Citation: Xu, Y.; Yang, J.; Liu, Z. F.; Zhou, Z. P.; Liang, Z. P.; Hao, T. F.; Nie, Y. J. Stereocomplex crystallization in asymmetric diblock copolymers studied by dynamic Monte Carlo simulations. Chinese J. Polym. Sci. 2021, 39, 632–639 doi: 10.1007/s10118-021-2512-4 shu

Stereocomplex Crystallization in Asymmetric Diblock Copolymers Studied by Dynamic Monte Carlo Simulations

  • Corresponding author: Yi-Jing Nie, E-mail: nieyijing@ujs.edu.cn
  • Received Date: 2020-08-27
    Available Online: 2020-10-23

Figures(10)

  • Stereocomplex crystallization in asymmetric diblock copolymers was studied using dynamic Monte Carlo simulations, and the key factor dominating the formation of stereocomplex crystallites (SCs) was uncovered. The asymmetric diblock copolymers with higher degree of asymmetry exhibit larger difference between volume fractions of beads of different blocks, and local miscibility between different kinds of beads is lower, leading to lower SC content. To minimize the interference from volume fraction of beads, the SC formation in blends of asymmetric diblock copolymers was also studied. For the cases where the volume fractions of beads of different blocks are the same, similar local miscibility between beads of different blocks and similar SC content was observed. These findings indicate that the volume fraction of beads of different blocks is a key factor controlling the SC formation in the asymmetric diblock copolymers. The SC content can be regulated by adjusting the difference between the contents of beads of different blocks in asymmetric diblock copolymers.
    1. [1]

      Lim, L. T.; Auras, R.; Rubino, M. Processing technologies for poly(lactic acid). Prog. Polym. Sci. 2008, 33, 820−852. doi: 10.1016/j.progpolymsci.2008.05.004

    2. [2]

      Qi, H.; Zhou, H.; Tang, Q. Y.; Lee, J. Y.; Fan, Z. Y.; Kim, S.; Staub, M. C.; Zhou, T.; Mei, S.; Han, L.; Pochan, D. J.; Cheng, H.; Hu, W. B.; Li, C. Y. Block copolymer crystalsomes with an ultrathin shell to extend blood circulation time. Nat. Commun. 2018, 9, 3005. doi: 10.1038/s41467-018-05396-x

    3. [3]

      Tsuji, H. Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol. Biosci. 2015, 5, 569−597.

    4. [4]

      Bai, H. W.; Deng, S. H.; Bai, D. Y.; Zhang, Q.; Fu, Q. Recent advances in processing of stereocomplex-type polylactide. Macromol. Rapid Commun. 2017, 38, 1700454. doi: 10.1002/marc.201700454

    5. [5]

      Ikada, Y.; Jamshidi, K.; Tsuji, H.; Hyon, S. H. Stereocomplex formation between enantiomeric poly(lactides). Macromolecules 1987, 20, 904. doi: 10.1021/ma00170a034

    6. [6]

      Saeidlou, S.; Huneault, M. A.; Li, H.; Park, C. B. Poly(lactic acid) crystallization. Prog. Polym. Sci. 2012, 37, 1657−1677. doi: 10.1016/j.progpolymsci.2012.07.005

    7. [7]

      Nampoothiri, K. M.; Nair, N. R.; John, R. P. An overview of the recent developments in polylactide (PLA) research. Bioresour. Technol. 2010, 101, 8493−8501. doi: 10.1016/j.biortech.2010.05.092

    8. [8]

      Cao, Z. Q.; Sun, X. R.; Bao, R. Y.; Yang, W.; Xie, B. H.; Yang, M. B. Role of carbon nanotube grafted poly(L-lactide)-block-poly(D-lactide) in the crystallization of poly(L-lactic acid)/poly(d-lactic acid) blends: suppressed homocrystallization and enhanced stereocomplex crystallization. Eur. Polym. J. 2016, 83, 42−52. doi: 10.1016/j.eurpolymj.2016.08.005

