Citation: Aleksandrov, A. I.; Aleksandrov, I. A.; Shevchenko, V. G.; Ozerin, A. N. Structural changes and electrodynamic effects in polymers under fast uniaxial compression. Chinese J. Polym. Sci. 2021, 39, 601–609 doi: 10.1007/s10118-021-2511-5 shu

Structural Changes and Electrodynamic Effects in Polymers under Fast Uniaxial Compression

  • Corresponding author: Vitaliy G. Shevchenko, E-mail: shev@ispm.ru
  • Received Date: 2020-08-01
    Available Online: 2020-10-13

Figures(9) / Tables(1)

  • Rheological explosion in polymers under uniaxial compression in an open volume occurs at the end of continuous rapid plastic deformation after several stages of creep. Two types of polymers were chosen for this study: brittle glassy amorphous polystyrene and thermoplastic semi-crystalline polypropylene. Electric pulses were detected during explosion, and their spectra were analyzed with two models. X-ray diffraction methods were used to investigate changes in the structure and morphology of polymers during deformation and rheological explosion. The pores appear in polymer in this process, and their shape and size distribution were derived from X-ray experiments. The main reason for the formation of pores in polymer samples in rheological explosion experiments is the intense microshifts in the polymer volume under the action of high applied pressure.
    1. [1]

      Bridgman, P. W. Effects of high shearing stress combined with high hydrostatic pressure. Phys. Rev. 1935, 48, 825−847. doi: 10.1103/PhysRev.48.825

    2. [2]

      Bridgman, P. W. Flow in heavily stressed metals. J. Appl. Phys. 1937, 8, 328−336. doi: 10.1063/1.1710301

    3. [3]

      Meade, C.; Jeanloz, R. Acoustic emissions and shear instabilities during phase transformations in Si and Ge at ultrahigh pressures. Nature 1989, 339, 616−618. doi: 10.1038/339616a0

    4. [4]

      Holzhausen, G. R.; Johnson, A. M. The concept of residual stress in rock. Tectonophysics 1979, 58, 237−267. doi: 10.1016/0040-1951(79)90311-1

    5. [5]

      Sleep, N. H.; Blanpied, M. L. Creep, compaction and the weak rheology of major faults. Nature 1992, 359, 687−692. doi: 10.1038/359687a0

    6. [6]

      Kanel, G. I.; Fortov, V. E.; Razorenov, S. V. Shock waves in condensed-state physics. Phys.-Usp. 2007, 50, 771−792. doi: 10.1070/PU2007v050n08ABEH006327

    7. [7]

      Aleksandrov, A. I.; Alexandrov, I. A.; Prokof’ev, A. I.; Bubnov, N. N. Pulse mechanochemistry of organoelement compounds. Russ. Chem. Bull. 1999, 48, 1599−1614. doi: 10.1007/BF02494801

    8. [8]

      Aleksandrov, I. A.; Gritsenko, O. T.; Getmanova, E. V.; Obolonkova, E. S.; Serenko, O. A.; Shevchenko, V. G.; Aleksandrov, A. I. Muzafarov, A. M. Behavior of polystyrene-based nano- and microcomposites under fast compression. Tech. Phys. 2011, 56, 491−495. doi: 10.1134/S1063784211040025

    9. [9]

      Aleksandrov, I. A.; Gritsenko, O. T.; Perov, N. S.; Getmanova, E. V.; Obolonkova, E. S.; Serenko, O. A.; Shevchenko, V. G.; Aleksandrov, A. I.; Muzafarov, A. M. Fracture of polystyrene- and molecular silica sol-based nanocomposites during fast compression. Tech. Phys. 2013, 58, 88−93. doi: 10.1134/S1063784213010027

    10. [10]

      Aleksandrov, A. I.; Alexandrov, I. A.; Prokof’ev, A. I. Radio-frequency superradiance at the rheological explosion of a paramagnetic polymer composite containing manganese complexes. JETP Lett. 2013, 97, 546−548. doi: 10.1134/S0021364013090038

    11. [11]

