Citation: Zhou, C.; Zhou, J. T.; Sheng, C. J.; Pranantyo, D.; Pan, Y.; Huang, X. J. Robust and self-healable antibiofilm multilayer coatings. Chinese J. Polym. Sci. 2021, 39, 425–440 doi: 10.1007/s10118-021-2513-3 shu

Robust and Self-healable Antibiofilm Multilayer Coatings

  • Corresponding author: Chao Zhou, E-mail: zhouchao@cczu.edu.cn
  • Received Date: 2020-07-28
    Available Online: 2020-10-26

Figures(15) / Tables(1)

  • The infection induced by implantation of biomedical materials may result from the biofilm formation after bacteria attachment. Hence, the antibiofilm surface coating represents a novel technique to improve the antibacterial activity of biomedical materials. The traditional antibiofilm surface coatings exhibited some disadvantages and provided a limited service life. In this work, we used polyethyleneimine grafted 3-maleimidopropionic acid (PEIM) and poly(acrylic acid) grafted 2-furfurylamine (PAAF) to achieve robust and self-healable crosslinked multilayer coatings, employing Layer-by-Layer (LbL) self-assembly technique and Diels-Alder reaction. Then, thiol-terminated poly((3-acrylamidopropyl) trimethylammonium chloride) (PAMPTMA-SH) was grafted onto the crosslinked multilayer coating by thiol-ene click reaction to form a novel multilayer coating (PEIM/PAAF)10-PAMPTMA. We found that this coating showed robust and self-healable activity, and significantly inhibited the bacterial growth and biofilm formation after infection with Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) by in vitro and in vivo assays for 120 h. In addition, the multilayer coating did not induce significant hemolysis or affect the cell viability of red blood cells. In vivo studies also showed that (PEIM/PAAF)10-PAMPTMA coating efficiently blocked the infiltration of inflammatory cells and gene expression in the mouse skin challenged with E. coli or S. aureus. Taken together, these results showed that the prepared multilayer coating exhibited strong antibiofilm activity and provided a new strategy for the application of highly efficient antibiofilm surface coating of biomedical materials.
  • 加载中
    1. [1]

      Ding, X. K.; Duan, S.; Ding, X. J.; Liu, R. H.; Xu, F. J. Versatile antibacterial materials: an emerging arsenal for combatting bacterial pathogens. Adv. Funct. Mater. 2018, 28, 19.

    2. [2]

      Li, C.; Lu, D. Y.; Deng, J. J.; Zhang, X.; Yang, P. Amyloid-like rapid surface modification for antifouling and in-depth remineralization of dentine tubules to treat dental hypersensitivity. Adv. Mater. 2019, 31, 1903973. doi: 10.1002/adma.201903973

    3. [3]

      Zhao, J.; Qu, Y.; Chen, H.; Xu, R.; Yu, Q.; Yang, P. Self-assembled proteinaceous wound dressings attenuate secondary trauma and improve wound healing in vivo. J. Mater. Chem. B 2018, 6, 4645−4655. doi: 10.1039/C8TB01100A

    4. [4]

      Kang, T.; Banquy, X.; Heo, J.; Lim, C.; Lynd, N. A.; Lundberg, P.; Oh, D. X.; Lee, H. K.; Hong, Y. K.; Hwang, D. S.; Waite, J. H.; Israelachvili, J. N.; Hawker, C. J. Mussel-inspired anchoring of polymer loops that provide superior surface lubrication and antifouling properties. ACS Nano 2016, 10, 930−937. doi: 10.1021/acsnano.5b06066

    5. [5]

      Baggerman, J.; Smulders, M. M. J.; Zuilhof, H. Romantic surfaces: a systematic overview of stable, biospecific, and antifouling zwitterionic surfaces. Langmuir 2019, 35, 1072−1084. doi: 10.1021/acs.langmuir.8b03360

    6. [6]