    9. [9]

      He, S.; Bai, H.; Bai, D.; Ju, Y.; Zhang, Q.; Fu, Q. A promising strategy for fabricating high-performance stereocomplex-type polylactide products via carbon nanotubes-assisted low-temperature sintering. Polymer 2019, 162, 50−57. doi: 10.1016/j.polymer.2018.12.032

    10. [10]

      Deng, S.; Bai, H.; Liu, Z.; Zhang, Q.; Fu, Q. Toward supertough and heat-resistant stereocomplex-type polylactide/elastomer blends with impressive melt stability via in situ formation of graft copolymer during one-pot reactive melt blending. Macromolecules 2019, 52, 1718−1730. doi: 10.1021/acs.macromol.8b02626

    11. [11]

      Zhang, J.; Duan, Y.; Sato, H.; Tsuji, H.; Noda, I.; Yan, S.; Ozaki, Y. Crystal modifications and thermal behavior of poly(L-lactic acid) revealed by infrared spectroscopy. Macromolecules 2005, 38, 8012−8021. doi: 10.1021/ma051232r

    12. [12]

      Hirata, M.; Kimura, Y. Thermomechanical properties of stereoblock poly(lactic acid)s with different PLLA/PDLA block compositions. Polymer 2008, 49, 2656−2661. doi: 10.1016/j.polymer.2008.04.014

    13. [13]

      Xie, Q.; Chang, X.; Qian, Q.; Pan, P.; Li, C. Y. Structure and morphology of poly(lactic acid) stereocomplex nanofiber shish kebabs. ACS Macro Lett. 2020, 9, 103−107. doi: 10.1021/acsmacrolett.9b00953

    14. [14]

      Hu, J.; Wang, J.; Wang, M.; Ozaki, Y.; Sato, H.; Zhang, J. Investigation of crystallization behavior of asymmetric PLLA/PDLA blend using Raman imaging measurement. Polymer 2019, 172, 1−6. doi: 10.1016/j.polymer.2019.03.049

    15. [15]

      Pan, P.; Han, L.; Bao, J.; Xie, Q.; Shan, G.; Bao, Y. Competitive stereocomplexation, homocrystallization, and polymorphic crystalline transition in poly(L-lactic acid)/poly(D-lactic acid) racemic blends: molecular weight effects. J. Phys. Chem. B 2015, 119, 6462−6470. doi: 10.1021/acs.jpcb.5b03546

    16. [16]

      Tsuji, H.; Bouapao, L. Stereocomplex formation between poly(L-lactic acid) and poly(D-lactic acid) with disproportionately low and high molecular weights from the melt. Polym. Int. 2012, 61, 442−450. doi: 10.1002/pi.3219

    17. [17]

      Xu, Y.; Wu, H.; Yang, J.; Liu, R.; Zhou, Z.; Hao, T.; Nie, Y. Molecular simulations of microscopic mechanism of the effects of chain length on stereocomplex formation in polymer blends. Comput. Mater. Sci. 2020, 172, 109297. doi: 10.1016/j.commatsci.2019.109297

    18. [18]

      Xie, Y.; Lan, X. R.; Bao, R. Y.; Lei, Y.; Cao, Z. Q.; Yang, M. B.; Yang, W.; Wang, Y. B. High-performance porous polylactide stereocomplex crystallite scaffolds prepared by solution blending and salt leaching. Mater. Sci. Eng. C 2018, 90, 602−609. doi: 10.1016/j.msec.2018.05.023

    19. [19]

      Zhang, Z. C.; Sang, Z. H.; Huang, Y. F.; Ru, J. F.; Zhong, G. J.; Ji, X.; Wang, R. Y.; Li, Z. M. Enhanced heat deflection resistance via shear flow-induced stereocomplex crystallization of polylactide systems. ACS Sustain. Chem. Eng. 2017, 5, 1692−1703. doi: 10.1021/acssuschemeng.6b02438