      Aleksandrov, A. I.; Aleksandrov, I. A.; Zezin, S. B.; Degtyarev, E. N.; Dubinskiy, A. A.; Abramchuk, S. S.; Prokof’ev, A. I. Radio-frequency superradiance induced by the rheological explosion of polymer composites containing paramagnetic cobalt complexes. Russ. J. Phys. Chem. B 2016, 10, 69−76. doi: 10.1134/S1990793116010139

    12. [12]

      Aleksandrov, A. I.; Shevchenko, V. G.; Aleksandrov, I. A. Generation of superradiance by pulsed mechanical action. Tech. Phys. Lett. 2020, 46, 346−349. doi: 10.1134/S1063785020040021

    13. [13]

      Aleksandrov, A. I.; Aleksandrov, I. A.; Shevchenko, V. G. Multiferroic based on metal-organic dimers with the Dzyaloshinskii-Moriya effect. JETP Lett. 2016, 104, 568−572. doi: 10.1134/S0021364016200066

    14. [14]

      Aleksandrov, A. I.; Shevchenko, V. G.; Aleksandrov, I. A. A polymer composite based on organometallic cobalt dimers with Dzyaloshinskii-Moriya effect. Polym. Sci. Ser. A 2018, 60, 74−80. doi: 10.1134/S0965545X18010017

    15. [15]

      Nielsen, L. E.; Landel, R. F. Mechanical properties of polymers and composites, 2nd ed. Marcel Dekker, Inc., NY, 1994, p. 112.

    16. [16]

      Petoukhov, M. V.; Franke, D.; Shkumatov, A. V.; Tria, G.; Kikhney, A. G.; Gajda, M.; Gorba, C.; Mertens, H. D. T., Konarev, P. V.; Svergun, D. I. New developments in the ATSAS program package for small-angle scattering data analysis. J. Appl. Cryst. 2012, 45, 342−350. doi: 10.1107/S0021889812007662

    17. [17]

      Tikhonov, A. E.; Arsenin, V. Y. Solutions of ill-posed problems. John Wiley & Sons, New York, 1977, pp. 258.

    18. [18]

      Wertz, J. E. Bolton, J. R. Electron spin resonance. Chapman and Hall, New York, 1986, pp. 500.

    19. [19]

      Lorentz, H. A. Theorien physikalischer Erscheinungen. Physikalische Zeitschrift. 1899, 498, 514−591.

    20. [20]

      Kremer F. Broadband dielectric spectroscopy, Springer-Verlag, Berlin Heidelberg. 2003, pp. 60−98.

    21. [21]

      Volynskii, A. L.; Bakeev, N. F. Structural self-organization of amorphous polymers (in Russian). Fizmatlit, Moscow, 2005.

    22. [22]

      Bendler, J. T. Conformational origin of glassy-state relaxation and ductility in aromatic polycarbonates. Comput. Theor. Polym. Sci. 1998, 8, 83−92. doi: 10.1016/S1089-3156(98)00019-1

    23. [23]

      Othmezouri-Decerf J. Investigation of the low temperature ageing kinetics of glassy polycarbonate by mechanical damping spectroscopy. J. Mater. Sci. 1999, 34, 2351−2359. doi: 10.1023/A:1004594111987

    24. [24]

      Feigin, L. A.; Svergun, D. I. Structure analysis by small-angle X-ray and neutron scattering. New York: Plenum Press, 1987, pp. 335.

    25. [25]

      Ozerin, A. N.; Kurkin, T. S.; Ozerina, L. A.; Dolmatov, V. Y. X-ray diffraction study of the structure of detonation nanodiamonds. Crystallogr. Rep. 2008, 53, 60−67. doi: 10.1134/S1063774508010070

    26. [26]

      Shtykova, E. V. Shape determination of polydisperse and polymorphic nanoobjects from small-angle X-ray scattering data (computer simulation). Nanotechnologies in Russia, 2015, 10, 408−419. doi: 10.1134/S1995078015030155

    27. [27]

      De Rosa, C.; Auriemma, F. Diffraction analysis of ordered and disordered crystals. New Jersey: John Wiley & Sons, Inc., 2014, pp. 480.

