Citation: Zuo, H. T.; Gan, F.; Dong, J.; Zhang, P.; Zhao, X.; Zhang, Q. H. Highly transparent and colorless polyimide film with low dielectric constant by introducing meta -substituted structure and trifluoromethyl groups. Chinese J. Polym. Sci. 2021, 39, 455–464 doi: 10.1007/s10118-021-2514-2 shu

Highly Transparent and Colorless Polyimide Film with Low Dielectric Constant by Introducing Meta-substituted Structure and Trifluoromethyl Groups

  • Corresponding author: Xin Zhao, E-mail: xzhao@dhu.edu.cn
    Qing-Hua Zhang, E-mail: qhzhang@dhu.edu.cn
  • Received Date: 2020-08-05
    Accepted Date: 2020-10-05
    Available Online: 2020-11-10

Figures(9) / Tables(3)

  • An effective design strategy for preparing highly transparent polyimide film with low dielectric constant is presented. The key to the strategy is to simultaneously introduce meta-substituted structure and trifluoromethyl in polymer chains. By using this design strategy, a highly transparent polyimide film with low-k was synthesized from 3,5-diaminobenzotrifluoride (m-TFPDA) and 4,4′-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) through a two-step method. The obtained m-TFPDA/6FDA (CPI) film (~30 μm) possesses high optical transparency (λcutoff=334 nm, T450nm=85.26%, Haze=0.31) and is close to colorless (L*=96.03, a*=−0.34, b*=2.12, yellow index=3.96). The intrinsic k and dielectric loss value of the film are 2.27 and 0.0013 at 10 kHz, respectively. More importantly, such low dielectric performance could remain stable up to 280 °C, and the film shows a low moisture rate (~0.51%), which helps to maintain the low-k property stability in different humid environments. Meanwhile, the film also shows good thermal stability and mechanical properties, with a glass transition temperature (Tg) of 296 °C and the 5 wt% decomposition temperature (Td,5%) of 522 °C under N2. The tensile strength and tensile modulus of the film are 85.1 MPa and 1.96 GPa, respectively. In addition, the film is soluble in common solvents, which allows simple solution processing and low-cost, continuous roll-to-roll processes. This design strategy is beneficial to improving the transparency, lightening yellow color, lowering the dielectric constant and meanwhile maintaining the comprehensive properties of polyimide films, which is mainly due to the introduced meta-substituted and trifluoromethyl structures effectively inhibiting the transfer of charge transfer complex (CTC) effects and increasing the free volume of film. This design strategy could also be extended to other high-performance polymer systems.
  • 加载中
    1. [1]

      Lee, D. H.; Yun, H. D.; Jung, E. D.; Chu, J. H.; Nam, Y. S. Song, S.; Seok, S. H.; Song, M. H. Kwon, S. Y. Ultrathin graphene intercalation in PEDOT:PSS/colorless polyimide-based transparent electrodes for enhancement of optoelectronic performance and operational stability of organic devices. ACS Appl. Mater. Interfaces 2019, 11, 21069−21077. doi: 10.1021/acsami.9b04118

    2. [2]

      Yin, X. D.; Feng, Y. Y.; Zhao, Q.; Li, Y.; Li, S. W.; Dong, H. L.; Hu, W. P.; Feng, W. A. A highly transparent, strong, and flexible fluorographene/fluorinated polyimide nanocomposite film with low dielectric constant. J. Mater. Chem. C 2018, 6, 6378−6384. doi: 10.1039/C8TC00998H

    3. [3]

      Kim, S. D.; Lee, B.; Byun, T.; Chung, I. S.; Park, J.; Shin, I.; Ahn, N. Y.; Seo, M.; Lee, Y.; Kim, Y.; Kim, W. Y.; Kwon, H.; Moon, H.; Yoo, S.; Kim, S. Y. Poly(amide-imide) materials for transparent and flexible displays. Sci. Adv. 2018, 4, eaau1956.