      Zhang, R.; Zhang, L.; Tian, N.; Ma, S.; Liu, Y.; Yu, B.; Pei, X.; Zhou, F. The tethered fibrillar hydrogels brushes for underwater antifouling. Adv. Mater. Interfaces 2017, 4, 1601039. doi: 10.1002/admi.201601039

    7. [7]

      Hu, X.; Tian, J.; Li, C.; Su, H.; Qin, R.; Wang, Y.; Cao, X.; Yang, P. Amyloid-like protein aggregates: a new class of bioinspired materials merging an interfacial anchor with antifouling. Adv. Mater. 2020, 32, 2000128. doi: 10.1002/adma.202000128

    8. [8]

      Yang, W.; Zhao, W.; Liu, Y.; Hu, H.; Pei, X.; Wu, Y.; Zhou, F. The effect of wetting property on anti-fouling/foul-release performance under quasi-static/hydrodynamic conditions. Prog. Org. Coat. 2016, 95, 64−71. doi: 10.1016/j.porgcoat.2016.02.018

    9. [9]

      Borjihan, Q.; Yang, J.; Song, Q.; Gao, L.; Xu, M.; Gao, T.; Liu, W.; Li, P.; Li, Q.; Dong, A. Povidone-iodine-functionalized fluorinated copolymers with dual-functional antibacterial and antifouling activities. Biomater. Sci. 2019, 7, 3334−3347. doi: 10.1039/C9BM00583H

    10. [10]

      Wu, J.; Yu, C.; Li, Q. Novel regenerable antimicrobial nanocomposite membranes: effect of silver loading and valence state. J. Membr. Sci. 2017, 531, 68−76. doi: 10.1016/j.memsci.2017.02.047

    11. [11]

      Mitra, D.; Li, M.; Kang, E. T.; Neoh, K. G. Transparent copper-based antibacterial coatings with enhanced efficacy against Pseudomonas aeruginosa. ACS Appl. Mater. Interfaces 2019, 11, 73−83. doi: 10.1021/acsami.8b09640

    12. [12]

      Xu, L. C.; Meyerhoff, M. E.; Siedlecki, C. A. Blood coagulation response and bacterial adhesion to biomimetic polyurethane biomaterials prepared with surface texturing and nitric oxide release. Acta Biomater. 2019, 84, 77−87. doi: 10.1016/j.actbio.2018.11.035

    13. [13]

      Zeng, Q.; Zhu, Y.; Yu, B.; Sun, Y.; Ding, X.; Xu, C.; Wu, Y. W.; Tang, Z.; Xu, F. J. Antimicrobial and antifouling polymeric agents for surface functionalization of medical implants. Biomacromolecules 2018, 19, 2805−2811. doi: 10.1021/acs.biomac.8b00399

    14. [14]

      Siedenbiedel, F.; Tiller, J. C. Antimicrobial polymers in solution and on surfaces: overview and functional principles. Polymers 2012, 4, 46−71. doi: 10.3390/polym4010046

    15. [15]

      Zhou, C.; Song, H.; Loh, J. L. C.; She, J.; Deng, L.; Liu, B. Grafting antibiofilm polymer hydrogel film onto catheter by SARA SI-ATRP. J. Biomater. Sci., Polym. Ed. 2018, 29, 2106−2123. doi: 10.1080/09205063.2018.1507268

    16. [16]

      Atefyekta, S.; Pihl, M.; Lindsay, C.; Heilshorn, S. C.; Andersson, M. Antibiofilm elastin-like polypeptide coatings: functionality, stability, and selectivity. Acta Biomater. 2019, 83, 245−256. doi: 10.1016/j.actbio.2018.10.039

    17. [17]

      Gu, J.; Su, Y. J.; Liu, P.; Li, P.; Yang, P. An environmentally benign antimicrobial coating based on a protein supramolecular assembly. ACS Appl. Mater. Interfaces 2017, 9, 198−210. doi: 10.1021/acsami.6b13552

    18. [18]