    20. [20]

      Tsuji, H.; Nakano, M.; Hashimoto, M.; Takashima, K.; Katsura, S.; Mizuno, A. Electrospinning of poly(lactic acid) stereocomplex nanofibers. Biomacromolecules 2006, 7, 3316−3320. doi: 10.1021/bm060786e

    21. [21]

      Hemmi, K.; Matsuba, G.; Tsuji, H.; Kawai, T.; Kanaya, T.; Toyohara, K.; Oda, A.; Endou, K. Precursors in stereo-complex crystals of poly(L-lactic acid)/poly(D-lactic acid) blends under shear flow. J. Appl. Cryst. 2014, 47, 14−21. doi: 10.1107/S1600576713031907

    22. [22]

      Guan, X. C.; Wang, J. P.; Hu, W. B. Monte Carlo simulation of strain-enhanced stereocomplex polymer crystallization. J. Phys. Chem. B 2018, 122, 10928−10933. doi: 10.1021/acs.jpcb.8b07499

    23. [23]

      Wang, G.; Wang, K. Studies on the induction of poly(lactic acid) stereocomplex by thermal and tensile treating. Acta Polymerica Sinica (in Chinese) 2018, 1221−1227.

    24. [24]

      Han, L.; Xie, Q.; Bao, J.; Shan, G.; Bao, Y.; Pan, P. Click chemistry synthesis, stereocomplex formation, and enhanced thermal properties of well-defined poly(L-lactic acid)-b-poly(D-lactic acid) stereo diblock copolymers. Polym. Chem. 2017, 8, 1006−1016. doi: 10.1039/C6PY01989G

    25. [25]

      Yui, N.; Dijkstra, P. J.; Feijen, J. Stereo block copolymers of L- and D-lactides. Macromol. Chem. Phys. 1990, 191, 481−488. doi: 10.1002/macp.1990.021910303

    26. [26]

      Rahaman, M. H.; Tsuji, H. Isothermal crystallization and spherulite growth behavior of stereo multiblock poly(lactic acid)s: effects of block length. J. Appl. Polym. Sci. 2013, 129, 2502−2517. doi: 10.1002/app.38953

    27. [27]

      Shao, J.; Tang, Z.; Sun, J.; Li, G.; Chen, X. Linear and four-armed poly(L-lactide)-block-poly(D-lactide) copolymers and their stereocomplexation with poly(lactide)s. J. Polym. Sci., Part B: Polym. Phys. 2014, 52, 1560−1567.

    28. [28]

      Zhou, K. Y.; Li, J. B.; Wang, H. X.; Ren, J. Effect of star-shaped chain architectures on the polylactide stereocomplex crystallization behaviors. Chinese J. Polym. Sci. 2017, 35, 974−991. doi: 10.1007/s10118-017-1935-4

    29. [29]

      Pan, P.; Bao, J.; Han, L.; Xie, Q.; Shan, G.; Bao, Y. Stereocomplexation of high-molecular-weight enantiomeric poly(lactic acid)s enhanced by miscible polymer blending with hydrogen bond interactions. Polymer 2016, 98, 80−87. doi: 10.1016/j.polymer.2016.06.014

    30. [30]

      Li, Y.; Yu, Y. C.; Han, C. Y.; Wang, X. H.; Huang, D. X. Sustainable blends of poly(propylene carbonate) and stereocomplex polylactide with enhanced rheological properties and heat resistance. Chinese J. Polym. Sci. 2020, 38, 1267−1275. doi: 10.1007/s10118-020-2408-8

    31. [31]

      Zhang, R.; Zha, L. Y.; Hu, W. B. Intramolecular crystal nucleation favored by polymer crystallization: a Monte Carlo simulation evidence. J. Phys. Chem. B 2016, 120, 6754−6760. doi: 10.1021/acs.jpcb.6b01757