    4. [4]

      Li, T. L.; Hsu, S. L. C. Preparation and properties of a high temperature, flexible and colorless ITO coated polyimide substrate. Eur. Polym. J. 2007, 43, 3368−3373. doi: 10.1016/j.eurpolymj.2007.04.039

    5. [5]

      Kang, S. B.; Kim, H. J.; Noh, Y. J.; Na, S. I.; Kim, H. K. Face-to-face transferred multicrystalline ITO films on colorless polyimide substrates for flexible organic solar cells. Nano Energy 2015, 11, 179−188. doi: 10.1016/j.nanoen.2014.10.030

    6. [6]

      Bai, L.; Zhai, L.; Hea, M. H.; Wang, C. O.; Mo, S.; Fan, L. Thermal expansion behavior of poly(amide-imide) films with ultrahigh tensile strength and ultralow CTE. Chinese J. Polym. Sci. 2020, 38, 748−758. doi: 10.1007/s10118-020-2366-1

    7. [7]

      Kashiyama, Y.; He, J. H.; Machida, S.; Horie, K. Large photoinduced refractive index change in a polyimide film by charge-transfer complex formation with a polymer-bound phenylazide fragment. Macromol. Rapid Commun. 2001, 22, 185−188. doi: 10.1002/1521-3927(200102)22:3<185::AID-MARC185>3.0.CO;2-C

    8. [8]

      Ishida, H.; Wellinghoff, S. T.; Baer, E.; Koenig, J. Spectroscopic studies of poly [N,N′-bis(phenoxyphenyl) pyromellitimide]. 1. Structures of the polyimide and three model compounds. Macromolecules 1980, 13, 826−834. doi: 10.1021/ma60076a011

    9. [9]

      Zhang, Q.; Tsai, C. Y.; Li, L. J.; Liaw, D. J. Colorless-to-colorful switching electrochromic polyimides with very high contrast ratio. Nat. Commun. 2019, 10, 1239. doi: 10.1038/s41467-019-09054-8

    10. [10]

      Kim, M.; Ryu, T. I.; Ok, K. H.; Kwak, M. G.; Park, S.; Park, N. G.; Han, C. J.; Kim, B. S.; Ko, M. J.; Son, H. J.; Kim, J. W. Transparent electronics: inverted layer-by-layer fabrication of an ultraflexible and transparent Ag nanowire/conductive polymer composite electrode for use in high-performance organic solar cells. Adv. Funct. Mater. 2015, 25, 4580−4589. doi: 10.1002/adfm.201501046

    11. [11]

      Jang, J. H.; Cueva, G.; Hoke, W. E.; Lemonias, P. J.; Fay, P.; Adesida, I. Metamorphic graded bandgap InGaAs-InGaAlAs-InAlAs double heterojunction P-i-I-N photodiodes. J. Lightwave. Technol. 2002, 20, 507−514. doi: 10.1109/50.989001

    12. [12]

      Ni, H. J.; Liu, J. G.; Wang, Z. H.; Yang, S. Y. A review on colorless and optically transparent polyimide films: chemistry, process and engineering applications. J. Ind. Eng. Chem. 2015, 28, 16−27. doi: 10.1016/j.jiec.2015.03.013

    13. [13]

      Mi, Z. M.; Liu, Z. X.; Yao, J. N.; Wang. C. B.; Zhou, C. J.; Wang. D. M.; Zhao, X. G.; Zhou, H. W.; Zhang, Y. M.; Chen, C. H. Transparent and soluble polyimide films from 1,4:3,6-dianhydro-D-mannitol based dianhydride and diamines containing aromatic and semiaromatic units: preparation, characterization, thermal and mechanical properties. Polym. Degrad. Stab. 2018, 151, 80−89. doi: 10.1016/j.polymdegradstab.2018.01.006

    14. [14]

      Li, F.; Shen, J. L.; Liu, X. F.; Cao, Z. H.; Cai, X.; Li, J. L.; Ding, K.; Liu, J. K.; Tu, G. L. Flexible QLED and OPV based on transparent polyimide substrate with rigid alicyclic asymmetric isomer. Org. Electron. 2017, 51, 54−61. doi: 10.1016/j.orgel.2017.09.010