      Wang, M.; Shi, J.; Mao, H.; Sun, Z.; Guo, S.; Guo, J.; Yan, F. Fluorescent imidazolium-type poly(ionic liquid)s for bacterial imaging and biofilm inhibition. Biomacromolecules 2019, 20, 3161−3170. doi: 10.1021/acs.biomac.9b00741

    19. [19]

      Yang, W. J.; Tao, X.; Zhao, T. T.; Weng, L. X.; Kang, E. T.; Wang, L. H. Antifouling and antibacterial hydrogel coatings with self-healing properties based on a dynamic disulfide exchange reaction. Polym. Chem. 2015, 6, 7027−7035. doi: 10.1039/C5PY00936G

    20. [20]

      Wei, T.; Tang, Z.; Yu, Q.; Chen, H. Smart antibacterial surfaces with switchable bacteria-killing and bacteria-releasing capabilities. ACS Appl. Mater. Interfaces 2017, 9, 37511−37523. doi: 10.1021/acsami.7b13565

    21. [21]

      Tian, J.; Liu, Y.; Miao, S.; Yang, Q.; Hu, X.; Han, Q.; Xue, L.; Yang, P. Amyloid-like protein aggregates combining antifouling with antibacterial activity. Biomater. Sci. 2020.

    22. [22]

      Wang, Z. H.; Fei, G. X.; Xia, H. S.; Zuilhof, H. Dual water-healable zwitterionic polymer coatings for anti-biofouling surfaces. J. Mater. Chem. B 2018, 6, 6930−6935. doi: 10.1039/C8TB01863D

    23. [23]

      Yuan, P.; Qiu, X.; Wang, X.; Tian, R.; Wang, L.; Bai, Y.; Liu, S.; Chen, X. Substrate-independent coating with persistent and stable antifouling and antibacterial activities to reduce bacterial infection for various implants. Adv. Healthc. Mater. 2019, 8, e1801423. doi: 10.1002/adhm.201801423

    24. [24]

      Wang, Q.; Wang, L.; Gao, L.; Yu, L.; Feng, W.; Liu, N.; Xu, M.; Li, X.; Li, P.; Huang, W. Stable and self-healable LbL coating with antibiofilm efficacy based on alkylated polyethyleneimine micelles. J. Mater. Chem. B 2019, 7, 3865−3875. doi: 10.1039/C9TB00498J

    25. [25]

      Wei, Z.; Yang, J. H.; Zhou, J.; Xu, F.; Zrínyi, M.; Dussault, P. H.; Osada, Y.; Chen, Y. M. Self-healing gels based on constitutional dynamic chemistry and their potential applications. Chem. Soc. Rev. 2014, 43, 8114−8131. doi: 10.1039/C4CS00219A

    26. [26]

      Hillewaere, X. K. D.; Du Prez, F. E. Fifteen chemistries for autonomous external self-healing polymers and composites. Prog. Polym. Sci. 2015, 49-50, 121−153. doi: 10.1016/j.progpolymsci.2015.04.004

    27. [27]

      Jin, J.; Cai, L.; Jia, Y. G.; Liu, S.; Chen, Y.; Ren, L. Progress in self-healing hydrogels assembled by host-guest interactions: preparation and biomedical applications. J. Mater. Chem. B 2019, 7, 1637−1651.

    28. [28]

      Yang, Q. M.; Liu, Y. C.; Chen, L. X.; Yang, P. Study on the amyloid-like fibrinogen-based Nanofilm. Acta Polymerica Sinica (in Chinese) 2020, 51, 890−900.

