fang, W. Z.; Peng, L.; Liu, Y. J.; Wang, F.; Xu, Z.; Gao, C. A review on graphene oxide two-dimensional macromolecules: from single molecules to macro-assembly. Chinese J. Polym. Sci. 2021, 39, 267–308 doi: 10.1007/s10118-021-2515-1 shu

A Review on Graphene Oxide Two-dimensional Macromolecules: from Single Molecules to Macro-assembly

  • Author Bio: Chao Gao received his Ph.D. degree from Shanghai Jiao Tong University (SJTU) in 2001. He was appointed as an Associate Professor at SJTU in 2002. He did postdoctoral research at the University of Sussex with Prof. Sir Harry Kroto and AvH research at the Bayreuth University with Prof. Axel H. E. Müller. He joined the Department of Polymer Science and Engineering, Zhejiang University, in 2008 and was promoted as a Qiushi Distinguished Professor in 2014. He leads a Nanopolymer group working on graphene chemistry, macroscopic assembly, and energy storage
  • Corresponding author: Chao Gao, E-mail:
  • Received Date: 2020-08-28
    Available Online: 2020-11-26

Figures(27) / Tables(3)

  • Graphene oxide (GO), which consists of two-dimensional (2D) sp2 carbon hexagonal networks and oxygen-contained functional groups, has laid the foundation of mass production and applications of graphene materials. Made by chemical oxidation of graphite, GO is highly dispersible or even solubilized in water and polar organic solvents, which resolves the hard problem of graphene processing and opens a door to wet-processing of graphene. Despite its defects, GO is easy to functionalize, dope, punch holes, cut into pieces, conduct chemical reduction, form lyotropic liquid crystal, and assemble into macroscopic materials with tunable structures and properties as a living building block. GO sheet has been viewed as a single molecule, a particle, as well as a soft polymer material. An overview on GO as a 2D macromolecule is essential for studying its intrinsic properties and guiding the development of relevant subjects. This review mainly focuses on recent advances of GO sheets, from single macromolecular behavior to macro-assembled graphene material properties. The first part of this review offers a brief introduction to the synthesis of GO molecules. Then the chemical structure and physical properties of GO are presented, as well as its polarity in solvent and rheology behavior. Several key parameters governing the ultimate stability of GO colloidal behavior, including size, pH and the presence of cation in aqueous dispersions, are highlighted. Furthermore, the discovery of GO liquid crystal and functionalization of GO molecules have built solid new foundations of preparing highly ordered, architecture-tunable, macro-assembled graphene materials, including 1D graphene fibers, 2D graphene films, and 3D graphene architectures. The GO-based composites are also viewed and the interactions between these target materials and GO are carefully discussed. Finally, an outlook is provided in this field, where GO is regarded as macromolecules, pointing out the challenges and opportunities that exist in the field. We hope that this review will be beneficial to the understanding of GO in terms of chemical structure, molecular properties, macro-assembly and potential applications, and encourage further development to extend its investigations from basic research to practical applications.
  • 加载中
    1. [1]

      Xu, Z.; Gao, C. Graphene in macroscopic order: liquid crystals and wet-spun fibers. Acc. Chem. Res. 2014, 47, 1267−1276. doi: 10.1021/ar4002813

    2. [2]

      Dai, L. Functionalization of graphene for efficient energy conversion and storage. Acc. Chem. Res. 2013, 46, 31−42. doi: 10.1021/ar300122m

    3. [3]

      Radha, B.; Esfandiar, A.; Wang, F. C.; Rooney, A. P.; Gopinadhan, K.; Keerthi, A.; Mishchenko, A.; Janardanan, A.; Blake, P.; Fumagalli, L.; Lozada-Hidalgo, M.; Garaj, S.; Haigh, S. J.; Grigorieva, I. V.; Wu, H. A.; Geim, A. K. Molecular transport through capillaries made with atomic-scale precision. Nature 2016, 538, 222−225. doi: 10.1038/nature19363

    4. [4]

      Lozada-Hidalgo, M.; Zhang, S.; Hu, S.; Kravets, V. G.; Rodriguez, F. J.; Berdyugin, A.; Grigorenko, A.; Geim, A. K. Giant photoeffect in proton transport through graphene membranes. Nat. Nanotechnol. 2018, 13, 300−303. doi: 10.1038/s41565-017-0051-5

    5. [5]

      Nedoliuk, I. O.; Hu, S.; Geim, A. K.; Kuzmenko, A. B. Colossal infrared and terahertz magneto-optical activity in a two-dimensional Dirac material. Nat. Nanotechnol. 2019, 14, 756−761. doi: 10.1038/s41565-019-0489-8

    6. [6]

      Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183−191. doi: 10.1038/nmat1849

    7. [7]

      Khan, M. B.; Parvaz, M.; Khan, Z. H., Graphene oxide: synthesis and characterization. In Recent trends in nanomaterials: synthesis and properties. Khan, Z. H. Ed., Springer Singapore, Singapore, 2017, pp. 1−28.

    8. [8]

      Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339−1339. doi: 10.1021/ja01539a017

    9. [9]

      Xu, Z.; Gao, C. Aqueous liquid crystals of graphene oxide. ACS Nano 2011, 5, 2908−2915. doi: 10.1021/nn200069w

    10. [10]

      Kim, J. E.; Han, T. H.; Lee, S. H.; Kim, J. Y.; Ahn, C. W.; Yun, J. M.; Kim, S. O. Graphene oxide liquid crystals. Angew. Chem. Int. Ed. 2011, 50, 3043−3047. doi: 10.1002/anie.201004692

    11. [11]

      McAllister, M. J.; Li, J. L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud'homme, R. K.; Aksay, I. A. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007, 19, 4396−4404. doi: 10.1021/cm0630800

    12. [12]

      Brodie, B. C. XXIII. Researches on the atomic weight of graphite. Q. J. Chem. Soc. 1860, 12, 261−268. doi: 10.1039/QJ8601200261

    13. [13]

      Staudenmaier, L. Verfahren zur darstellung der graphitsäure. Ber. Dtsch. Chem. Ges. 1898, 31, 1481−1487. doi: 10.1002/cber.18980310237

    14. [14]

      Chen, J.; Yao, B.; Li, C.; Shi, G. An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 2013, 64, 225−229. doi: 10.1016/j.carbon.2013.07.055

    15. [15]

      Shen, J.; Hu, Y.; Shi, M.; Lu, X.; Qin, C.; Li, C.; Ye, M. Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets. Chem. Mater. 2009, 21, 3514−3520. doi: 10.1021/cm901247t

    16. [16]

      Chen, J.; Li, Y.; Huang, L.; Li, C.; Shi, G. High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process. Carbon 2015, 81, 826−834. doi: 10.1016/j.carbon.2014.10.033

    17. [17]

      Abdelkader, A. M.; Kinloch, I. A.; Dryfe, R. A. W. High-yield electro-oxidative preparation of graphene oxide. Chem. Commun. 2014, 50, 8402−8404. doi: 10.1039/C4CC03260H

    18. [18]

      Huang, H.; Peng, L.; Fang, W.; Cai, S.; Chu, X.; Liu, Y.; Gao, W.; Xu, Z.; Gao, C. A polyimide-pyrolyzed carbon waste approach for the scalable and controlled electrochemical preparation of size-tunable graphene. Nanoscale 2020, 12, 11971−11978. doi: 10.1039/D0NR00725K

    19. [19]

      Posudievsky, O. Y.; Khazieieva, O. A.; Koshechko, V. G.; Pokhodenko, V. D. Preparation of graphene oxide by solvent-free mechanochemical oxidation of graphite. J. Mater. Chem. 2012, 22, 12465−12467. doi: 10.1039/c2jm16073k

    20. [20]

      Dash, P.; Dash, T.; Rout, T. K.; Sahu, A. K.; Biswal, S. K.; Mishra, B. K. Preparation of graphene oxide by dry planetary ball milling process from natural graphite. RSC Adv. 2016, 6, 12657−12668. doi: 10.1039/C5RA26491J

    21. [21]

      Xu, Z.; Sun, H.; Zhao, X.; Gao, C. Ultrastrong fibers assembled from giant graphene oxide sheets. Adv. Mater. 2013, 25, 188−193. doi: 10.1002/adma.201203448

    22. [22]

      Liu, Z.; Robinson, J. T.; Sun, X.; Dai, H. Pegylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 2008, 130, 10876−10877. doi: 10.1021/ja803688x

    23. [23]

      Wang, X.; Bai, H.; Shi, G. Size fractionation of graphene oxide sheets by pH-assisted selective sedimentation. J. Am. Chem. Soc. 2011, 133, 6338−6342. doi: 10.1021/ja200218y

    24. [24]

      Zhao, J.; Pei, S.; Ren, W.; Gao, L.; Cheng, H. M. Efficient preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano 2010, 4, 5245−5252. doi: 10.1021/nn1015506

    25. [25]

      Pan, S.; Aksay, I. A. Factors controlling the size of graphene oxide sheets produced via the graphite oxide route. ACS Nano 2011, 5, 4073−4083. doi: 10.1021/nn200666r

    26. [26]

      Li, J. L.; Kudin, K. N.; McAllister, M. J.; Prud’homme, R. K.; Aksay, I. A.; Car, R. Oxygen-driven unzipping of graphitic materials. Phys. Rev. Lett. 2006, 96, 176101. doi: 10.1103/PhysRevLett.96.176101

    27. [27]

      Dong, L.; Chen, Z.; Lin, S.; Wang, K.; Ma, C.; Lu, H. Reactivity-controlled preparation of ultralarge graphene oxide by chemical expansion of graphite. Chem. Mater. 2017, 29, 564−572. doi: 10.1021/acs.chemmater.6b03748

    28. [28]

      Su, C. Y.; Xu, Y.; Zhang, W.; Zhao, J.; Tang, X.; Tsai, C. H.; Li, L. J. Electrical and spectroscopic characterizations of ultra-large reduced graphene oxide monolayers. Chem. Mater. 2009, 21, 5674−5680. doi: 10.1021/cm902182y

    29. [29]

      Qi, X.; Zhou, T.; Deng, S.; Zong, G.; Yao, X.; Fu, Q. Size-specified graphene oxide sheets: ultrasonication assisted preparation and characterization. J. Mater. Sci. 2014, 49, 1785−1793. doi: 10.1007/s10853-013-7866-8

    30. [30]

      Chen, J.; Zhang, X.; Zheng, X.; Liu, C.; Cui, X.; Zheng, W. Size distribution-controlled preparation of graphene oxide nanosheets with different C/O ratios. Mater. Chem. Phys. 2013, 139, 8−11. doi: 10.1016/j.matchemphys.2012.12.025

    31. [31]

      Khan, U.; O’Neill, A.; Porwal, H.; May, P.; Nawaz, K.; Coleman, J. N. Size selection of dispersed, exfoliated graphene flakes by controlled centrifugation. Carbon 2012, 50, 470−475. doi: 10.1016/j.carbon.2011.09.001

    32. [32]