    15. [15]

      Zhai, L.; Yang, S. Y.; Fan, L. Preparation and characterization of highly transparent and colorless semi-aromatic polyimide films derived from alicyclic dianhydride and aromatic diamines. Polymer 2012, 53, 3529−3539. doi: 10.1016/j.polymer.2012.05.047

    16. [16]

      Yeo, H.; Goh, M.; Ku, B. C.; You, N. H. Synthesis and characterization of highly-fluorinated colorless polyimides derived from 4,4′-((perfluoro-[1,1′-biphenyl]-4,4′-diyl)bis(oxy))bis(2,6-dimethylaniline) and aromatic dianhydrides. Polymer 2015, 76, 280−286. doi: 10.1016/j.polymer.2015.09.019

    17. [17]

      Jia, M. C.; Zhou, M. T.; Li, Y. J.; Lu, G. L.; Huang, X. Y. Construction of semi-fluorinated polyimides with perfluorocyclobutyl aryl ether-based side chains. Polym. Chem. 2018, 9, 920−930. doi: 10.1039/C8PY00004B

    18. [18]

      Sato, S.; Ichikawa, M.; Suzuki, E.; Matsumoto, M.; Nagai, K. Photoelectric properties of ABA-type triblock copolymers designed using fluorine-containing polyimide macroinitiators with polyhedral oligomeric silsesquioxane. Polym. Eng. Sci. 2017, 57, 1207−1213.

    19. [19]

      Zhuang, Y. B.; Seong, J. G.; Lee, Y. M. Polyimides containing aliphatic/alicyclic segments in the main chains. Prog. Polym. Sci. 2019, 92, 35−88. doi: 10.1016/j.progpolymsci.2019.01.004

    20. [20]

      Nawaz, H.; Akhter, Z.; Iqbal, N. Study of physicochemical properties of meta and ortho trifluoromethyl substituted isomeric aromatic polyimides. Polym. Bull. 2017, 74, 3889−3906. doi: 10.1007/s00289-017-1927-0

    21. [21]

      Lee, C. W.; Kwak, S. M.; Yoon, T. H. Synthesis and characterization of polyimides from bis(3-aminophenyl)-2,3,5,6-tetrafluoro-4-trifluoromethylphenyl phosphine oxide (mDA7FPPO). Polymer 2006, 47, 4140−4147. doi: 10.1016/j.polymer.2006.03.002

    22. [22]

      Bong, S.; Yeo, H.; Ku, B. C.; Goh, M.; You, N. H. Highly soluble polyimide based on asymmetric diamines containing trifluoromethyl group for high performance dielectric material. Macromol. Res. 2018, 26, 85−91.

    23. [23]

      Wang, C. Y.; Zhao, X. Y.; Li, G.; Jiang, J. M. High solubility and optical transparency of novel polyimides containing 3,3′,5,5′-tetramethyl pendant groups and 4-tert-butyltoluene moiety. Polym. Degrad. Stab. 2009, 94, 1526−1532. doi: 10.1016/j.polymdegradstab.2009.04.032

    24. [24]

      Qian, C.; Bei, R. X.; Zhu, T. W.; Zheng, W. W.; Liu, S. W.; Chi, Z. G.; Aldred, M. P.; Chen, X. D.; Zhang, Y.; Xu, J. R. Facile strategy for intrinsic Low-k dielectric polymers: molecular design based on secondary relaxation behavior. Macromolecules 2019, 52, 4601−4609. doi: 10.1021/acs.macromol.9b00136

    25. [25]

      Li, X. T.; Liu, T.; Jiao, Y. Z.; Dong, J.; Gan, F.; Zhao, X.; Zhang, Q. H. Novel high-performance poly(benzoxazole-co-imide) resins with low dielectric constants and superior thermal stabilities derived from thermal rearrangement of ortho-hydroxy polyimide oligomers. Chem. Eng. J. 2019, 359, 641−651. doi: 10.1016/j.cej.2018.11.175