    29. [29]

      Fan, F.; Zhou, C.; Wang, X.; Szpunar, J. Layer-by-Layer assembly of a self-healing anticorrosion coating on magnesium alloys. ACS Appl. Mater. Interfaces 2015, 7, 27271−27278. doi: 10.1021/acsami.5b08577

    30. [30]

      Zhang, X.; Xu, Y.; Zhang, X.; Wu, H.; Shen, J.; Chen, R.; Xiong, Y.; Li, J.; Guo, S. Progress on the layer-by-layer assembly of multilayered polymer composites: strategy, structural control and applications. Prog. Polym. Sci. 2019, 89, 76−107. doi: 10.1016/j.progpolymsci.2018.10.002

    31. [31]

      Zhu, X. Y.; Loh, X. J. Layer-by-layer assemblies for antibacterial applications. Biomater. Sci. 2015, 3, 1505−1518. doi: 10.1039/C5BM00307E

    32. [32]

      Wei, T.; Zhan, W. J.; Cao, L. M.; Hu, C. M.; Qu, Y. C.; Yu, Q.; Chen, H. Multifunctional and regenerable antibacterial surfaces fabricated by a universal strategy. ACS Appl. Mater. Interfaces 2016, 8, 30048−30057. doi: 10.1021/acsami.6b11187

    33. [33]

      Wang, B. L.; Ren, K. F.; Chang, H.; Wang, J. L.; Ji, J. Construction of degradable multilayer films for enhanced antibacterial properties. ACS Appl. Mater. Interfaces 2013, 5, 4136−4143. doi: 10.1021/am4000547

    34. [34]

      Zhu, X.; Guo, S.; Janczewski, D.; Velandia, F. J.; Teo, S. L.; Vancso, G. J. Multilayers of fluorinated amphiphilic polyions for marine fouling prevention. Langmuir 2014, 30, 288−296. doi: 10.1021/la404300r

    35. [35]

      Min, H.; Qian, W.; Zhao, W.; Zhao, C. S. Substrate-independent ultrathin hydrogel film as antifouling and antibacterial layer for microfiltration membrane anchored via layer-by-layer thiol-ene “click” reaction. J. Mater. Chem. B 2018, 6, 3904−3913. doi: 10.1039/C8TB00937F

    36. [36]

      Cai, T.; Li, M.; Neoh, K. G.; Kang, E. T. Preparation of stimuli responsive polycaprolactone membranes of controllable porous morphology via combined atom transfer radical polymerization, ring-opening polymerization and thiol-yne click chemistry. J. Mater. Chem. 2012, 22, 16248−16258. doi: 10.1039/c2jm33419d

    37. [37]

      Song, H. Y.; Ngai, M. H.; Song, Z. Y.; MacAry, P. A.; Hobley, J.; Lear, M. J. Practical synthesis of maleimides and coumarin-linked probes for protein and antibody labelling via reduction of native disulfides. Org. Biomol. Chem. 2009, 7, 3400−3406. doi: 10.1039/b904060a

    38. [38]

      Chen, X. C.; Ren, K. F.; Zhang, J. H.; Li, D. D.; Zhao, E.; Zhao, Z. J.; Xu, Z. K.; Ji, J. Humidity-triggered self-healing of microporous polyelectrolyte multilayer coatings for hydrophobic drug delivery. Adv. Funct. Mater. 2015, 25, 7470−7477. doi: 10.1002/adfm.201503258

    39. [39]

      Abreu, C. M. R.; Mendonça, P. V.; Serra, A. C.; Popov, A. V.; Matyjaszewski, K.; Guliashvili, T.; Coelho, J. F. J. Inorganic sulfites: efficient reducing agents and supplemental activators for atom transfer radical polymerization. ACS Macro Lett. 2012, 1, 1308−1311. doi: 10.1021/mz300458x

    40. [40]

      Mendonça, P. V.; Konkolewicz, D.; Averick, S. E.; Serra, A. C.; Popov, A. V.; Guliashvili, T.; Matyjaszewski, K.; Coelho, J. F. J. Synthesis of cationic poly((3-acrylamidopropyl)trimethyl-ammonium chloride) by SARA ATRP in ecofriendly solvent mixtures. Polym. Chem. 2014, 5, 5829−5836. doi: 10.1039/C4PY00707G

    41. [41]

      Chen, X. C.; Huang, W. P.; Ren, K. F.; Ji, J. Self-healing label materials based on photo-cross-linkable polymeric films with dynamic surface structures. ACS Nano 2018, 12, 8686−8696. doi: 10.1021/acsnano.8b04656