      Xu, X.; Liu, L.; Geng, H.; Wang, J.; Zhou, J.; Jiang, Y.; Doi, M. Directional freezing of binary colloidal suspensions: a model for size fractionation of graphene oxide. Soft Matter 2019, 15, 243−251. doi: 10.1039/C8SM01626G

    33. [33]

      Geng, H.; Yao, B.; Zhou, J.; Liu, K.; Bai, G.; Li, W.; Song, Y.; Shi, G.; Doi, M.; Wang, J. Size fractionation of graphene oxide nanosheets via controlled directional freezing. J. Am. Chem. Soc. 2017, 139, 12517−12523. doi: 10.1021/jacs.7b05490

    34. [34]

      Chen, J.; Li, Y.; Huang, L.; Jia, N.; Li, C.; Shi, G. Size fractionation of graphene oxide sheets via filtration through track-etched membranes. Adv. Mater. 2015, 27, 3654−3660. doi: 10.1002/adma.201501271

    35. [35]

      Zhang, W.; Zou, X.; Li, H.; Hou, J.; Zhao, J.; Lan, J.; Feng, B.; Liu, S. Size fractionation of graphene oxide sheets by the polar solvent-selective natural deposition method. RSC Adv. 2015, 5, 146−152. doi: 10.1039/C4RA08516G

    36. [36]

      Davardoostmanesh, M.; Goharshadi, E. K.; Ahmadzadeh, H. Electrophoretic size fractionation of graphene oxide nanosheets. New J. Chem. 2019, 43, 5047−5054. doi: 10.1039/C8NJ06411C

    37. [37]

      Zhang, S.; Li, Y.; Sun, J.; Wang, J.; Qin, C.; Dai, L. Size fractionation of graphene oxide sheets assisted by circular flow and their graphene aerogels with size-dependent adsorption. RSC Adv. 2016, 6, 74053−74060. doi: 10.1039/C6RA16363G

    38. [38]

      Liu, F.; Jang, M. H.; Ha, H. D.; Kim, J. H.; Cho, Y. H.; Seo, T. S. Facile synthetic method for pristine graphene quantum dots and graphene oxide quantum dots: origin of blue and green luminescence. Adv. Mater. 2013, 25, 3657−3662. doi: 10.1002/adma.201300233

    39. [39]

      Park, M.; Ha, H. D.; Kim, Y. T.; Jung, J. H.; Kim, S. H.; Kim, D. H.; Seo, T. S. Combination of a sample pretreatment microfluidic device with a photoluminescent graphene oxide quantum dot sensor for trace lead detection. Anal. Chem. 2015, 87, 10969−10975. doi: 10.1021/acs.analchem.5b02907

    40. [40]

      Yeh, T. F.; Teng, C. Y.; Chen, S. J.; Teng, H. Nitrogen-doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination. Adv. Mater. 2014, 26, 3297−3303. doi: 10.1002/adma.201305299

    41. [41]

      Erickson, K.; Erni, R.; Lee, Z.; Alem, N.; Gannett, W.; Zettl, A. Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv. Mater. 2010, 22, 4467−4472. doi: 10.1002/adma.201000732

    42. [42]

      Chen, H.; Du, W.; Liu, J.; Qu, L.; Li, C. Efficient room-temperature production of high-quality graphene by introducing removable oxygen functional groups to the precursor. Chem. Sci. 2019, 10, 1244−1253. doi: 10.1039/C8SC03695K

    43. [43]

      Wang, X.; Jiao, L.; Sheng, K.; Li, C.; Dai, L.; Shi, G. Solution-processable graphene nanomeshes with controlled pore structures. Sci. Rep. 2013, 3, 1996. doi: 10.1038/srep01996

    44. [44]

      Zhou, S.; Kim, S.; Bongiorno, A. Chemical structure of oxidized multilayer epitaxial graphene: a density functional theory study. J. Phys. Chem. C 2013, 117, 6267−6274. doi: 10.1021/jp400128t

    45. [45]

      Lee, V.; Dennis, R. V.; Schultz, B. J.; Jaye, C.; Fischer, D. A.; Banerjee, S. Soft X-ray absorption spectroscopy studies of the electronic structure recovery of graphene oxide upon chemical defunctionalization. J. Phys. Chem. C 2012, 116, 20591−20599. doi: 10.1021/jp306497f

    46. [46]

      Paredes, J. I.; Villar-Rodil, S.; Martínez-Alonso, A.; Tascón, J. M. D. Graphene oxide dispersions in organic solvents. Langmuir 2008, 24, 10560−10564. doi: 10.1021/la801744a

    47. [47]

      Neklyudov, V. V.; Agieienko, V. N.; Ziganshin, M. A.; Dimiev, A. M. On the solvation behavior of graphene oxide in ethylene glycol/water mixtures. ChemPhysChem 2018, 19, 1344−1348. doi: 10.1002/cphc.201800042

    48. [48]

      Kim, D. H.; Yun, Y. S.; Jin, H. J. Difference of dispersion behavior between graphene oxide and oxidized carbon nanotubes in polar organic solvents. Curr. Appl. Phys. 2012, 12, 637−642. doi: 10.1016/j.cap.2011.09.015

    49. [49]

      Konios, D.; Stylianakis, M. M.; Stratakis, E.; Kymakis, E. Dispersion behaviour of graphene oxide and reduced graphene oxide. J. Colloid Interf. Sci. 2014, 430, 108−112. doi: 10.1016/j.jcis.2014.05.033

    50. [50]

      Park, S.; An, J.; Jung, I.; Piner, R. D.; An, S. J.; Li, X.; Velamakanni, A.; Ruoff, R. S. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett. 2009, 9, 1593−1597. doi: 10.1021/nl803798y

    51. [51]

      Neklyudov, V. V.; Khafizov, N. R.; Sedov, I. A.; Dimiev, A. M. New insights into the solubility of graphene oxide in water and alcohols. Phys. Chem. Chem. Phys. 2017, 19, 17000−17008. doi: 10.1039/C7CP02303K

    52. [52]

      Kim, J.; Cote, L. J.; Kim, F.; Yuan, W.; Shull, K. R.; Huang, J. Graphene oxide sheets at interfaces. J. Am. Chem. Soc. 2010, 132, 8180−8186. doi: 10.1021/ja102777p

    53. [53]

      Luo, J.; Cote, L. J.; Tung, V. C.; Tan, A. T. L.; Goins, P. E.; Wu, J.; Huang, J. Graphene oxide nanocolloids. J. Am. Chem. Soc. 2010, 132, 17667−17669. doi: 10.1021/ja1078943

    54. [54]

      Kim, F.; Cote, L. J.; Huang, J. Graphene oxide: surface activity and two-dimensional assembly. Adv. Mater. 2010, 22, 1954−1958. doi: 10.1002/adma.200903932

    55. [55]

      Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101−105. doi: 10.1038/nnano.2007.451

    56. [56]

      Bepete, G.; Anglaret, E.; Ortolani, L.; Morandi, V.; Huang, K.; Pénicaud, A.; Drummond, C. Surfactant-free single-layer graphene in water. Nat. Chem. 2017, 9, 347−352. doi: 10.1038/nchem.2669

    57. [57]

      Bai, G.; Gao, D.; Liu, Z.; Zhou, X.; Wang, J. Probing the critical nucleus size for ice formation with graphene oxide nanosheets. Nature 2019, 576, 437−441. doi: 10.1038/s41586-019-1827-6

    58. [58]

      Koltonow, A. R.; Luo, C.; Luo, J.; Huang, J. Graphene oxide sheets in solvents: to crumple or not to crumple? ACS Omega 2017, 2, 8005−8009. doi: 10.1021/acsomega.7b01647

    59. [59]

      Tang, B.; Yun, X.; Xiong, Z.; Wang, X. Formation of graphene oxide nanoscrolls in organic solvents: toward scalable device fabrication. ACS Appl. Nano Mater. 2018, 1, 686−697. doi: 10.1021/acsanm.7b00160

    60. [60]

      Tang, B.; Xiong, Z.; Yun, X.; Wang, X. Rolling up graphene oxide sheets through solvent-induced self-assembly in dispersions. Nanoscale 2018, 10, 4113−4122. doi: 10.1039/C7NR08415C

    61. [61]

      Tang, B.; Gao, E.; Xiong, Z.; Dang, B.; Xu, Z.; Wang, X. Transition of graphene oxide from nanomembrane to nanoscroll mediated by organic solvent in dispersion. Chem. Mater. 2018, 30, 5951−5960. doi: 10.1021/acs.chemmater.8b02083

    62. [62]

      Chen, C.; Xu, Z.; Han, Y.; Sun, H.; Gao, C. Redissolution of flower-shaped graphene oxide powder with high density. ACS Appl. Mater. Interfaces 2016, 8, 8000−8007. doi: 10.1021/acsami.6b00126

    63. [63]

      Zhang, M.; Wang, Y.; Huang, L.; Xu, Z.; Li, C.; Shi, G. Multifunctional pristine chemically modified graphene films as strong as stainless steel. Adv. Mater. 2015, 27, 6708−6713. doi: 10.1002/adma.201503045

    64. [64]

      Deng, S.; Berry, V. Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications. Mater. Today 2016, 19, 197−212. doi: 10.1016/j.mattod.2015.10.002

    65. [65]

      Ma, X.; Zachariah, M. R.; Zangmeister, C. D. Crumpled nanopaper from graphene oxide. Nano Lett. 2012, 12, 486−489. doi: 10.1021/nl203964z

    66. [66]

      Lee, W. K.; Kang, J.; Chen, K. S.; Engel, C. J.; Jung, W. B.; Rhee, D.; Hersam, M. C.; Odom, T. W. Multiscale, hierarchical patterning of graphene by conformal wrinkling. Nano Lett. 2016, 16, 7121−7127. doi: 10.1021/acs.nanolett.6b03415

    67. [67]

      Xiao, Y.; Xu, Z.; Liu, Y.; Peng, L.; Xi, J.; Fang, B.; Guo, F.; Li, P.; Gao, C. Sheet collapsing approach for rubber-like graphene papers. ACS Nano 2017, 11, 8092−8102. doi: 10.1021/acsnano.7b02915

    68. [68]

      Abraham, F. F.; Kardar, M. Folding and unbinding transitions in tethered membranes. Science 1991, 252, 419. doi: 10.1126/science.252.5004.419

    69. [69]

      Wen, X.; Garland, C. W.; Hwa, T.; Kardar, M.; Kokufuta, E.; Li, Y.; Orkisz, M.; Tanaka, T. Crumpled and collapsed conformation in graphite oxide membranes. Nature 1992, 355, 426−428. doi: 10.1038/355426a0

    70. [70]

      Bowick, M.; Falcioni, M.; Thorleifsson, G. Numerical observation of a tubular phase in anisotropic membranes. Phys. Rev. Lett. 1997, 79, 885−888. doi: 10.1103/PhysRevLett.79.885

    71. [71]

      Wang, Y.; Wang, S. J.; Li, P.; Rajendran, S.; Xu, Z.; Liu, S. P.; Guo, F.; He, Y. H.; Li, Z. S.; Xu, Z. P.; Gao, C. Conformational phase map of two-dimensional macromolecular graphene oxide in solution. Matter 2020, 3, 230−245. doi: 10.1016/j.matt.2020.04.023