    26. [26]

      Amin, M.; Samy, H.; Küpper, J. Robust and accurate computational estimation of the polarizability tensors of macromolecules. J. Phys. Chem. Lett. 2019, 10, 2938−2943. doi: 10.1021/acs.jpclett.9b00963

    27. [27]

      Yu, S. Z.; Wong, T. K. S.; Hu, X.; Pita, K. Synthesis and characterization of porous silsesquioxane dielectric films. Thin Solid Films 2005, 473, 191−195. doi: 10.1016/j.tsf.2004.03.040

    28. [28]

      Liu, Y. W.; Qian, C.; Qu, L. J.; Wu, Y. N.; Zhang, Y.; Wu, X. H.; Zou, B. Y.; Chen, W. X.; Chen, Z. Q.; Chi, Z. G.; Liu, S. W.; Oigiviy, L. Y.; Xu, J. R. A bulk dielectric polymer film with intrinsic ultralow dielectric constant and outstanding comprehensive properties. Chem. Mater. 2015, 27, 6543−6549. doi: 10.1021/acs.chemmater.5b01798

    29. [29]

      Chern, Y. T.; Tsai, J. Y. Low dielectric constant and high organosolubility of novel polyimide derived from unsymmetric 1,4-bis(4-aminophenoxy)-2,6-di-tert-butylbenzene. Macromolecules 2008, 41, 9556−9564. doi: 10.1021/ma802305q

    30. [30]

      Chen, W. X.; Zhou, Z. X.; Yang, T. T.; Bei, R. X.; Zhang, Y.; Liu, S. W.; Chi, Z. G.; Chen, X. D.; Xu, J. R. Synthesis and properties of highly organosoluble and low dielectric constant polyimides containing non-polar bulky triphenyl methane moiety. React. Funct. Polym. 2016, 108, 71−77. doi: 10.1016/j.reactfunctpolym.2016.04.011

    31. [31]

      Liu, Y. W.; Tang, L. S.; Qu, L. J.; Liu, S. W.; Chi, Z. G.; Zhang, Y.; Xu, J. R. Synthesis and properties of high-performance functional polyimides containing rigid nonplanar conjugated fluorene moieties. Chinese J. Polym. Sci. 2019, 37, 416−427. doi: 10.1007/s10118-019-2225-0

    32. [32]

      Liu, Y. W.; Zhou, Z. X.; Qu, L. J.; Zou, B.; Chen, Z. Q.; Zhang, Y., Liu, S. W.; Chi, Z. G.; Chen, X. D.; Xu, J. R. Exceptionally thermostable and soluble aromatic polyimides with special characteristics: intrinsic ultralow dielectric constant, static random access memory behaviors, transparency and fluorescence. Mater. Chem. Front. 2017, 1, 326−337. doi: 10.1039/C6QM00027D

    33. [33]

      Yang, H.; Cheng, X. P.; Cheng, X. X.; Pan, F. S.; Wu, H.; Liu, G. H.; Song, Y. M.; Cao, X. Z.; Jiang, Z. Y. Highly water-selective membranes based on hollow covalent organic frameworks with fast transport pathways. J. Membr. Sci. 2018, 565, 331−341. doi: 10.1016/j.memsci.2018.08.043

    34. [34]

      Liu, H.; Zhai, L.; Bai, L.; He, M. H.; Wang, C. O.; Mo, S.; Fan, L. Synthesis and characterization of optically transparent semi-aromatic polyimide films with low fluorine content. Polymer 2019, 163, 106−114. doi: 10.1016/j.polymer.2018.12.045

    35. [35]

      Tao, S. J. Positronium annihilation in molecular substances. J. Chem. Phys. 1972, 56, 5499−5510. doi: 10.1063/1.1677067

    36. [36]

      Dlubek, G.; Stejny, J.; Alam, M. A. Effect of cross-linking on the free-volume properties of diethylene glycol bis(allyl carbonate) polymer networks: a positron annihilation lifletime study. Macromolecules 1998, 31, 4574−4580. doi: 10.1021/ma971801y

    37. [37]

      Eldrup, M. M.; Lightbody, D.; Sherwood, J. N. The temperature dependence of positron lifetimes in solid pivalic acid. Phys. Chem. Chem. Phys. 1981, 63, 51−58.