    28. [28]

      Buchachenko, A. L. Microwave stimulation of dislocations and the magnetic control of the earthquake core. Phys.-Usp. 2019, 62, 46−53. doi: 10.3367/UFNe.2018.03.038301

    29. [29]

      Morgunov, R. B. Spin micromechanics in the physics of plasticity. Phys.-Usp. 2004, 47, 125−148. doi: 10.1070/PU2004v047n02ABEH001683

  • 加载中
    1. [1]

      Fang-zhen AnXue-qin GaoJun LeiCong DengZhong-ming LiKai-zhi Shen . Vibration Assisted Extrusion of Polypropylene. Chinese J. Polym. Sci, 2015, 33(5): 688-696. doi: 10.1007/s10118-015-1617-z

    2. [2]

      Qi LiuHui-hui LiShou-ke Yan . Structure and Properties of -Polypropylene Reinforced by Polypropylene Fiber and Polyamide Fiber. Chinese J. Polym. Sci, 2014, 32(4): 509-518. doi: 10.1007/s10118-014-1417-x

    3. [3]

      Lu WangZhi-wei JiangFeng LiuZhi-jie ZhangTao Tang . Effects of Branches on the Crystallization Kinetics of Polypropylene-g-Polystyrene and Polypropylene-g-Poly(n-butyl acrylate) Graft Copolymers with Well-defined Molecular Structures. Chinese J. Polym. Sci, 2014, 32(3): 333-349. doi: 10.1007/s10118-014-1404-2

    4. [4]

      Li CaoDun-fan SuZhi-qiang SuXiao-nong Chen . Morphology, Crystallization Behavior and Tensile Properties of -Nucleated Isotactic Polypropylene Fibrous Membranes Prepared by Melt Electrospinning. Chinese J. Polym. Sci, 2014, 32(9): 1167-1175. doi: 10.1007/s10118-014-1465-2

    5. [5]

      Tanveer ul Haq ZiaAhmad Nawaz KhanMajid HussainIbrar HassanIftikhar Hussain Gul . Enhancing Dielectric and Mechanical Behaviors of Hybrid Polymer Nanocomposites Based on Polystyrene, Polyaniline and Carbon Nanotubes Coated with Polyaniline. Chinese J. Polym. Sci, 2016, 34(12): 1500-1509. doi: 10.1007/s10118-016-1867-4

    6. [6]

      Yao GaoGui-ying ZongHong-wei BaiQiang Fu . Combined Effects of Stretching and Nanofillers on the Crystalline Structure and Mechanical Properties of Polypropylene and Single-walled Carbon Nanotube Composite Fibers. Chinese J. Polym. Sci, 2014, 32(2): 245-254. doi: 10.1007/s10118-014-1397-x

    7. [7]

      Jing-wei ChenJian DaiJing-hui YangNan ZhangTing HuangYong WangChao-liang Zhang . Annealing Induced Microstructure and Mechanical Property Changes of Impact Resistant Polypropylene Copolymer. Chinese J. Polym. Sci, 2015, 33(9): 1211-1224. doi: 10.1007/s10118-015-1668-1

    8. [8]

      Xian-ze YinYe-qiang TanYi-hu SongQiang Zheng . DISPERSION STABILITY AND RHEOLOGICAL BEHAVIOR OF SUSPENSIONS OF POLYSTYRENE COATED FUMED SILICA PARTICLES IN POLYSTYRENE SOLUTIONS. Chinese J. Polym. Sci, 2012, 30(1): 26-35. doi: 10.1007/s10118-012-1099-1

    9. [9]

      Yong-jin PengChen-ting CaiRong-chun ZhangTie-hong ChenPing-chuan SunBao-hui LiXiao-liang WangGi XueAn-Chang Shi . Probing the Two-stage Transition upon Crossing the Glass Transition of Polystyrene by Solid-state NMR. Chinese J. Polym. Sci, 2016, 34(4): 446-456. doi: 10.1007/s10118-016-1762-z

    10. [10]