    42. [42]

      Chen, D.; Wu, M.; Li, B.; Ren, K.; Cheng, Z.; Ji, J.; Li, Y.; Sun, J. Layer-by-layer-assembled healable antifouling films. Adv. Mater. 2015, 27, 5882−5888. doi: 10.1002/adma.201501726

    43. [43]

      Liu, Y. L.; Lee, H. C. Preparation and properties of polyhedral oligosilsequioxane tethered aromatic polyamide nanocomposites through Michael addition between maleimide-containing polyamides and an amino-functionalized polyhedral oligosilsequioxane. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 4632−4643. doi: 10.1002/pola.21562

    44. [44]

      Asha, A. B.; Chen, Y.; Zhang, H.; Ghaemi, S.; Ishihara, K.; Liu, Y.; Narain, R. Rapid mussel-inspired surface zwitteration for enhanced antifouling and antibacterial properties. Langmuir 2018, 35, 1621−1630.

    45. [45]

      Surman, F.; Riedel, T.; Bruns, M.; Kostina, N. Y.; Sedlakova, Z.; Rodriguez-Emmenegger, C. Polymer brushes interfacing blood as a route toward high performance blood contacting devices. Macromol. Biosci. 2015, 15, 636−646. doi: 10.1002/mabi.201400470

    46. [46]

      Hänni-Ciunel, K.; Findenegg, G. H.; von Klitzing, R. Water contact angle on polyelectrolyte-coated surfaces: effects of film swelling and droplet evaporation. Soft Mater. 2007, 5, 61−73. doi: 10.1080/15394450701554452

    47. [47]

      DeLongchamp, D. M.; Hammond, P. T. Highly ion conductive poly(ethylene oxide)-based solid polymer electrolytes from hydrogen bonding layer-by-layer assembly. Langmuir 2004, 20, 5403−5411. doi: 10.1021/la049777m

    48. [48]

      Li, Y. X.; Pan, T. Z.; Ma, B. H.; Liu, J. Q.; Sun, J. Q. Healable antifouling films composed of partially hydrolyzed poly(2-ethyl-2-oxazoline) and poly(acrylic acid). ACS Appl. Mater. Interfaces 2017, 9, 14429−14436. doi: 10.1021/acsami.7b02872

    49. [49]

      Bazaka, K.; Jacob, M. V.; Chrzanowski, W.; Ostrikov, K. Anti-bacterial surfaces: natural agents, mechanisms of action, and plasma surface modification. RSC Adv. 2015, 5, 48739−48759. doi: 10.1039/C4RA17244B

    50. [50]

      Chin, W.; Zhong, G.; Pu, Q.; Yang, C.; Lou, W.; De Sessions, P. F.; Periaswamy, B.; Lee, A.; Liang, Z. C.; Ding, X.; Gao, S.; Chu, C. W.; Bianco, S.; Bao, C.; Tong, Y. W.; Fan, W.; Wu, M.; Hedrick, J. L.; Yang, Y. Y. A macromolecular approach to eradicate multidrug resistant bacterial infections while mitigating drug resistance onset. Nat. Commun. 2018, 9.

    51. [51]

      Bauer, M.; Lautenschlaeger, C.; Kempe, K.; Tauhardt, L.; Schubert, U. S.; Fischer, D. Poly(2-ethyl-2-oxazoline) as alternative for the stealth polymer poly(ethylene glycol): comparison of in vitro cytotoxicity and hemocompatibility. Macromol. Biosci. 2012, 12, 986−998. doi: 10.1002/mabi.201200017

    52. [52]

      Xu, M.; Khan, A.; Wang, T.; Song, Q.; Han, C.; Wang, Q.; Gao, L.; Huang, X.; Li, P.; Huang, W. Mussel-inspired hydrogel with potent in vivo contact-active antimicrobial and wound healing promoting activities. ACS Appl. Bio. Mater. 2019, 2, 3329−3340.