    38. [38]

      Ghaemy, M.; Berenjestanaki, F. R.; Bazzar, M. Organosoluble, thermally stable and low dielectric constant fluorinated polyimides containing 2,4,5-triphenylimidazole moiety in the main chains. Des. Monomers Polym. 2014, 17, 101−110. doi: 10.1080/15685551.2013.840473

  • 加载中
    1. [1]

      Zhen-He WangXing ChenHai-Xia YangJiang ZhaoShi-Yong Yang . The In-plane Orientation and Thermal Mechanical Properties of the Chemically Imidized Polyimide Films. Chinese J. Polym. Sci, 2019, 37(3): 268-278. doi: 10.1007/s10118-019-2173-8

    2. [2]

      Yi-Wu LiuLi-Shuang TangLun-Jun QuSi-Wei LiuZhen-Guo ChiYi ZhangJia-Rui Xu . Synthesis and Properties of High Performance Functional Polyimides Containing Rigid Nonplanar Conjugated Fluorene Moieties. Chinese J. Polym. Sci, 2019, 37(4): 416-427. doi: 10.1007/s10118-019-2225-0

    3. [3]

      Chen-yi WangWen-tao ChenChang XuXiao-yan ZhaoJian Li . Fluorinated Polyimide/POSS Hybrid Polymers with High Solubility and Low Dielectric Constant. Chinese J. Polym. Sci, 2016, 34(11): 1363-1372. doi: 10.1007/s10118-016-1845-x

    4. [4]

      Xiuting Li Xiaomeng Zhu Jie Dong Xin Zhao Qinghua Zhang . Preparation of low-dielectric permittivity polyimide resins with high surface activity from chemically bonded hyperbranched polysiloxane. Chinese J. Polym. Sci, 2021, (): -. doi: 10.1007/s10118-021-2585-0

    5. [5]

      Xiong-Fa YangJia LiuQiong ChenYan-Ping ShenHong-Zhi LiuGuo-Qiao Lai . A Low Temperature Vulcanized Transparent Silane Modified Epoxy Resins for LED Filament Bulb Package. Chinese J. Polym. Sci, 2018, 36(5): 649-654. doi: 10.1007/s10118-018-2028-8

    6. [6]

      . SYNTHESIS AND PROPERTIES OF TRANSPARENT THIODIGLYCOL DIMETHACRYLATE COPOLYMER RESINS*. Chinese J. Polym. Sci, 2004, 22(1): 25-30.

    7. [7]

      ZHANG XuexinHONG HuaimaoLI Zhuomei . STUDY ON THE MODIFICATION OF POLY (METHYL METHACRYLATE) TRANSPARENT MATERIAL*. Chinese J. Polym. Sci, 1992, 10(1): 1-7.

    8. [8]

      Jia-yu ZhanGuo-feng TianZhan-peng WuSheng-li QiDe-zhen Wu . Preparation of Polyimide/BaTiO3/Ag Nanocomposite Films via in situ Technique and Study of Their Dielectric Behavior. Chinese J. Polym. Sci, 2014, 32(4): 424-431. doi: 10.1007/s10118-014-1413-1

    9. [9]

      José Antonio Tec-SánchezAndrés Iván Oliva AriasManuel Aguilar-VegaJuan Valerio Cauich-RodríguezJosé Luis Santiago-García . Preparation and Characterization of Flexible, Transparent and Thermally Stable Aromatic Co-polyamides. Chinese J. Polym. Sci, 2019, 37(2): 136-141. doi: 10.1007/s10118-019-2190-7

    10. [10]