    32. [32]

      Nie, Y.; Liu, Y.; Liu, R.; Zhou, Z.; Hao, T. Dynamic Monte Carlo simulations of competition in crystallization of mixed polymers grafted on a substrate. J. Polym. Sci., Part B: Polym. Phys. 2019, 57, 89−97. doi: 10.1002/polb.24757

    33. [33]

      Bai, D. Y.; Liu, H. L.; Bai, H. W.; Zhang, Q.; Fu, Q. Powder metallurgy inspired low-temperature fabrication of high-performance stereocomplexed polylactide products with good optical transparency. Sci. Rep. 2016, 6, 20260. doi: 10.1038/srep20260

    34. [34]

      Qiu, X.; Liu, R.; Nie, Y.; Liu, Y.; Liang, Z.; Yang, J.; Zhou, Z.; Hao, T. Monte Carlo simulations of stereocomplex formation in multiblock copolymers. Phys. Chem. Chem. Phys. 2019, 21, 13296−13303. doi: 10.1039/C9CP02070E

    35. [35]

      Naga, N.; Yoshida, Y.; Noguchi, K. Crystallization of poly(L-lactic acid)/poly(D-lactic acid) blend induced by organic solvents. Polym. Bull. 2019, 79, 3677−3691.

    36. [36]

      Xie, Q.; Guo, G.; Lu, W.; Sun, C.; Zhou, J.; Zheng, Y.; Shan, G.; Bao, Y.; Pan, P. Polymorphic homocrystallization and phase behavior of high-molecular-weight Poly(L-lactic acid)/poly(D-lactic acid) racemic mixture with intentionally enhanced stereocomplexation ability via miscible blending. Polymer 2020, 201, 122597. doi: 10.1016/j.polymer.2020.122597

    37. [37]

      Isono, T.; Kondo, Y.; Otsuka, I.; Nishiyama, R.; Borsali, T.; Kakuchi, T.; Satoh, T. Synthesis and stereocomplex formation of star-shaped stereoblock polylactides consisting of poly(L-lactide) and poly(D-lactide) arms. Macromolecules 2013, 46, 8509−8518. doi: 10.1021/ma401375x

    38. [38]

      Hu, W. The physics of polymer chain-folding. Phys. Rep. 2018, 747, 1−50. doi: 10.1016/j.physrep.2018.04.004

    39. [39]

      Nie, Y.; Gao, H.; Yu, M.; Hu, Z.; Reiter, G.; Hu, W. Competition of crystal nucleation to fabricate the oriented semi-crystalline polymers. Polymer 2013, 54, 3402−3407. doi: 10.1016/j.polymer.2013.04.047

    40. [40]

      Nie, Y.; Zhao, Y.; Matsuba, G.; Hu, W. Shish-kebab crystallites initiated by shear fracture in bulk polymers. Macromolecules 2018, 51, 480−487. doi: 10.1021/acs.macromol.7b02357

    41. [41]

      Nie, Y.; Hao, T.; Gu, Z.; Wang, Y.; Liu, Y.; Zhang, D.; Wei, Y.; Li, S.; Zhou, Z. Relaxation and crystallization of oriented polymer melts with anisotropic filler networks. J. Phys. Chem. B 2017, 121, 1426−1437. doi: 10.1021/acs.jpcb.6b12569

    42. [42]

      Gu, Z.; Yang, R.; Yang, J.; Qiu, X.; Liu, R.; Liu, Y.; Zhou, Z.; Nie, Y. Dynamic Monte Carlo simulations of effects of nanoparticle on polymer crystallization in polymer solutions. Comput. Mater. Sci. 2018, 147, 217−226. doi: 10.1016/j.commatsci.2018.02.009

    43. [43]