    72. [72]

      Shih, C. J.; Lin, S.; Sharma, R.; Strano, M. S.; Blankschtein, D. Understanding the pH-dependent behavior of graphene oxide aqueous solutions: a comparative experimental and molecular dynamics simulation study. Langmuir 2012, 28, 235−241. doi: 10.1021/la203607w

    73. [73]

      Wu, L.; Liu, L.; Gao, B.; Muñoz-Carpena, R.; Zhang, M.; Chen, H.; Zhou, Z.; Wang, H. Aggregation kinetics of graphene oxides in aqueous solutions: experiments, mechanisms, and modeling. Langmuir 2013, 29, 15174−15181. doi: 10.1021/la404134x

    74. [74]

      Chowdhury, I.; Duch, M. C.; Mansukhani, N. D.; Hersam, M. C.; Bouchard, D. Colloidal properties and stability of graphene oxide nanomaterials in the aquatic environment. Environ. Sci. Technol. 2013, 47, 6288−6296. doi: 10.1021/es400483k

    75. [75]

      Yang, K.; Chen, B.; Zhu, X.; Xing, B. Aggregation, adsorption, and morphological transformation of graphene oxide in aqueous solutions containing different metal cations. Environ. Sci. Technol. 2016, 50, 11066−11075. doi: 10.1021/acs.est.6b04235

    76. [76]

      Gudarzi, M. M. Colloidal stability of graphene oxide: aggregation in two dimensions. Langmuir 2016, 32, 5058−5068. doi: 10.1021/acs.langmuir.6b01012

    77. [77]

      Yeh, C. N.; Raidongia, K.; Shao, J.; Yang, Q. H.; Huang, J. On the origin of the stability of graphene oxide membranes in water. Nat. Chem. 2015, 7, 166−170. doi: 10.1038/nchem.2145

    78. [78]

      Guo, F.; Jiang, Y.; Xu, Z.; Xiao, Y.; Fang, B.; Liu, Y.; Gao, W.; Zhao, P.; Wang, H.; Gao, C. Highly stretchable carbon aerogels. Nat. Commun. 2018, 9, 881. doi: 10.1038/s41467-018-03268-y

    79. [79]

      He, Y.; Liu, Y.; Guo, F.; Pang, K.; Fang, B.; Wang, Y.; Chang, D.; Xu, Z.; Gao, C. Dynamic dispersion stability of graphene oxide with metal ions. Chin. Chem. Lett. 2020, 31, 1625−1629. doi: 10.1016/j.cclet.2019.10.010

    80. [80]

      Del, Giudice F.; Shen, A. Q. Shear rheology of graphene oxide dispersions. Curr. Opin. Chem. Eng. 2017, 16, 23−30. doi: 10.1016/j.coche.2017.04.003

    81. [81]

      Naficy, S.; Jalili, R.; Aboutalebi, S. H.; Gorkin Iii, R. A.; Konstantinov, K.; Innis, P. C.; Spinks, G. M.; Poulin, P.; Wallace, G. G. Graphene oxide dispersions: tuning rheology to enable fabrication. Mater. Horiz. 2014, 1, 326−331. doi: 10.1039/C3MH00144J

    82. [82]

      Tesfai, W.; Singh, P.; Shatilla, Y.; Iqbal, M. Z.; Abdala, A. A. Rheology and microstructure of dilute graphene oxide suspension. J. Nanopart. Res. 2013, 15, 1989. doi: 10.1007/s11051-013-1989-3

    83. [83]

      Vallés, C.; Young, R. J.; Lomax, D. J.; Kinloch, I. A. The rheological behaviour of concentrated dispersions of graphene oxide. J. Mater. Sci. 2014, 49, 6311−6320. doi: 10.1007/s10853-014-8356-3

    84. [84]

      Jiang, Y.; Xu, Z.; Huang, T.; Liu, Y.; Guo, F.; Xi, J.; Gao, W.; Gao, C. Direct 3D printing of ultralight graphene oxide aerogel microlattices. Adv. Funct. Mater. 2018, 28, 1707024. doi: 10.1002/adfm.201707024

    85. [85]

      Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558−1565. doi: 10.1016/j.carbon.2007.02.034

    86. [86]

      Fan, X.; Peng, W.; Li, Y.; Li, X.; Wang, S.; Zhang, G.; Zhang, F. Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv. Mater. 2008, 20, 4490−4493. doi: 10.1002/adma.200801306

    87. [87]

      Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2008, 2, 463−470. doi: 10.1021/nn700375n

    88. [88]

      Pei, S.; Zhao, J.; Du, J.; Ren, W.; Cheng, H. M. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 2010, 48, 4466−4474. doi: 10.1016/j.carbon.2010.08.006

    89. [89]

      Haubner, K.; Murawski, J.; Olk, P.; Eng, L. M.; Ziegler, C.; Adolphi, B.; Jaehne, E. The route to functional graphene oxide. ChemPhysChem 2010, 11, 2131−2139. doi: 10.1002/cphc.201000132

    90. [90]

      Yang, D.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice, C. A.; Ruoff, R. S. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon 2009, 47, 145−152. doi: 10.1016/j.carbon.2008.09.045

    91. [91]

      Wu, J. B.; Lin, M. L.; Cong, X.; Liu, H. N.; Tan, P. H. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev. 2018, 47, 1822−1873. doi: 10.1039/C6CS00915H

    92. [92]

      Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 2011, 10, 569−581. doi: 10.1038/nmat3064

    93. [93]

      Song, N. J.; Chen, C. M.; Lu, C.; Liu, Z.; Kong, Q. Q.; Cai, R. Thermally reduced graphene oxide films as flexible lateral heat spreaders. J. Mater. Chem. A 2014, 2, 16563−16568. doi: 10.1039/C4TA02693D

    94. [94]

      Xin, G.; Yao, T.; Sun, H.; Scott, S. M.; Shao, D.; Wang, G.; Lian, J. Highly thermally conductive and mechanically strong graphene fibers. Science 2015, 349, 1083−1087. doi: 10.1126/science.aaa6502

    95. [95]

      Peng, L.; Xu, Z.; Liu, Z.; Guo, Y.; Li, P.; Gao, C. Ultrahigh thermal conductive yet superflexible graphene films. Adv. Mater. 2017, 29, 1700589. doi: 10.1002/adma.201700589

    96. [96]

      Williams, G.; Seger, B.; Kamat, P. V. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2008, 2, 1487−1491. doi: 10.1021/nn800251f

    97. [97]

      Williams, G.; Kamat, P. V. Graphene-semiconductor nanocomposites: excited-state interactions between ZnO nanoparticles and graphene oxide. Langmuir 2009, 25, 13869−13873. doi: 10.1021/la900905h

    98. [98]

      Ng, Y. H.; Iwase, A.; Kudo, A.; Amal, R. Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting. J. Phys. Chem. Lett. 2010, 1, 2607−2612. doi: 10.1021/jz100978u

    99. [99]

      Liu, Y.; Li, P.; Wang, F.; Fang, W.; Xu, Z.; Gao, W.; Gao, C. Rapid roll-to-roll production of graphene films using intensive Joule heating. Carbon 2019, 155, 462−468. doi: 10.1016/j.carbon.2019.09.021

    100. [100]

      Zhang, Y.; Guo, L.; Wei, S.; He, Y.; Xia, H.; Chen, Q.; Sun, H. B.; Xiao, F. S. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nano Today 2010, 5, 15−20. doi: 10.1016/j.nantod.2009.12.009

    101. [101]

      Voiry, D.; Yang, J.; Kupferberg, J.; Fullon, R.; Lee, C.; Jeong, H. Y.; Shin, H. S.; Chhowalla, M. High-quality graphene via microwave reduction of solution-exfoliated graphene oxide. Science 2016, 353, 1413. doi: 10.1126/science.aah3398

    102. [102]

      Chen, Y.; Fu, K.; Zhu, S.; Luo, W.; Wang, Y.; Li, Y.; Hitz, E.; Yao, Y.; Dai, J.; Wan, J.; Danner, V. A.; Li, T.; Hu, L. Reduced graphene oxide films with ultrahigh conductivity as Li-ion battery current collectors. Nano Lett. 2016, 16, 3616−3623. doi: 10.1021/acs.nanolett.6b00743

    103. [103]

      Wang, Z.; Zhou, X.; Zhang, J.; Boey, F.; Zhang, H. Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase. J. Phys. Chem. C 2009, 113, 14071−14075. doi: 10.1021/jp906348x

    104. [104]

      An, S. J.; Zhu, Y.; Lee, S. H.; Stoller, M. D.; Emilsson, T.; Park, S.; Velamakanni, A.; An, J.; Ruoff, R. S. Thin film fabrication and simultaneous anodic reduction of deposited graphene oxide platelets by electrophoretic deposition. J. Phys. Chem. Lett. 2010, 1, 1259−1263. doi: 10.1021/jz100080c

    105. [105]

      Zhou, M.; Wang, Y.; Zhai, Y.; Zhai, J.; Ren, W.; Wang, F.; Dong, S. Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chem. Eur. J. 2009, 15, 6116−6120. doi: 10.1002/chem.200900596

    106. [106]

      Johns, J. E.; Hersam, M. C. Atomic covalent functionalization of graphene. Acc. Chem. Res. 2013, 46, 77−86. doi: 10.1021/ar300143e

    107. [107]

      Li, X.; Wang, H.; Robinson, J. T.; Sanchez, H.; Diankov, G.; Dai, H. Simultaneous nitrogen doping and reduction of graphene oxide. J. Am. Chem. Soc. 2009, 131, 15939−15944. doi: 10.1021/ja907098f

    108. [108]

      Sheng, Z. H.; Shao, L.; Chen, J. J.; Bao, W. J.; Wang, F. B.; Xia, X. H. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 2011, 5, 4350−4358. doi: 10.1021/nn103584t

    109. [109]

      Kumar, N. A.; Nolan, H.; McEvoy, N.; Rezvani, E.; Doyle, R. L.; Lyons, M. E. G.; Duesberg, G. S. Plasma-assisted simultaneous reduction and nitrogen doping of graphene oxide nanosheets. J. Mater. Chem. A 2013, 1, 4431−4435. doi: 10.1039/c3ta10337d

    110. [110]

      Zhang, H.; Kuila, T.; Kim, N. H.; Yu, D. S.; Lee, J. H. Simultaneous reduction, exfoliation, and nitrogen doping of graphene oxide via a hydrothermal reaction for energy storage electrode materials. Carbon 2014, 69, 66−78. doi: 10.1016/j.carbon.2013.11.059

    111. [111]

      Wang, X.; Wang, J.; Wang, D.; Dou, S.; Ma, Z.; Wu, J.; Tao, L.; Shen, A.; Ouyang, C.; Liu, Q.; Wang, S. One-pot synthesis of nitrogen and sulfur co-doped graphene as efficient metal-free electrocatalysts for the oxygen reduction reaction. Chem. Commun. 2014, 50, 4839−4842. doi: 10.1039/C4CC00440J

    112. [112]