      Wei ChenMian JiShi-yong Yang . High Thermal Stable Polyimide Resins Derived from Phenylethynylendcapped Fluorenyl Oligoimides with Low Melt Viscosities. Chinese J. Polym. Sci, 2016, 34(8): 933-948. doi: 10.1007/s10118-016-1813-5

    11. [11]

      Chao QianZhen-Guo FanWei-Wen ZhengRun-Xin BeiTian-Wen ZhuSi-Wei LiuZhen-Guo ChiMatthew P. AldredXu-Dong ChenYi ZhangJia-Rui Xu . A Facile Strategy for Non-fluorinated Intrinsic Low-k and Low-loss Dielectric Polymers: Valid Exploitation of Secondary Relaxation Behaviors. Chinese J. Polym. Sci, 2020, 38(3): 213-219. doi: 10.1007/s10118-020-2339-4

    12. [12]

      Qi LuoHong-Ting PuZhi-Hua ZhangXiong ZhangCheng-Long Yu . Foam/Film Alternating Multilayer Structure with High Toughness and Low Thermal Conductivity Prepared via Microlayer Coextrusion. Chinese J. Polym. Sci, 2021, 39(5): 566-572. doi: 10.1007/s10118-021-2524-0

    13. [13]

      Chan-juan LiuMei MeiXiang-lin PeiXiao-hua HuangChun Wei . Aromatic Polyimides with Tertbutyl-substituted and Pendent Naphthalene Units: Synthesis and Soluble, Transparent Properties. Chinese J. Polym. Sci, 2015, 33(8): 1074-1085. doi: 10.1007/s10118-015-1658-3

    14. [14]

      Kun XuYi-qing Hu . FABRICATION OF TRANSPARENT PU/ZrO2 NANOCOMPOSITE COATINGS WITH HIGH REFRACTIVE INDEX. Chinese J. Polym. Sci, 2010, 28(1): 13-20.

    15. [15]

      Hui-Qin CuiRui-Xiang PengWei SongJian-Feng ZhangJia-Ming HuangLi-Qiang ZhuZi-Yi Ge . Optimization of Ethylene Glycol Doped PEDOT:PSS Transparent Electrodes for Flexible Organic Solar Cells by Drop-coating Method. Chinese J. Polym. Sci, 2019, 37(8): 760-766. doi: 10.1007/s10118-019-2257-5

    16. [16]

      Yi-fan ZhaoWen-jun ZouHuan LiKun LuWei YanZhi-xiang Wei . Large-area, Flexible Polymer Solar Cell Based on Silver Nanowires as Transparent Electrode by Roll-to-Roll Printing. Chinese J. Polym. Sci, 2017, 35(2): 261-268. doi: 10.1007/s10118-017-1875-z

    17. [17]

      Si-Ting SunHang WangDong HuangYing-Li DingYang ZhangDong-Po SongKun-Yu ZhangLi PanYue-Sheng Li . Refractive Index Engineering as a Novel Strategy toward Highly Transparent and Tough Sustainable Polymer Blends. Chinese J. Polym. Sci, 2020, 38(12): 1335-1344. doi: 10.1007/s10118-020-2439-1

    18. [18]

      WAN MeixiangCAO YongLI JunchaoZHOU WeixiaLI Suzhen . FREE STANDING FILM OF POLYANILINE. Chinese J. Polym. Sci, 1991, 9(3): 209-219.

    19. [19]

      YANG JipingSUN QiushiHOU XiaohuaiWAN Meixiang . GAS SEPARATION PROPERTIES OF FREESTANDING FILM OF POLYANILINE. Chinese J. Polym. Sci, 1993, 11(2): 121-124.

    20. [20]

      NI ShaoruYU FushengSHEN LianfangQIAN Baogong . DIELECTRIC PROPERTIES OF 1, 2-POLYBUTADIENES. Chinese J. Polym. Sci, 1987, 5(2): 120-124.

Article Metrics
  • PDF Downloads(2)
  • Abstract views(377)
  • HTML views(307)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return