      Nie, Y.; Gu, Z.; Zhou, Q.; Wei, Y.; Hao, T.; Liu, Y.; Liu, R.; Zhou, Z. Controllability of polymer crystal orientation using heterogeneous nucleation of deformed polymer loops grafted on two-dimensional nanofiller. J. Phys. Chem. B 2017, 121, 6685−6690. doi: 10.1021/acs.jpcb.7b02861

    44. [44]

      Wu, H.; Qiu, X.; Zhang, Y.; Yang, R.; Yang, J.; Liu, R.; Liu, Y.; Zhou, Z.; Hao, T.; Gu, Z.; Nie, Y. Formation mechanism of reverse kebab structure inside hollow nanotubes studied by molecular simulations. Comput. Mater. Sci. 2018, 153, 348−355. doi: 10.1016/j.commatsci.2018.07.016

    45. [45]

      Qiu, X.; Zhang, Y.; Wu, H.; Yang, R.; Yang, J.; Liu, R.; Liu, Y.; Zhou, Z.; Hao, T.; Nie, Y. Blocked crystallization in capped ultrathin polymer films studied by molecular simulations. Polym. Int. 2019, 68, 218−224. doi: 10.1002/pi.5549

    46. [46]

      Hu, W.; Frenkel, D. Polymer crystallization driven by anisotropic interactions. Adv. Polym. Sci. 2005, 191, 1−35.

    47. [47]

      Nie, Y.; Gu, Z.; Wei, Y.; Hao, T.; Zhou, Z. Features of strain-induced crystallization of natural rubber revealed by experiments and simulations. Polym. J. 2017, 49, 309−317. doi: 10.1038/pj.2016.114

    48. [48]

      Hao, T.; Zhou, Z.; Nie, Y.; Wei, Y.; Gu, Z.; Li, S. Effect of the polymer-substrate interactions on crystal nucleation of polymers grafted on a flat solid substrate as studied by molecular simulations. Polymer 2017, 123, 169−178. doi: 10.1016/j.polymer.2017.07.020

    49. [49]

      Liu, R.; Yang, L.; Qiu, X.; Wu, H.; Zhang, Y.; Liu, Y.; Zhou, Z.; Ming, Y.; Hao, T.; Nie, Y. One-dimensional nanofiller induced crystallization in random copolymers studied by dynamic Monte Carlo simulations. Mol. Simul. 2020, 46, 669−677. doi: 10.1080/08927022.2018.1515485

    50. [50]

      Liu, R.; Zhou, Z.; Liu, Y.; Liang, Z.; Ming, Y.; Hao, T.; Nie, Y. Epitaxial orientation and localized microphase separation prior to formation of nanohybrid shish-kebabs induced by one-dimensional nanofiller in miscible diblock copolymers with selective interaction. Polymer 2019, 166, 72−80. doi: 10.1016/j.polymer.2019.01.057

    51. [51]

      Liu, R.; Zhou, Z.; Liu, Y.; Liang, Z.; Ming, Y.; Hao, T.; Nie, Y. Competition between interfacial interaction and microphase separation in crystallization of filled block copolymers. J. Polym. Sci., Part B: Polym. Phys. 2019, 57, 1516−1526.

    52. [52]

      Liu, R.; Zhou, Z.; Liu, Y.; Liang, Z.; Ming, Y.; Hao, T.; Nie, Y. Differences in crystallization behaviors between cyclic and linear polymer nanocomposites. Chinese J. Polym. Sci. 2020, 38, 1034−1044. doi: 10.1007/s10118-020-2403-0

    53. [53]

      Hao, T.; Xu, D.; Ming, Y.; Zhang, S.; Wei, Y.; Zhou, Z.; Nie, Y.; Yan, D. The study on correlation between molecular weight and confined crystallization behavior of polymers grafted on zero-dimensional filler. CrystEngComm 2020, 22, 1779−1788. doi: 10.1039/C9CE01606F

    54. [54]