  • 加载中
    1. [1]

      Kai-Ju LuoLi-Bo HuangYan WangJun-Rong YuJing ZhuZu-Ming Hu . Tailoring the Properties of Diels-Alder Reaction Crosslinked High-performance Thermosets by Different Bismaleimides. Chinese J. Polym. Sci, 2020, 38(3): 268-277. doi: 10.1007/s10118-019-2328-7

    2. [2]

      Jia ZhengYi-jun ZhengXin-hua Wan . Near Infrared Electrochromic Variable Optical Attenuator Fabricated by Layer-by-layer Assembly. Chinese J. Polym. Sci, 2011, 29(1): 117-123.

    3. [3]

      Min GaoBing-jun LiuLong-cheng GaoPeng-gang YinLei Jiang . ARK-MIMETIC LAYER-BY-LAYER ASSEMBLED MONTMORILLONITE/POLY(p-AMINOSTYRENE) FLEXIBLE NANOCOMPOSITES SHIELDING ATOMIC OXYGEN EROSION. Chinese J. Polym. Sci, 2013, 31(1): 83-87. doi: 10.1007/s10118-013-1213-z

    4. [4]

      Ya-kun GuoHan LiPeng-xiang ZhaoXiao-fang WangDidier AstrucMao-bing Shuai . Thermo-reversible MWCNTs/Epoxy Polymer for Use in Self-healing and Recyclable Epoxy Adhesive. Chinese J. Polym. Sci, 2017, 35(6): 728-738. doi: 10.1007/s10118-017-1920-y

    5. [5]

      Zhen ShiQi WangGui-Fei LiYu-Feng ShouHong-Jie ZongShi-Feng YanKun-Xi ZhangJing-Bo Yin . Preparation and Characterization of Attractive Poly(amino acid) Hydrogels Based on 2-Ureido-4[1H]-pyrimidinone. Chinese J. Polym. Sci, 2021, 39(3): 327-336. doi: 10.1007/s10118-021-2498-y

    6. [6]

      Miao ZhengTang-Jie LongXiao-Ling ChenJun-Qi Sun . Humidity-responsive Bilayer Actuators Comprised of Porous and Nonporous Poly(acrylic acid)/Poly(allylamine hydrochloride) Films. Chinese J. Polym. Sci, 2019, 37(1): 52-58. doi: 10.1007/s10118-018-2162-3

    7. [7]

      Chang-Geun ChaeJoonkeun MinIn-Gyu BakJae-Suk Lee . Synthesis of a Rod-rod Diblock Copolymer, Poly(3-hexylthiophene)-block-poly(furfuryl isocyanate), through the Anionic Polymerization with an Oxyanionic Macroinitiator. Chinese J. Polym. Sci, 2019, 37(9): 866-874. doi: 10.1007/s10118-019-2243-y

    8. [8]

      Liu-Qiao ZhangYang GaoZhi-Hao HuangWei ZhangNian-Chen ZhouZheng-Biao ZhangXiu-Lin Zhu . Controllably Growing Topologies in One-shot RAFT Polymerization via Macro-latent Monomer Strategy. Chinese J. Polym. Sci, 2021, 39(1): 60-69. doi: 10.1007/s10118-020-2463-1

    9. [9]

      Lin YeShao-Feng ZhangYi-Chao LinJia-Kang MinLi MaTao Tang . Synthesis and Characterization of Butyl Acrylate-based Graft Polymers with Thermo-responsive Branching Sites via the Diels-Alder Reaction of Furan/Maleimide. Chinese J. Polym. Sci, 2018, 36(9): 1011-1018. doi: 10.1007/s10118-018-2107-x

    10. [10]

      Fei ZhaoLi LiYu-chuan TianJian-jia LiuJian-jun WangZhi-ming ZhouChun-xiang LvXu-hong Guo . Preparation of Au/Ag Multilayers via Layer-by-Layer Self-assembly in Spherical Polyelectrolyte Brushes and Their Catalytic Activity. Chinese J. Polym. Sci, 2015, 33(10): 1421-1430. doi: 10.1007/s10118-015-1700-5