      Yu, Q.; Xu, J.; Wan, C.; Wu, C.; Guan, L. Porous cobalt-nitrogen-doped hollow graphene spheres as a superior electrocatalyst for enhanced oxygen reduction in both alkaline and acidic solutions. J. Mater. Chem. A 2015, 3, 16419−16423. doi: 10.1039/C5TA04852D

    113. [113]

      Xu, K.; Fu, Y.; Zhou, Y.; Hennersdorf, F.; Machata, P.; Vincon, I.; Weigand, J. J.; Popov, A. A.; Berger, R.; Feng, X. Cationic nitrogen-doped helical nanographenes. Angew. Chem. Int. Ed. 2017, 56, 15876−15881. doi: 10.1002/anie.201707714

    114. [114]

      Lee, S. H.; Kim, H. W.; Hwang, J. O.; Lee, W. J.; Kwon, J.; Bielawski, C. W.; Ruoff, R. S.; Kim, S. O. Three-dimensional self-assembly of graphene oxide platelets into mechanically flexible macroporous carbon films. Angew. Chem. Int. Ed. 2010, 122, 10282−10286. doi: 10.1002/ange.201006240

    115. [115]

      Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652−655. doi: 10.1038/nmat1967

    116. [116]

      Melucci, M.; Treossi, E.; Ortolani, L.; Giambastiani, G.; Morandi, V.; Klar, P.; Casiraghi, C.; Samorì, P.; Palermo, V. Facile covalent functionalization of graphene oxide using microwaves: bottom-up development of functional graphitic materials. J. Mater. Chem. 2010, 20, 9052−9060. doi: 10.1039/c0jm01242d

    117. [117]

      Liu, H.; Xi, P.; Xie, G.; Shi, Y.; Hou, F.; Huang, L.; Chen, F.; Zeng, Z.; Shao, C.; Wang, J. Simultaneous reduction and surface functionalization of graphene oxide for hydroxyapatite mineralization. J. Phys. Chem. C 2012, 116, 3334−3341. doi: 10.1021/jp2102226

    118. [118]

      Xue, Y.; Liu, Y.; Lu, F.; Qu, J.; Chen, H.; Dai, L. Functionalization of graphene oxide with polyhedral oligomeric silsesquioxane (POSS) for multifunctional applications. J. Phys. Chem. Lett. 2012, 3, 1607−1612. doi: 10.1021/jz3005877

    119. [119]

      Kang, S. M.; Park, S.; Kim, D.; Park, S. Y.; Ruoff, R. S.; Lee, H. Simultaneous reduction and surface functionalization of graphene oxide by mussel-inspired chemistry. Adv. Funct. Mater. 2011, 21, 108−112. doi: 10.1002/adfm.201001692

    120. [120]

      Lin, Y.; Jin, J.; Song, M. Preparation and characterisation of covalent polymer functionalized graphene oxide. J. Mater. Chem. 2011, 21, 3455−3461. doi: 10.1039/C0JM01859G

    121. [121]

      Ou, J.; Wang, J.; Liu, S.; Mu, B.; Ren, J.; Wang, H.; Yang, S. Tribology study of reduced graphene oxide sheets on silicon substrate synthesized via covalent assembly. Langmuir 2010, 26, 15830−15836. doi: 10.1021/la102862d

    122. [122]

      Sonin, A. S. Inorganic lyotropic liquid crystals. J. Mater. Chem. 1998, 8, 2557−2574. doi: 10.1039/a802666a

    123. [123]

      Davidson, P.; Gabriel, J. C. P. Mineral liquid crystals. Curr. Opin. Colloid Interface Sci. 2005, 9, 377−383. doi: 10.1016/j.cocis.2004.12.001

    124. [124]

      Emerson, W. W. Liquid crystals of montmorillonite. Nature 1956, 178, 1248−1249. doi: 10.1038/1781248a0

    125. [125]

      Thiele, H. Viskosität und gelbildung der graphitsäure. Kolloid-Z. 1948, 111, 15−19. doi: 10.1007/BF01522013

    126. [126]

      Dan, B.; Behabtu, N.; Martinez, A.; Evans, J. S.; Kosynkin, D. V.; Tour, J. M.; Pasquali, M.; Smalyukh, I. I. Liquid crystals of aqueous, giant graphene oxide flakes. Soft Matter 2011, 7, 11154−11159. doi: 10.1039/c1sm06418e

    127. [127]

      Zamora-Ledezma, C.; Puech, N.; Zakri, C.; Grelet, E.; Moulton, S. E.; Wallace, G. G.; Gambhir, S.; Blanc, C.; Anglaret, E.; Poulin, P. Liquid crystallinity and dimensions of surfactant-stabilized sheets of reduced graphene oxide. J. Phys. Chem. Lett. 2012, 3, 2425−2430. doi: 10.1021/jz3008479

    128. [128]

      Jalili, R.; Aboutalebi, S. H.; Esrafilzadeh, D.; Konstantinov, K.; Moulton, S. E.; Razal, J. M.; Wallace, G. G. Organic solvent-based graphene oxide liquid crystals: a facile route toward the next generation of self-assembled layer-by-layer multifunctional 3D architectures. ACS Nano 2013, 7, 3981−3990. doi: 10.1021/nn305906z

    129. [129]

      Gudarzi, M. M.; Moghadam, M. H. M.; Sharif, F. Spontaneous exfoliation of graphite oxide in polar aprotic solvents as the route to produce graphene oxide-organic solvents liquid crystals. Carbon 2013, 64, 403−415. doi: 10.1016/j.carbon.2013.07.093

    130. [130]

      Onsager, L. The effects of shape on the interaction of colloidal particles. Ann. N. Y. Acad. Sci. 1949, 51, 627−659. doi: 10.1111/j.1749-6632.1949.tb27296.x

    131. [131]

      Aboutalebi, S. H.; Gudarzi, M. M.; Zheng, Q. B.; Kim, J. K. Spontaneous formation of liquid crystals in ultralarge graphene oxide dispersions. Adv. Funct. Mater. 2011, 21, 2978−2988. doi: 10.1002/adfm.201100448

    132. [132]

      Kumar, P.; Maiti, U. N.; Lee, K. E.; Kim, S. O. Rheological properties of graphene oxide liquid crystal. Carbon 2014, 80, 453−461. doi: 10.1016/j.carbon.2014.08.085

    133. [133]

      Xu, Z.; Gao, C. Graphene chiral liquid crystals and macroscopic assembled fibres. Nat. Commun. 2011, 2, 571. doi: 10.1038/ncomms1583

    134. [134]

      Jiang, Y.; Guo, F.; Xu, Z.; Gao, W.; Gao, C. Artificial colloidal liquid metacrystals by shearing microlithography. Nat. Commun. 2019, 10, 4111. doi: 10.1038/s41467-019-11941-z

    135. [135]

      Liu, Z.; Xu, Z.; Hu, X.; Gao, C. Lyotropic liquid crystal of polyacrylonitrile-grafted graphene oxide and its assembled continuous strong nacre-mimetic fibers. Macromolecules 2013, 46, 6931−6941. doi: 10.1021/ma400681v

    136. [136]

      Yao, B.; Chen, J.; Huang, L.; Zhou, Q.; Shi, G. Base-induced liquid crystals of graphene oxide for preparing elastic graphene foams with long-range ordered microstructures. Adv. Mater. 2016, 28, 1623−1629. doi: 10.1002/adma.201504594

    137. [137]

      Shen, T. Z.; Hong, S. H.; Song, J. K. Electro-optical switching of graphene oxide liquid crystals with an extremely large Kerr coefficient. Nat. Mater. 2014, 13, 394−399. doi: 10.1038/nmat3888

    138. [138]

      Wang, B.; Liu, J.; Zhao, Y.; Li, Y.; Xian, W.; Amjadipour, M.; MacLeod, J.; Motta, N. Role of graphene oxide liquid crystals in hydrothermal reduction and supercapacitor performance. ACS Appl. Mater. Interfaces 2016, 8, 22316−22323. doi: 10.1021/acsami.6b05779

    139. [139]

      Guo, F.; Kim, F.; Han, T. H.; Shenoy, V. B.; Huang, J.; Hurt, R. H. Hydration-responsive folding and unfolding in graphene oxide liquid crystal phases. ACS Nano 2011, 5, 8019−8025. doi: 10.1021/nn2025644

    140. [140]

      Park, H.; Lee, K. H.; Kim, Y. B.; Ambade, S. B.; Noh, S. H.; Eom, W.; Hwang, J. Y.; Lee, W. J.; Huang, J.; Han, T. H. Dynamic assembly of liquid crystalline graphene oxide gel fibers for ion transport. Sci. Adv. 2018, 4, eaau2104. doi: 10.1126/sciadv.aau2104

    141. [141]

      Hu, X.; Xu, Z.; Liu, Z.; Gao, C. Liquid crystal self-templating approach to ultrastrong and tough biomimic composites. Sci. Rep. 2013, 3, 2374. doi: 10.1038/srep02374

    142. [142]

      Akbari, A.; Sheath, P.; Martin, S. T.; Shinde, D. B.; Shaibani, M.; Banerjee, P. C.; Tkacz, R.; Bhattacharyya, D.; Majumder, M. Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide. Nat. Commun. 2016, 7, 10891. doi: 10.1038/ncomms10891

    143. [143]

      Zakri, C.; Blanc, C.; Grelet, E.; Zamora-Ledezma, C.; Puech, N.; Anglaret, E.; Poulin, P. Liquid crystals of carbon nanotubes and graphene. Philos. Trans. R. Soc. A 2013, 371, 20120499. doi: 10.1098/rsta.2012.0499

    144. [144]

      Yang, Q.; Xu, Z.; Gao, C. Graphene fiber based supercapacitors: strategies and perspective toward high performances. J. Energy Chem. 2018, 27, 6−11. doi: 10.1016/j.jechem.2017.10.023

    145. [145]

      Fang, B.; Chang, D.; Xu, Z.; Gao, C. A review on graphene fibers: expectations, advances, and prospects. Adv. Mater. 2020, 32, 1902664. doi: 10.1002/adma.201902664

    146. [146]

      Liu, Y.; Xu, Z.; Gao, W.; Cheng, Z.; Gao, C. Graphene and other 2D colloids: liquid crystals and macroscopic fibers. Adv. Mater. 2017, 29, 1606794. doi: 10.1002/adma.201606794

    147. [147]

      Dong, Z.; Jiang, C.; Cheng, H.; Zhao, Y.; Shi, G.; Jiang, L.; Qu, L. Facile fabrication of light, flexible and multifunctional graphene fibers. Adv. Mater. 2012, 24, 1856−1861. doi: 10.1002/adma.201200170

    148. [148]

      Xin, G.; Sun, H.; Hu, T.; Fard, H. R.; Sun, X.; Koratkar, N.; Borca-Tasciuc, T.; Lian, J. Large-area freestanding graphene paper for superior thermal management. Adv. Mater. 2014, 26, 4521−4526. doi: 10.1002/adma.201400951

    149. [149]

      Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Preparation and characterization of graphene oxide paper. Nature 2007, 448, 457. doi: 10.1038/nature06016

    150. [150]

      Xu, Z.; Zhang, Y.; Li, P.; Gao, C. Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores. ACS Nano 2012, 6, 7103−7113. doi: 10.1021/nn3021772

    151. [151]

      Xu, Z.; Liu, Y.; Zhao, X.; Peng, L.; Sun, H.; Xu, Y.; Ren, X.; Jin, C.; Xu, P.; Wang, M.; Gao, C. Ultrastiff and strong graphene fibers via full-scale synergetic defect engineering. Adv. Mater. 2016, 28, 6449−6456. doi: 10.1002/adma.201506426

    152. [152]

      Li, P.; Liu, Y.; Shi, S.; Xu, Z.; Ma, W.; Wang, Z.; Liu, S.; Gao, C. Highly crystalline graphene fibers with superior strength and conductivities by plasticization spinning. Adv. Funct. Mater. 2020, n/a, 2006584.