      Gu, Z.; Xu, Y.; Lu, Q.; Han, C.; Liu, R.; Zhou, Z.; Hao, T.; Nie, Y. Stereocomplex formation in mixed polymers filled with two-dimensional nanofillers. Phys. Chem. Chem. Phys. 2019, 21, 6443−6452. doi: 10.1039/C8CP07839D

    55. [55]

      Zhang, J. M.; Sato, H.; Tsuji, H.; Noda, I.; Ozaki, Y. Infrared spectroscopic study of CH3…O=C interaction during poly(L-lactide)/poly(D-lactide) stereocomplex formation. Macromolecules 2005, 38, 1822−1828. doi: 10.1021/ma047872w

    56. [56]

      Tashiro, K.; Kouno, N.; Wang, H.; Tsuji, H. Crystal structure of poly(lactic acid) stereocomplex: random packing model of PDLA and PLLA chains as studied by X-ray diffraction analysis. Macromolecules 2017, 50, 8048−8065. doi: 10.1021/acs.macromol.7b01468

  • 加载中
    1. [1]

      Yu MaXiao-hong ZhangWen-bing Hu . EXTENSIONAL FLOW OF BULK POLYMERS STUDIED BY DYNAMIC MONTE CARLO SIMULATIONS. Chinese J. Polym. Sci, 2013, 31(11): 1463-1469. doi: 10.1007/s10118-013-1337-1

    2. [2]

      Lan XieXu-juan LiYu-zhu XiongQin ChenHai-bo XieQiang Zheng . Can Classic Avrami Theory Describe the Isothermal Crystallization Kinetics for Stereocomplex Poly(lactic acid)?. Chinese J. Polym. Sci, 2017, 35(6): 773-781. doi: 10.1007/s10118-017-1929-2

    3. [3]

      Cheng-Huan XuJi-Ping WangWen-Bing Hu . Kinetic Monte Carlo Simulations of Polymer Cold Crystallization. Chinese J. Polym. Sci, 2019, 37(6): 627-632. doi: 10.1007/s10118-019-2222-3

    4. [4]

      Ao-kai ZhangJun LingYu-wei SunGuo-dong Fu . Three-dimensional Molecular Geometry of PEG Hydrogels by an Expansion-Contraction Method through Monte Carlo Simulations. Chinese J. Polym. Sci, 2015, 33(5): 721-731. doi: 10.1007/s10118-015-1620-4

    5. [5]

      Tanissara PinijmontreeVisit Vao-soongnern . Dynamics of Polypropylene Chains in Their Binary Blends of Different Stereochemical Sequences Studied by Monte Carlo Simulations. Chinese J. Polym. Sci, 2014, 32(5): 640-649. doi: 10.1007/s10118-014-1422-0

    6. [6]

      Mohammad Najafi abMehdi Salami-Kalajahi aVahid Haddadi-Asl a . QUANTITATIVE EVALUATION OF ARRANGEMENT OF MONOMERS IN LINEAR BINARY COPOLYMERS USING A MONTE CARLO SIMULATION METHOD. Chinese J. Polym. Sci, 2009, 27(2): 195-208.

    7. [7]

      Ke-yu ZhouJian-bo LiHan-xuan WangJie Ren . Effect of Star-shaped Chain Architectures on the Polylactide Stereocomplex Crystallization Behaviors. Chinese J. Polym. Sci, 2017, 35(8): 974-991. doi: 10.1007/s10118-017-1935-4

    8. [8]

      . A MONTE CARLO STUDY OF THE GLASS TRANSITION OF POLYMETHYLENE*. Chinese J. Polym. Sci, 1999, 17(6): 543-549.