      Yagoub MansooriKhadijeh RoojaeiMohammad Reza ZamanlooGholamhassan Imanzadeh . POLYMER-CLAY NANOCOMPOSITES: CHEMICAL GRAFTING OF POLYSTYRENE ONTO CLOISITE 20A. Chinese J. Polym. Sci, 2012, 30(6): 815-823. doi: 10.1007/s10118-012-1188-1

    11. [11]

      Peng ZhangHai-ying HuangYu ChenShun YuChristina KrywkaSarathlal K. VayalilStephan V. RothTian-bai He . Preparation of Long-range Ordered Nanostructures in Semicrystalline Diblock Copolymer Thin Films Using Micromolding. Chinese J. Polym. Sci, 2014, 32(9): 1188-1198. doi: 10.1007/s10118-014-1506-x

    12. [12]

      Wei-jia WangCheng-huan HuangZhao-xia GuoJian Yu . Preparation of POE/PS Blends with Fine Particle Sizes by Diffusion and Subsequent Polymerization of Styrene in POE Pellets. Chinese J. Polym. Sci, 2017, 35(8): 939-949. doi: 10.1007/s10118-017-1955-0

    13. [13]

      Hai-yue QiuFang ChenZhao-xia GuoJian Yu . Preparation of Polypropylene/Poly(styrene-co-(butyl methacrylate)) Nanoblends by Diffusion and Subsequent Copolymerization of Monomers in Isotactic Polypropylene Pellets. Chinese J. Polym. Sci, 2015, 33(10): 1380-1388. doi: 10.1007/s10118-015-1686-z

    14. [14]

      Zai-man LiuYun LiuNai-pu HeBai-yu Li . Preparation of Nanosilica-immobilized Antioxidant and the Antioxidation Effects in Polypropylene. Chinese J. Polym. Sci, 2014, 32(12): 1602-1609. doi: 10.1007/s10118-014-1553-3

    15. [15]

      S. AslanzadehR. Semnani Rahbar and M. Nazi . Accelerating Role of Clay in Photo-Oxidation of Polypropylene/Clay Multifilament Yarns. Chinese J. Polym. Sci, 2014, 32(5): 609-619. doi: 10.1007/s10118-014-1426-9

    16. [16]

      Ding-ding HuShi-bing YeFei YuJia-chun Feng . Further Understanding on the Three Domains of Isotactic Polypropylene by Investigating the Crystalline Morphologies Evolution after Treatment at Different Domains. Chinese J. Polym. Sci, 2016, 34(3): 344-358. doi: 10.1007/s10118-016-1745-0

    17. [17]

      Gui-qiu MaDa LiJing Sheng . Shear-induced Crystallization in Phase-separated Blends of Isotactic Polypropylene with Ethylene-Propylene-Diene Terpolymer. Chinese J. Polym. Sci, 2015, 33(11): 1538-1549. doi: 10.1007/s10118-015-1705-0

    18. [18]

      Shan WangAmir SaffarAbdellah AjjiHong WuShao-yun Guo . Fabrication of Microporous Membranes from Melt Extruded Polypropylene Precursor Films via Stretching: Effect of Annealing. Chinese J. Polym. Sci, 2015, 33(7): 1028-1037. doi: 10.1007/s10118-015-1643-x

    19. [19]

      Lin QiYan-fen DingQuan-xiao DongBin WenPeng LiuFeng WangShi-min ZhangMing-shu Yang . UV Photodegradation of Polypropylene Thick Bars Containing Rutile-type TiO2 Nanorods. Chinese J. Polym. Sci, 2014, 32(7): 834-843. doi: 10.1007/s10118-014-1472-3

    20. [20]

      Jian-wei ZhangHua-yi LiHang FanYu ZhangLi JiangChun-ru WangChao MaYu-jun Liu . Synergistic Effect of Phosphite with Fullerene C60 and Fullerenol C60(OH)24 as Antioxidants in Polypropylene. Chinese J. Polym. Sci, 2014, 32(10): 1357-1362. doi: 10.1007/s10118-014-1525-7

Article Metrics
  • PDF Downloads(1)
  • Abstract views(457)
  • HTML views(265)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return