    153. [153]

      Park, S.; Lee, K. S.; Bozoklu, G.; Cai, W.; Nguyen, S. T.; Ruoff, R. S. Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical cross-linking. ACS Nano 2008, 2, 572−578. doi: 10.1021/nn700349a

    154. [154]

      Ma, T.; Gao, H. L.; Cong, H. P.; Yao, H. B.; Wu, L.; Yu, Z. Y.; Chen, S. M.; Yu, S. H. A bioinspired interface design for improving the strength and electrical conductivity of graphene-based fibers. Adv. Mater. 2018, 30, 1706435. doi: 10.1002/adma.201706435

    155. [155]

      Kim, I. H.; Yun, T.; Kim, J. E.; Yu, H.; Sasikala, S. P.; Lee, K. E.; Koo, S. H.; Hwang, H.; Jung, H. J.; Park, J. Y.; Jeong, H. S.; Kim, S. O. Mussel-inspired defect engineering of graphene liquid crystalline fibers for synergistic enhancement of mechanical strength and electrical conductivity. Adv. Mater. 2018, 30, 1803267. doi: 10.1002/adma.201803267

    156. [156]

      Shin, M. K.; Lee, B.; Kim, S. H.; Lee, J. A.; Spinks, G. M.; Gambhir, S.; Wallace, G. G.; Kozlov, M. E.; Baughman, R. H.; Kim, S. J. Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes. Nat. Commun. 2012, 3, 650. doi: 10.1038/ncomms1661

    157. [157]

      Ni, H.; Xu, F.; Tomsia, A. P.; Saiz, E.; Jiang, L.; Cheng, Q. Robust bioinspired graphene film via π-π cross-linking. ACS Appl. Mater. Interfaces 2017, 9, 24987−24992. doi: 10.1021/acsami.7b07748

    158. [158]

      Zhang, X.; Guo, Y.; Liu, Y.; Li, Z.; Fang, W.; Peng, L.; Zhou, J.; Xu, Z.; Gao, C. Ultrathick and highly thermally conductive graphene films by self-fusion. Carbon 2020, 167, 249−255. doi: 10.1016/j.carbon.2020.05.051

    159. [159]

      Hicks, J.; Behnam, A.; Ural, A. A computational study of tunneling-percolation electrical transport in graphene-based nanocomposites. Appl. Phys. Lett. 2009, 95, 213103. doi: 10.1063/1.3267079

    160. [160]

      Vaneski, A.; Susha, A. S.; Rodríguez-Fernández, J.; Berr, M.; Jäckel, F.; Feldmann, J.; Rogach, A. L. Hybrid colloidal heterostructures of anisotropic semiconductor nanocrystals decorated with noble metals: synthesis and function. Adv. Funct. Mater. 2011, 21, 1547−1556. doi: 10.1002/adfm.201002444

    161. [161]

      Yu, D.; Goh, K.; Wang, H.; Wei, L.; Jiang, W.; Zhang, Q.; Dai, L.; Chen, Y. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage. Nat. Nanotechnol. 2014, 9, 555−562. doi: 10.1038/nnano.2014.93

    162. [162]

      Wang, H.; Wang, C.; Jian, M.; Wang, Q.; Xia, K.; Yin, Z.; Zhang, M.; Liang, X.; Zhang, Y. Superelastic wire-shaped supercapacitor sustaining 850% tensile strain based on carbon nanotube@graphene fiber. Nano Res. 2018, 11, 2347−2356. doi: 10.1007/s12274-017-1782-1

    163. [163]

      Cai, S.; Huang, T.; Chen, H.; Salman, M.; Gopalsamy, K.; Gao, C. Wet-spinning of ternary synergistic coaxial fibers for high performance yarn supercapacitors. J. Mater. Chem. A 2017, 5, 22489−22494. doi: 10.1039/C7TA07937K

    164. [164]

      Choi, S. J.; Yu, H.; Jang, J. S.; Kim, M. H.; Kim, S. J.; Jeong, H. S.; Kim, I. D. Nitrogen-doped single graphene fiber with platinum water dissociation catalyst for wearable humidity sensor. Small 2018, 14, 1703934. doi: 10.1002/smll.201703934

    165. [165]

      Li, G.; Hong, G.; Dong, D.; Song, W.; Zhang, X. Multiresponsive graphene-aerogel-directed phase-change smart fibers. Adv. Mater. 2018, 30, 1801754. doi: 10.1002/adma.201801754

    166. [166]

      Zheng, X.; Zhang, K.; Yao, L.; Qiu, Y.; Wang, S. Hierarchically porous sheath-core graphene-based fiber-shaped supercapacitors with high energy density. J. Mater. Chem. A 2018, 6, 896−907. doi: 10.1039/C7TA08362A

    167. [167]

      Meng, J.; Nie, W.; Zhang, K.; Xu, F.; Ding, X.; Wang, S.; Qiu, Y. Enhancing electrochemical performance of graphene fiber-based supercapacitors by plasma treatment. ACS Appl. Mater. Interfaces 2018, 10, 13652−13659. doi: 10.1021/acsami.8b04438

    168. [168]

      Chen, Z.; Ren, W.; Gao, L.; Liu, B.; Pei, S.; Cheng, H. M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10, 424−428. doi: 10.1038/nmat3001

    169. [169]

      Wu, G.; Tan, P.; Wu, X.; Peng, L.; Cheng, H.; Wang, C. F.; Chen, W.; Yu, Z.; Chen, S. High-performance wearable micro-supercapacitors based on microfluidic-directed nitrogen-doped graphene fiber electrodes. Adv. Funct. Mater. 2017, 27, 1702493. doi: 10.1002/adfm.201702493

    170. [170]

      Zhang, Y.; Li, Y.; Ming, P.; Zhang, Q.; Liu, T.; Jiang, L.; Cheng, Q. Ultrastrong bioinspired graphene-based fibers via synergistic toughening. Adv. Mater. 2016, 28, 2834−2839. doi: 10.1002/adma.201506074

    171. [171]

      Qu, G.; Cheng, J.; Li, X.; Yuan, D.; Chen, P.; Chen, X.; Wang, B.; Peng, H. A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode. Adv. Mater. 2016, 28, 3646−3652. doi: 10.1002/adma.201600689

    172. [172]

      Lu, Z.; Foroughi, J.; Wang, C.; Long, H.; Wallace, G. G. Superelastic hybrid CNT/graphene fibers for wearable energy storage. Adv. Energy Mater. 2018, 8, 1702047. doi: 10.1002/aenm.201702047

    173. [173]

      Kou, L.; Huang, T.; Zheng, B.; Han, Y.; Zhao, X.; Gopalsamy, K.; Sun, H.; Gao, C. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 2014, 5, 3754. doi: 10.1038/ncomms4754

    174. [174]

      Meng, Y.; Zhao, Y.; Hu, C.; Cheng, H.; Hu, Y.; Zhang, Z.; Shi, G.; Qu, L. All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv. Mater. 2013, 25, 2326−2331. doi: 10.1002/adma.201300132

    175. [175]

      Chen, G.; Chen, T.; Hou, K.; Ma, W.; Tebyetekerwa, M.; Cheng, Y.; Weng, W.; Zhu, M. Robust, hydrophilic graphene/cellulose nanocrystal fiber-based electrode with high capacitive performance and conductivity. Carbon 2018, 127, 218−227. doi: 10.1016/j.carbon.2017.11.012

    176. [176]

      Wang, R.; Xu, Z.; Zhuang, J.; Liu, Z.; Peng, L.; Li, Z.; Liu, Y.; Gao, W.; Gao, C. Highly stretchable graphene fibers with ultrafast electrothermal response for low-voltage wearable heaters. Adv. Electron. Mater. 2017, 3, 1600425. doi: 10.1002/aelm.201600425

    177. [177]

      Liu, Y.; Xu, Z.; Zhan, J.; Li, P.; Gao, C. Superb electrically conductive graphene fibers via doping strategy. Adv. Mater. 2016, 28, 7941−7947. doi: 10.1002/adma.201602444

    178. [178]

      Liu, Y.; Liang, H.; Xu, Z.; Xi, J.; Chen, G.; Gao, W.; Xue, M.; Gao, C. Superconducting continuous graphene fibers via calcium intercalation. ACS Nano 2017, 11, 4301−4306. doi: 10.1021/acsnano.7b01491

    179. [179]

      Zhou, Q.; Zhang, M.; Chen, J.; Hong, J. D.; Shi, G. Nitrogen-doped holey graphene film-based ultrafast electrochemical capacitors. ACS Appl. Mater. Interfaces 2016, 8, 20741−20747. doi: 10.1021/acsami.6b05601

    180. [180]

      Yin, S.; Zhang, Y.; Kong, J.; Zou, C.; Li, C. M.; Lu, X.; Ma, J.; Boey, F. Y. C.; Chen, X. Assembly of graphene sheets into hierarchical structures for high-performance energy storage. ACS Nano 2011, 5, 3831−3838. doi: 10.1021/nn2001728

    181. [181]

      Yang, X.; Cheng, C.; Wang, Y.; Qiu, L.; Li, D. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 2013, 341, 534. doi: 10.1126/science.1239089

    182. [182]

      Cai, S.; Bai, T.; Chen, H.; Fang, W.; Xu, Z.; Lai, H.; Huang, T.; Xu, H.; Chu, X.; Ling, J.; Gao, C. Heavy water enables high-voltage aqueous electrochemistry via the deuterium isotope effect. J. Phys. Chem. Lett. 2020, 11, 303−310. doi: 10.1021/acs.jpclett.9b03267

    183. [183]

      Zhang, L.; Ding, Y.; Zhang, C.; Zhou, Y.; Zhou, X.; Liu, Z.; Yu, G. Enabling graphene-oxide-based membranes for large-scale energy storage by controlling hydrophilic microstructures. Chem 2018, 4, 1035−1046. doi: 10.1016/j.chempr.2018.02.003

    184. [184]

      Dong, X.; Xu, H.; Chen, H.; Wang, L.; Wang, J.; Fang, W.; Chen, C.; Salman, M.; Xu, Z.; Gao, C. Commercial expanded graphite as high-performance cathode for low-cost aluminum-ion battery. Carbon 2019, 148, 134−140. doi: 10.1016/j.carbon.2019.03.080