    9. [9]

      Jin ChenJiong-Hua Xiang . Dynamic Monte Carlo Simulation on Polymerization of Encapsulant. Chinese J. Polym. Sci, 2019, 37(2): 157-163. doi: 10.1007/s10118-019-2176-5

    10. [10]

      Ru XiaXiang-song WuPeng ChenJia-sheng QianXiao-shuang Feng . Monte Carlo Simulation on Layered Polymeric Films. Chinese J. Polym. Sci, 2014, 32(5): 595-602. doi: 10.1007/s10118-014-1446-5

    11. [11]

      Mohammad Najafi aHossein Roghani-Mamaqani bMehdi Salami-Kalajahi abVahid Haddadi-Asl ab . A COMPREHENSIVE MONTE CARLO SIMULATION OF STYRENE ATOM TRANSFER RADICAL POLYMERIZATION. Chinese J. Polym. Sci, 2010, 28(4): 483-497. doi: 10.1007/s10118-010-9058-1

    12. [12]

      YU DingshengWU MingguangJIAO Shuke . STUDY ON THE SEQUENCE STRUCTURE OF SBR BY 13C-NMR METHOD Ⅵ MONTE CARLO SIMULATION OF THE SEQUENCE OF SBR. Chinese J. Polym. Sci, 1993, 11(2): 158-162.

    13. [13]

      . DYNAMIC MONTE CARLO STUDY ON THE CORRELATION BETWEEN SHAPE AND SIZE OF LINEAR POLYMER CHAINS*. Chinese J. Polym. Sci, 2003, 21(1): 65-70.

    14. [14]

      Wen-qin LuMeng-bo Luo . MONTE CARLO STUDY ON THE CRITICAL ADSORPTION POINT OF BOND-FLUCTUATED POLYMER CHAINS TETHERED ON ADSORBING SURFACES. Chinese J. Polym. Sci, 2009, 27(1): 109-114.

    15. [15]

      Zhuo-li LinJun LuoZheng-jian ChenJun YiHong-liang JiangKe-hua TuLi-qun Wang . A MONTE CARLO SIMULATION STUDY OF THE EFFECT OF CHAIN LENGTH ON THE HYDROLYSIS OF POLY(LACTIC ACID). Chinese J. Polym. Sci, 2013, 31(11): 1554-1562. doi: 10.1007/s10118-013-1353-1

    16. [16]

      Long WangXiao-mei YangXue-hao He . INVESTIGATION OF SPECIFIC AB2 TYPE HYPERBRANCHED POLYESTERIFICATION REACTION WITH MONTE CARLO SIMULATION. Chinese J. Polym. Sci, 2013, 31(3): 371-376. doi: 10.1007/s10118-013-1202-2

    17. [17]

      Hong-ge Tan aZi-yu Wang bWen-fang Zhu aQing-gong Song aHui Li cCui-qin Bai a . STRUCTURE EVOLUTION OF THE CYLINDRICAL PHASE OF DIBLOCK COPOLYMERS IN FILMS. Chinese J. Polym. Sci, 2008, 26(6): 759-766.

    18. [18]

      Lin-li He aLin-xi Zhang b . THE EFFECTS OF PATTERNED SURFACES ON THE PHASE SEPARATION FOR DIBLOCK COPOLYMERS. Chinese J. Polym. Sci, 2009, 27(3): 307-315.

    19. [19]

      Noor RehmanAbbas KhanIram BibiMohammad Siddiq . MICELLAR PARAMETERS OF DIBLOCK COPOLYMERS AND THEIR INTERACTIONS WITH IONIC SURFACTANTS. Chinese J. Polym. Sci, 2012, 30(2): 217-226. doi: 10.1007/s10118-012-1114-6

    20. [20]

      . CRYSTALLIZATION OF BLENDS OF AN ASYMMETRIC POLY(OXYETHYLENE)-b-POLY(OXYBUTYLENE) BLOCK COPOLYMER WITH POLY(OXYBUTYLENE)*. Chinese J. Polym. Sci, 2004, 22(5): 477-483.

Article Metrics
  • PDF Downloads(0)
  • Abstract views(534)
  • HTML views(286)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return