    11. [11]

      Peng ZhangJin-wen QianLi-jing XuanYun-xiang BaiQuan-fu An . STUDIES ON RELATION BETWEEN INTRINSIC VISCOSITY OF POLYELECTROLYTES IN SOLUTIONS USED FOR LAYER-BY-LAYER SELF-ASSEMBLY AND THEIR CORRESPONDING ADSORPTION AMOUNTS IN THE RESULTANT MULTILAYER MEMBRANES. Chinese J. Polym. Sci, 2009, 27(3): 297-306.

    12. [12]

      Sha-sheng WangYing-qi ShuBen-liang LiangLong-cheng GaoMin GaoPeng-gang YinLin Guo . Nacre-inspired Green Artificial Bionanocomposite Films from the Layer-by-Layer Assembly of Montmorillonite and Chitosan. Chinese J. Polym. Sci, 2014, 32(6): 675-680. doi: 10.1007/s10118-014-1455-4

    13. [13]

      Meng-Yun XieJiang WangQing-Yun Wu . Nanofiltration Membranes via Layer-by-layer Assembly and Cross-linking of Polyethyleneimine/Sodium Lignosulfonate for Heavy Metal Removal. Chinese J. Polym. Sci, 2020, 38(9): 965-972. doi: 10.1007/s10118-020-2422-x

    14. [14]

      Xiao-ying LiuMing ZhongFu-kuan ShiHao XuXu-ming Xie . Multi-bond Network Hydrogels with Robust Mechanical and Self-healable Properties. Chinese J. Polym. Sci, 2017, 35(10): 1253-1267. doi: 10.1007/s10118-017-1971-0

    15. [15]

      Lin-Can YangLi HanHong-Wei MaPi-Bo LiuHe-Yu ShenChao LiSong-Bo ZhangYang Li . Synthesis of Alkyne-functionalized Polymers via Living Anionic Polymerization and Investigation of Features during the Post-“thiol-yne” Click Reaction. Chinese J. Polym. Sci, 2019, 37(9): 841-850. doi: 10.1007/s10118-019-2203-6

    16. [16]

      Ming-qiang LiZhao-hui TangChao WangYu ZhangHai-tao CuiXue-si Chen . Efficient Side-chain Modification of Dextran via Base-catalyzed Epoxide Ring-opening and Thiol-ene Click Chemistry in Aqueous Media. Chinese J. Polym. Sci, 2014, 32(8): 969-974. doi: 10.1007/s10118-014-1489-7

    17. [17]

      . CHEMICALLY DEPOSITED SILVER FILM USED AS A SERS-ACTIVE OVER-COATING LAYER FOR POLYMER FILM*. Chinese J. Polym. Sci, 2001, 19(3): 265-268.

    18. [18]

      Xiao-li YaoYu-hong MaChang-wen ZhaoWan-tai Yang . CORRELATION OF SiOx LAYER THICKNESS AND PROPERTIES OF BOPP/SiOx COMPOSITE FILMS WITH SPIN COATING PROCESS PARAMETERS. Chinese J. Polym. Sci, 2013, 31(2): 333-345. doi: 10.1007/s10118-013-1224-9

    19. [19]

      . BASE-INDUCED RELEASE OF MOLECULES FROM HYDROGEN BONDING DIRECTED LAYER-BY-LAYER FILM*. Chinese J. Polym. Sci, 2003, 21(5): 499-503.

    20. [20]

      Huang Zhi-haoZhou Yan-yanWang Zi-muLi YingZhang WeiZhou Nian-chenZhang Zheng-biaoZhu Xiu-lin . Recent Advances of CuAAC Click Reaction in Building Cyclic Polymer. Chinese J. Polym. Sci, 2017, 35(3): 317-341. doi: 10.1007/s10118-017-1902-0

Article Metrics
  • PDF Downloads(1)
  • Abstract views(464)
  • HTML views(327)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return