    185. [185]

      Chen, H.; Xu, H.; Wang, S.; Huang, T.; Xi, J.; Cai, S.; Guo, F.; Xu, Z.; Gao, W.; Gao, C. Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life. Sci. Adv. 2017, 3, eaao7233. doi: 10.1126/sciadv.aao7233

    186. [186]

      Chen, H.; Guo, F.; Liu, Y.; Huang, T.; Zheng, B.; Ananth, N.; Xu, Z.; Gao, W.; Gao, C. A defect-free principle for advanced graphene cathode of aluminum-ion battery. Adv. Mater. 2017, 29, 1605958. doi: 10.1002/adma.201605958

    187. [187]

      Chen, L.; Shi, G.; Shen, J.; Peng, B.; Zhang, B.; Wang, Y.; Bian, F.; Wang, J.; Li, D.; Qian, Z.; Xu, G.; Liu, G.; Zeng, J.; Zhang, L.; Yang, Y.; Zhou, G.; Wu, M.; Jin, W.; Li, J.; Fang, H. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 2017, 550, 380−383. doi: 10.1038/nature24044

    188. [188]

      Yang, Q.; Su, Y.; Chi, C.; Cherian, C. T.; Huang, K.; Kravets, V. G.; Wang, F. C.; Zhang, J. C.; Pratt, A.; Grigorenko, A. N.; Guinea, F.; Geim, A. K.; Nair, R. R. Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation. Nat. Mater. 2017, 16, 1198−1202. doi: 10.1038/nmat5025

    189. [189]

      Zhou, K. G.; Vasu, K. S.; Cherian, C. T.; Neek-Amal, M.; Zhang, J. C.; Ghorbanfekr-Kalashami, H.; Huang, K.; Marshall, O. P.; Kravets, V. G.; Abraham, J.; Su, Y.; Grigorenko, A. N.; Pratt, A.; Geim, A. K.; Peeters, F. M.; Novoselov, K. S.; Nair, R. R. Electrically controlled water permeation through graphene oxide membranes. Nature 2018, 559, 236−240. doi: 10.1038/s41586-018-0292-y

    190. [190]

      Wang, J.; Sun, L.; Zou, M.; Gao, W.; Liu, C.; Shang, L.; Gu, Z.; Zhao, Y. Bioinspired shape-memory graphene film with tunable wettability. Sci. Adv. 2017, 3, e1700004. doi: 10.1126/sciadv.1700004

    191. [191]

      Zhou, F.; Tien, H. N.; Xu, W. L.; Chen, J. T.; Liu, Q.; Hicks, E.; Fathizadeh, M.; Li, S.; Yu, M. Ultrathin graphene oxide-based hollow fiber membranes with brush-like CO2-philic agent for highly efficient CO2 capture. Nat. Commun. 2017, 8, 2107. doi: 10.1038/s41467-017-02318-1

    192. [192]

      Zhang, Y. F.; Han, D.; Zhao, Y. H.; Bai, S. L. High-performance thermal interface materials consisting of vertically aligned graphene film and polymer. Carbon 2016, 109, 552−557. doi: 10.1016/j.carbon.2016.08.051

    193. [193]

      Zhang, P.; Li, J.; Lv, L.; Zhao, Y.; Qu, L. Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water. ACS Nano 2017, 11, 5087−5093. doi: 10.1021/acsnano.7b01965

    194. [194]

      Zhang, P.; Liu, F.; Liao, Q.; Yao, H.; Geng, H.; Cheng, H.; Li, C.; Qu, L. A microstructured graphene/poly(N-isopropylacrylamide) membrane for intelligent solar water evaporation. Angew. Chem. Int. Ed. 2018, 57, 16343−16347. doi: 10.1002/anie.201810345

    195. [195]

      Xi, J.; Li, Y.; Zhou, E.; Liu, Y.; Gao, W.; Guo, Y.; Ying, J.; Chen, Z.; Chen, G.; Gao, C. Graphene aerogel films with expansion enhancement effect of high-performance electromagnetic interference shielding. Carbon 2018, 135, 44−51. doi: 10.1016/j.carbon.2018.04.041

    196. [196]

      Zhou, E.; Xi, J.; Guo, Y.; Liu, Y.; Xu, Z.; Peng, L.; Gao, W.; Ying, J.; Chen, Z.; Gao, C. Synergistic effect of graphene and carbon nanotube for high-performance electromagnetic interference shielding films. Carbon 2018, 133, 316−322. doi: 10.1016/j.carbon.2018.03.023

    197. [197]

      Xu, J.; Yuan, G.; Zhu, Q.; Wang, J.; Tang, S.; Gao, L. Enhancing the strength of graphene by a denser grain boundary. ACS Nano 2018, 12, 4529−4535. doi: 10.1021/acsnano.8b00869

    198. [198]

      Liu, R. Y.; Xu, A. W. Byssal threads inspired ionic cross-linked narce-like graphene oxide paper with superior mechanical strength. RSC Adv. 2014, 4, 40390−40395. doi: 10.1039/C4RA08319A

    199. [199]

      Li, P.; Yang, M.; Liu, Y.; Qin, H.; Liu, J.; Xu, Z.; Liu, Y.; Meng, F.; Lin, J.; Wang, F.; Gao, C. Continuous crystalline graphene papers with gigapascal strength by intercalation modulated plasticization. Nat. Commun. 2020, 11, 2645. doi: 10.1038/s41467-020-16494-0

    200. [200]

      Ranjbartoreh, A. R.; Wang, B.; Shen, X.; Wang, G. Advanced mechanical properties of graphene paper. J. Appl. Phys. 2011, 109, 014306. doi: 10.1063/1.3528213

    201. [201]

      Gibson, L. J.; Ashby, M. F. Cellular solids: structure and properties. 2 Ed., Cambridge University Press, Cambridge, 1997.

    202. [202]

      Sheng, L.; Liang, Y.; Jiang, L.; Wang, Q.; Wei, T.; Qu, L.; Fan, Z. Bubble-decorated honeycomb-like graphene film as ultrahigh sensitivity pressure sensors. Adv. Funct. Mater. 2015, 25, 6545−6551. doi: 10.1002/adfm.201502960

    203. [203]

      Huang, R.; Huang, M.; Li, X.; An, F.; Koratkar, N.; Yu, Z. Z. Porous graphene films with unprecedented elastomeric scaffold-like folding behavior for foldable energy storage devices. Adv. Mater. 2018, 30, 1707025. doi: 10.1002/adma.201707025

    204. [204]

      Qiu, L.; Liu, J. Z.; Chang, S. L. Y.; Wu, Y.; Li, D. Biomimetic superelastic graphene-based cellular monoliths. Nat. Commun. 2012, 3, 1241. doi: 10.1038/ncomms2251

    205. [205]

      Gao, H. L.; Zhu, Y. B.; Mao, L. B.; Wang, F. C.; Luo, X. S.; Liu, Y. Y.; Lu, Y.; Pan, Z.; Ge, J.; Shen, W.; Zheng, Y. R.; Xu, L.; Wang, L. J.; Xu, W. H.; Wu, H. A.; Yu, S. H. Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure. Nat. Commun. 2016, 7, 12920. doi: 10.1038/ncomms12920

    206. [206]

      Yang, M.; Xu, Z.; Li, P.; Guo, F.; Liu, Y.; Xiao, Y.; Gao, W.; Gao, C. Interlayer crosslinking to conquer the stress relaxation of graphene laminated materials. Mater. Horiz. 2018, 5, 1112−1119. doi: 10.1039/C8MH00817E

    207. [207]

      Xu, J.; Chen, J.; Zhang, M.; Hong, J. D.; Shi, G. Highly conductive stretchable electrodes prepared by in situ reduction of wavy graphene oxide films coated on elastic tapes. Adv. Electron. Mater. 2016, 2, 1600022. doi: 10.1002/aelm.201600022

    208. [208]

      Jagannadham, K. Thermal conductivity of copper-graphene composite films synthesized by electrochemical deposition with exfoliated graphene platelets. Metall. Mater. Trans. B 2012, 43, 316−324.

    209. [209]

      Long, Y.; Zhang, C.; Wang, X.; Gao, J.; Wang, W.; Liu, Y. Oxidation of SO2 to SO3 catalyzed by graphene oxide foams. J. Mater. Chem. 2011, 21, 13934−13941. doi: 10.1039/c1jm12031j

    210. [210]

      Xue, Y.; Yu, D.; Dai, L.; Wang, R.; Li, D.; Roy, A.; Lu, F.; Chen, H.; Liu, Y.; Qu, J. Three-dimensional B,N-doped graphene foam as a metal-free catalyst for oxygen reduction reaction. Phys. Chem. Chem. Phys. 2013, 15, 12220−12226. doi: 10.1039/c3cp51942b

    211. [211]

      Han, A.; Jin, S.; Chen, H.; Ji, H.; Sun, Z.; Du, P. A robust hydrogen evolution catalyst based on crystalline nickel phosphide nanoflakes on three-dimensional graphene/nickel foam: high performance for electrocatalytic hydrogen production from pH 0–14. J. Mater. Chem. A 2015, 3, 1941−1946. doi: 10.1039/C4TA06071G

    212. [212]

      Worsley, M. A.; Pauzauskie, P. J.; Olson, T. Y.; Biener, J.; Satcher, J. H.; Baumann, T. F. Synthesis of graphene aerogel with high electrical conductivity. J. Am. Chem. Soc. 2010, 132, 14067−14069. doi: 10.1021/ja1072299

    213. [213]

      Wang, Z. L.; Xu, D.; Xu, J. J.; Zhang, L. L.; Zhang, X. B. Graphene oxide gel-derived, free-standing, hierarchically porous carbon for high-capacity and high-rate rechargeable Li-O2 batteries. Adv. Funct. Mater. 2012, 22, 3699−3705. doi: 10.1002/adfm.201200403

    214. [214]

      Chen, J.; Sheng, K.; Luo, P.; Li, C.; Shi, G. Graphene hydrogels deposited in nickel foams for high-rate electrochemical capacitors. Adv. Mater. 2012, 24, 4569−4573. doi: 10.1002/adma.201201978

    215. [215]

      Hu, G.; Xu, C.; Sun, Z.; Wang, S.; Cheng, H. M.; Li, F.; Ren, W. 3D graphene-foam-reduced-graphene-oxide hybrid nested hierarchical networks for high-performance Li-S batteries. Adv. Mater. 2016, 28, 1603−1609. doi: 10.1002/adma.201504765

    216. [216]

      Huang, Y.; Huang, X. L.; Lian, J. S.; Xu, D.; Wang, L. M.; Zhang, X. B. Self-assembly of ultrathin porous NiO nanosheets/graphene hierarchical structure for high-capacity and high-rate lithium storage. J. Mater. Chem. 2012, 22, 2844−2847. doi: 10.1039/c2jm15865e

    217. [217]

      He, Y.; Zhang, N.; Wu, F.; Xu, F.; Liu, Y.; Gao, J. Graphene oxide foams and their excellent adsorption ability for acetone gas. Mater. Res. Bull. 2013, 48, 3553−3558. doi: 10.1016/j.materresbull.2013.05.056

    218. [218]

      Lei, Y.; Chen, F.; Luo, Y.; Zhang, L. Three-dimensional magnetic graphene oxide foam/Fe3O4 nanocomposite as an efficient absorbent for Cr(VI) removal. J. Mater. Sci. 2014, 49, 4236−4245. doi: 10.1007/s10853-014-8118-2

    219. [219]

      Niu, Z.; Chen, J.; Hng, H. H.; Ma, J.; Chen, X. A leavening strategy to prepare reduced graphene oxide foams. Adv. Mater. 2012, 24, 4144−4150. doi: 10.1002/adma.201200197

    220. [220]

      Dong, X. C.; Xu, H.; Wang, X. W.; Huang, Y. X.; Chan-Park, M. B.; Zhang, H.; Wang, L. H.; Huang, W.; Chen, P. 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 2012, 6, 3206−3213. doi: 10.1021/nn300097q

    221. [221]

      Xi, J.; Liu, Y.; Wu, Y.; Hu, J.; Gao, W.; Zhou, E.; Chen, H.; Chen, Z.; Chen, Y.; Gao, C. Multifunctional bicontinuous composite foams with ultralow percolation thresholds. ACS Appl. Mater. Interfaces 2018, 10, 20806−20815. doi: 10.1021/acsami.8b06017

    222. [222]

      Yao, H.; Zhang, P.; Huang, Y.; Cheng, H.; Li, C.; Qu, L. Highly efficient clean water production from contaminated air with a wide humidity range. Adv. Mater. 2020, 32, 1905875. doi: 10.1002/adma.201905875

    223. [223]

      Huang, Y.; Cheng, H.; Yang, C.; Zhang, P.; Liao, Q.; Yao, H.; Shi, G.; Qu, L. Interface-mediated hygroelectric generator with an output voltage approaching 1.5 volts. Nat. Commun. 2018, 9, 4166. doi: 10.1038/s41467-018-06633-z

    224. [224]

      Ren, H.; Tang, M.; Guan, B.; Wang, K.; Yang, J.; Wang, F.; Wang, M.; Shan, J.; Chen, Z.; Wei, D.; Peng, H.; Liu, Z. Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion. Adv. Mater. 2017, 29, 1702590. doi: 10.1002/adma.201702590

    225. [225]

      Zhang, L.; Li, R.; Tang, B.; Wang, P. Solar-thermal conversion and thermal energy storage of graphene foam-based composites. Nanoscale 2016, 8, 14600−14607. doi: 10.1039/C6NR03921A

    226. [226]

      Qi, G.; Yang, J.; Bao, R.; Xia, D.; Cao, M.; Yang, W.; Yang, M.; Wei, D. Hierarchical graphene foam-based phase change materials with enhanced thermal conductivity and shape stability for efficient solar-to-thermal energy conversion and storage. Nano Res. 2017, 10, 802−813. doi: 10.1007/s12274-016-1333-1

    227. [227]

      Chang, Q.; Ma, Z.; Wang, J.; Li, P.; Yan, Y.; Shi, W.; Chen, Q.; Huang, Y.; Huang, L. Hybrid graphene quantum dots@graphene foam nanosheets for dye-sensitized solar cell electrodes. Energy Technol. 2016, 4, 256−262. doi: 10.1002/ente.201500194

    228. [228]

      Wang, Y.; Li, H.; Kong, J. Facile preparation of mesocellular graphene foam for direct glucose oxidase electrochemistry and sensitive glucose sensing. Sens. Actuators B 2014, 193, 708−714. doi: 10.1016/j.snb.2013.11.105

    229. [229]

      Kuang, J.; Liu, L.; Gao, Y.; Zhou, D.; Chen, Z.; Han, B.; Zhang, Z. A hierarchically structured graphene foam and its potential as a large-scale strain-gauge sensor. Nanoscale 2013, 5, 12171−12177. doi: 10.1039/c3nr03379a

    230. [230]

      Jeong, Y. R.; Park, H.; Jin, S. W.; Hong, S. Y.; Lee, S. S.; Ha, J. S. Highly stretchable and sensitive strain sensors using fragmentized graphene foam. Adv. Funct. Mater. 2015, 25, 4228−4236. doi: 10.1002/adfm.201501000

    231. [231]

      Peng, L.; Zheng, Y.; Li, J.; Jin, Y.; Gao, C. Monolithic neat graphene oxide aerogel for efficient catalysis of S→O acetyl migration. ACS Catal. 2015, 5, 3387−3392. doi: 10.1021/acscatal.5b00233

    232. [232]

      Chen, C.; Xi, J.; Zhou, E.; Peng, L.; Chen, Z.; Gao, C. Porous graphene microflowers for high-performance microwave absorption. Nano-Micro Lett. 2017, 10, 26.

    233. [233]

      Chen, C.; Xi, J.; Han, Y.; Peng, L.; Gao, W.; Xu, Z.; Gao, C. Ultralight graphene micro-popcorns for multifunctional composite applications. Carbon 2018, 139, 545−555. doi: 10.1016/j.carbon.2018.07.020

    234. [234]

      Xi, J.; Zhou, E.; Liu, Y.; Gao, W.; Ying, J.; Chen, Z.; Gao, C. Wood-based straightway channel structure for high performance microwave absorption. Carbon 2017, 124, 492−498. doi: 10.1016/j.carbon.2017.07.088

    235. [235]

      Li, Z.; Xu, Z.; Liu, Y.; Wang, R.; Gao, C. Multifunctional non-woven fabrics of interfused graphene fibres. Nat. Commun. 2016, 7, 13684. doi: 10.1038/ncomms13684

    236. [236]

      Li, Z.; Huang, T.; Gao, W.; Xu, Z.; Chang, D.; Zhang, C.; Gao, C. Hydrothermally activated graphene fiber fabrics for textile electrodes of supercapacitors. ACS Nano 2017, 11, 11056−11065. doi: 10.1021/acsnano.7b05092

    237. [237]

      Kinloch, I. A.; Suhr, J.; Lou, J.; Young, R. J.; Ajayan, P. M. Composites with carbon nanotubes and graphene: an outlook. Science 2018, 362, 547. doi: 10.1126/science.aat7439

    238. [238]

      Li, K.; Liu, J.; Huang, Y.; Bu, F.; Xu, Y. Integration of ultrathin graphene/polyaniline composite nanosheets with a robust 3D graphene framework for highly flexible all-solid-state supercapacitors with superior energy density and exceptional cycling stability. J. Mater. Chem. A 2017, 5, 5466−5474. doi: 10.1039/C6TA11224B

    239. [239]

      Zhang, Q.; Zhou, A.; Wang, J.; Wu, J.; Bai, H. Degradation-induced capacitance: a new insight into the superior capacitive performance of polyaniline/graphene composites. Energy Environ. Sci. 2017, 10, 2372−2382. doi: 10.1039/C7EE02018J

    240. [240]

      Wu, J.; Zhang, Q.; Zhou, A.; Huang, Z.; Bai, H.; Li, L. Phase-separated polyaniline/graphene composite electrodes for high-rate electrochemical supercapacitors. Adv. Mater. 2016, 28, 10211−10216. doi: 10.1002/adma.201601153

    241. [241]

      Wu, J.; Zhang, Q. E.; Wang, J.; Huang, X.; Bai, H. A self-assembly route to porous polyaniline/reduced graphene oxide composite materials with molecular-level uniformity for high-performance supercapacitors. Energy Environ. Sci. 2018, 11, 1280−1286. doi: 10.1039/C8EE00078F

    242. [242]

      Boland, C. S.; Khan, U.; Ryan, G.; Barwich, S.; Charifou, R.; Harvey, A.; Backes, C.; Li, Z.; Ferreira, M. S.; Möbius, M. E.; Young, R. J.; Coleman, J. N. Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites. Science 2016, 354, 1257−1260. doi: 10.1126/science.aag2879

    243. [243]

      Zhang, M.; Yu, X.; Ma, H.; Du, W.; Qu, L.; Li, C.; Shi, G. Robust graphene composite films for multifunctional electrochemical capacitors with an ultrawide range of areal mass loading toward high-rate frequency response and ultrahigh specific capacitance. Energy Environ. Sci. 2018, 11, 559−565. doi: 10.1039/C7EE03349D

    244. [244]

      Zhao, J.; Zhu, Y.; Pan, F.; He, G.; Fang, C.; Cao, K.; Xing, R.; Jiang, Z. Fabricating graphene oxide-based ultrathin hybrid membrane for pervaporation dehydration via layer-by-layer self-assembly driven by multiple interactions. J. Membr. Sci. 2015, 487, 162−172. doi: 10.1016/j.memsci.2015.03.073

    245. [245]

      He, G.; He, X.; Wang, X.; Chang, C.; Zhao, J.; Li, Z.; Wu, H.; Jiang, Z. A highly proton-conducting, methanol-blocking Nafion composite membrane enabled by surface-coating crosslinked sulfonated graphene oxide. Chem. Commun. 2016, 52, 2173−2176. doi: 10.1039/C5CC07406A

    246. [246]

      Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282−286. doi: 10.1038/nature04969

    247. [247]

      Li, D.; Kaner, R. B. Graphene-based materials. Science 2008, 320, 1170. doi: 10.1126/science.1158180

    248. [248]

      Hu, M.; Mi, B. Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction. J. Membr. Sci. 2014, 469, 80−87. doi: 10.1016/j.memsci.2014.06.036

    249. [249]

      Yang, D.; Zhao, J.; Shi, J.; Wang, X.; Zhang, S.; Jiang, Z. Combination of redox assembly and biomimetic mineralization to prepare graphene-based composite cellular foams for versatile catalysis. ACS Appl. Mater. Interfaces 2017, 9, 43950−43958. doi: 10.1021/acsami.7b11601

    250. [250]

      Vickery, J. L.; Patil, A. J.; Mann, S. Fabrication of graphene-polymer nanocomposites with higher-order three-dimensional architectures. Adv. Mater. 2009, 21, 2180−2184. doi: 10.1002/adma.200803606

    251. [251]

      Yun, Y. J.; Hong, W. G.; Kim, W. J.; Jun, Y.; Kim, B. H. A novel method for applying reduced graphene oxide directly to electronic textiles from yarns to fabrics. Adv. Mater. 2013, 25, 5701−5705. doi: 10.1002/adma.201303225

    252. [252]

      Hu, R.; He, Y.; Huang, M.; Zhao, G.; Zhu, H. Strong adhesion of graphene oxide coating on polymer separation membranes. Langmuir 2018, 34, 10569−10579. doi: 10.1021/acs.langmuir.8b02342

    253. [253]

      Chen, T.; Wang, S.; Wu, Z.; Wang, X.; Peng, J.; Wu, B.; Cui, J.; Fang, X.; Xie, Y.; Zheng, N. A cake making strategy to prepare reduced graphene oxide wrapped plant fiber sponges for high-efficiency solar steam generation. J. Mater. Chem. A 2018, 6, 14571−14576. doi: 10.1039/C8TA04420A

    254. [254]

      Krishnamoorthy, K.; Navaneethaiyer, U.; Mohan, R.; Lee, J.; Kim, S. J. Graphene oxide nanostructures modified multifunctional cotton fabrics. Appl. Nanosci. 2012, 2, 119−126. doi: 10.1007/s13204-011-0045-9

    255. [255]

      Fugetsu, B.; Sano, E.; Yu, H.; Mori, K.; Tanaka, T. Graphene oxide as dyestuffs for the creation of electrically conductive fabrics. Carbon 2010, 48, 3340−3345. doi: 10.1016/j.carbon.2010.05.016

    256. [256]

      Niu, Z.; Liu, L.; Zhang, L.; Shao, Q.; Zhou, W.; Chen, X.; Xie, S. A universal strategy to prepare functional porous graphene hybrid architectures. Adv. Mater. 2014, 26, 3681−3687. doi: 10.1002/adma.201400143

    257. [257]

      Yang, S.; Bachman, R. E.; Feng, X.; Müllen, K. Use of organic precursors and graphenes in the controlled synthesis of carbon-containing nanomaterials for energy storage and conversion. Acc. Chem. Res. 2013, 46, 116−128. doi: 10.1021/ar3001475

    258. [258]

      Chen, K.; Chen, L.; Chen, Y.; Bai, H.; Li, L. Three-dimensional porous graphene-based composite materials: electrochemical synthesis and application. J. Mater. Chem. 2012, 22, 20968−20976. doi: 10.1039/c2jm34816k

    259. [259]

      Qiu, B.; Xing, M.; Zhang, J. Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries. J. Am. Chem. Soc. 2014, 136, 5852−5855. doi: 10.1021/ja500873u

    260. [260]

      Dai, Y.; Jing, Y.; Zeng, J.; Qi, Q.; Wang, C.; Goldfeld, D.; Xu, C.; Zheng, Y.; Sun, Y. Nanocables composed of anatase nanofibers wrapped in UV-light reduced graphene oxide and their enhancement of photoinduced electron transfer in photoanodes. J. Mater. Chem. 2011, 21, 18174−18179. doi: 10.1039/c1jm13641k

    261. [261]

      Tong, Z.; Yang, D.; Shi, J.; Nan, Y.; Sun, Y.; Jiang, Z. Three-dimensional porous aerogel constructed by g-C3N4 and graphene oxide nanosheets with excellent visible-light photocatalytic performance. ACS Appl. Mater. Interfaces 2015, 7, 25693−25701. doi: 10.1021/acsami.5b09503

    262. [262]

      Kong, L.; Yin, X.; Zhang, Y.; Yuan, X.; Li, Q.; Ye, F.; Cheng, L.; Zhang, L. Electromagnetic wave absorption properties of reduced graphene oxide modified by maghemite colloidal nanoparticle clusters. J. Phys. Chem. C 2013, 117, 19701−19711. doi: 10.1021/jp4058498

    263. [263]

      Hu, C.; Mou, Z.; Lu, G.; Chen, N.; Dong, Z.; Hu, M.; Qu, L. 3D graphene-Fe3O4 nanocomposites with high-performance microwave absorption. Phys. Chem. Chem. Phys. 2013, 15, 13038−13043. doi: 10.1039/c3cp51253c

    264. [264]

      Liu, P.; Huang, Y.; Yan, J.; Yang, Y.; Zhao, Y. Construction of CuS nanoflakes vertically aligned on magnetically decorated graphene and their enhanced microwave absorption properties. ACS Appl. Mater. Interfaces 2016, 8, 5536−5546. doi: 10.1021/acsami.5b10511

  • 加载中
    1. [1]

      Mao-zhu TangWang XingJin-rong WuGuang-su HuangHui LiSi-duo Wu . Vulcanization Kinetics of Graphene/Styrene Butadiene Rubber Nanocomposites. Chinese J. Polym. Sci, 2014, 32(5): 658-666. doi: 10.1007/s10118-014-1427-8

    2. [2]

      Bo YangShuang-Hong ZhangYi-Feng ZouWen-Shi MaGuo-Jia HuangMao-Dong Li . Improving the Thermal Conductivity and Mechanical Properties of Two-component Room Temperature Vulcanized Silicone Rubber by Filling with Hydrophobically Modified SiO2-Graphene Nanohybrids. Chinese J. Polym. Sci, 2019, 37(2): 189-196. doi: 10.1007/s10118-019-2185-4

    3. [3]

      Wen-Le MaZhi-Hao CaiYi ZhangZi-Yuan WangLun XiaSu-Ping MaGuang-Hao LiYi Huang . An Overview of Stretchable Supercapacitors Based on Carbon Nanotube and Graphene. Chinese J. Polym. Sci, 2020, 38(5): 491-505. doi: 10.1007/s10118-020-2386-x

    4. [4]

      Pei XuZhao-Pei CuiGang RuanYun-Sheng Ding . Enhanced Crystallization Kinetics of PLLA by Ethoxycarbonyl Ionic Liquid Modified Graphene. Chinese J. Polym. Sci, 2019, 37(3): 243-252. doi: 10.1007/s10118-019-2192-5

    5. [5]

      Zi-Bo WeiYang ZhaoChao WangShigenori KugaYong HuangMin Wu . Antistatic PVC-graphene Composite through Plasticizer-mediated Exfoliation of Graphite. Chinese J. Polym. Sci, 2018, 36(12): 1361-1367. doi: 10.1007/s10118-018-2160-5

    6. [6]

      Yi-ren TangTing LiHai-mu YeJun XuBao-hua Guo . The Effect of Polymer-Substrate Interaction on the Nucleation Property: Comparing Study of Graphene and Hexagonal Boron Nitride Nanosheets. Chinese J. Polym. Sci, 2016, 34(8): 1021-1031. doi: 10.1007/s10118-016-1816-2

    7. [7]

      Lu JinYan ZhengZe-Kun LiuJia-Shen LiYang-Pei-Qi YiYang-Yang FanLu-Lu XuYi Li . Enhancement of β-Phase Crystal Content of Poly(vinylidene fluoride) Nanofiber Web by Graphene and Electrospinning Parameters

      . Chinese J. Polym. Sci, 2020, 38(11): 1239-1247. doi: 10.1007/s10118-020-2428-4

    8. [8]

      Yu ChenJian YaoMing-Ke XuZhi-Guo JiangHao-Bin Zhang . Electrically Conductive and Flame Retardant Graphene/Brominated Polystyrene/Maleic Anhydride Grafted High Density Polyethylene Nanocomposites with Satisfactory Mechanical Properties. Chinese J. Polym. Sci, 2019, 37(5): 509-517. doi: 10.1007/s10118-019-2220-5

    9. [9]

      Gui-Qing WuXin-Yu YangJia-Hui LiNan ShengCheng-Yi HouYao-Gang LiHong-Zhi Wang . Highly Stretchable and Conductive Hybrid Fibers for High-performance Fibrous Electrodes and All-solid-state Supercapacitors. Chinese J. Polym. Sci, 2020, 38(5): 531-539. doi: 10.1007/s10118-020-2381-2

    10. [10]

      Prashant ShuklaPooja Saxena . Polymer Nanocomposites in Sensor Applications: A Review on Present Trends and Future Scope. Chinese J. Polym. Sci, 2021, 39(): 1-27. doi: 10.1007/s10118-021-2553-8

    11. [11]

      Wei Cai Bibo Wang Xin Wang Yulu Zhu Zhaoxin Li Zhoumei Xu Lei Song Weizhao Hu Yuan Hu . Recent progress in 2D nanomaterials following graphene for improving fire safety of polymer (nano)composites. Chinese J. Polym. Sci, 2021, (): -. doi: 10.1007/s10118-021-2575-2

    12. [12]

      Jun-ying WengZhuo TangYing GuanX.X. ZhuYong-jun Zhang . Assembly of Highly Ordered 2D Arrays of Silver-PNIPAM Hybrid Microgels. Chinese J. Polym. Sci, 2017, 35(10): 1212-1221. doi: 10.1007/s10118-017-1962-1

    13. [13]

      Xin-Lei ZhangLei WangLiang ChenXiao-Yu MaHang-Xun Xu . Ultrathin 2D Conjugated Polymer Nanosheets for Solar Fuel Generation. Chinese J. Polym. Sci, 2019, 37(2): 101-114. doi: 10.1007/s10118-019-2171-x

    14. [14]

      Xia-Wei YunBo TangZhi-Yuan XiongXiao-Gong Wang . Understanding Self-assembly, Colloidal Behavior and Rheological Properties of Graphene Derivatives for High-performance Supercapacitor Fabrication. Chinese J. Polym. Sci, 2020, 38(5): 423-434. doi: 10.1007/s10118-020-2411-0

    15. [15]

      Rashid IqbalAmir BadshahYing-Jie MaLin-Jie Zhi . An Electrochemically Stable 2D Covalent Organic Framework for High-performance Organic Supercapacitors. Chinese J. Polym. Sci, 2020, 38(5): 558-564. doi: 10.1007/s10118-020-2412-z

    16. [16]

      Cai-zhen ZhuXiao-lan YuXiao-fang LiuYun-zen MaoRui-gang LiuNing ZhaoXiao-li ZhangJian Xu . 2D SAXS/WAXD ANALYSIS OF PAN CARBON FIBER MICROSTRUCTURE IN ORGANIC/INORGANIC TRANSFORMATION. Chinese J. Polym. Sci, 2013, 31(5): 823-832. doi: 10.1007/s10118-013-1272-1

    17. [17]

      Nan WangHao TianShu-Yan ZhuDe-Yue YanYi-Yong Mai . Two-dimensional Nitrogen-doped Mesoporous Carbon/Graphene Nanocomposites from the Self-assembly of Block Copolymer Micelles in Solution. Chinese J. Polym. Sci, 2018, 36(3): 266-272. doi: 10.1007/s10118-018-2091-1

    18. [18]

      Shu-Yan JiangXin Zhao . Soluble Two-dimensional Supramolecular Organic Frameworks (SOFs): An Emerging Class of 2D Supramolecular Polymers with Internal Long-range Orders. Chinese J. Polym. Sci, 2019, 37(1): 1-10. doi: 10.1007/s10118-019-2189-0

    19. [19]

      Jing MaoFang-Fang WuWen-Hui ShiWen-Xian LiuXi-Lian XuGang-Feng CaiYi-Wen LiXie-Hong Cao . Preparation of Polyaniline-coated Composite Aerogel of MnO2 and Reduced Graphene Oxide for High-performance Zinc-ion Battery. Chinese J. Polym. Sci, 2020, 38(5): 514-521. doi: 10.1007/s10118-020-2353-6

    20. [20]

      Zhou WangXiu-zhi TangZhong-zhen YuPeng GuoHuai-he SongXu-sheng Du . Dispersion of graphene oxide and its flame retardancy effect on epoxy nanocomposites. Chinese J. Polym. Sci, 2011, 29(3): 368-376. doi: 10.1007/s10118-011-1037-7

Article Metrics
  • PDF Downloads(5)
  • Abstract views(2402)
  • HTML views(275)
  • Cited By(0)

通讯作者: 陈斌,
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索


DownLoad:  Full-Size Img  PowerPoint