Citation: Sun, X.; Shi, W.; Zhou, X. Y.; Ding, S. Facile mechanochemical preparation of polyamide-derivatives via solid-state benzoxazine-isocyanide chemistry. Chinese J. Polym. Sci. 2021, 39, 573–584 doi: 10.1007/s10118-021-2510-6 shu

Facile Mechanochemical Preparation of Polyamide-derivatives via Solid-state Benzoxazine-isocyanide Chemistry

  • Corresponding author: Wei Shi, E-mail:
  • Received Date: 2020-08-21
    Available Online: 2020-10-14


  • With the exploration of novel sustainable protocol for functional polyamides’ (PAs) construction as the starting point, herein, the small molecular model compound (M1-ssBIC) was prepared firstly by manual grinding of monofunctional benzoxazine (1a) and isocyanide (1b) via solid-state benzoxazine-isocyanide chemistry (ssBIC) to evaluate the feasibility of ssBIC. Linear PAs (P1-series polymers) were subsequently synthesized from biunctional benzoxazine (2a) and isocyanide (2b), and the influence of the loading of catalyst (octylphosphonic acid) (OPA) on the polymerization was investigated. Afterwards, two kinds of cross-linked PAs were successfully constructed via ssBIC by using trifunctional benzoxazine (3a) and cross-linked polybenzoxazine (4a) as reaction substrates, respectively, thus verifying the adaptability of ssBIC. Structural characterization indicates that amide, phenolic hydroxyl and tertiary amine substructures, with metal-complexing capability, have been successfully integrated into the obtained PAs. A type of representative PA/silver composite (P3-AgNPs) was prepared subsequently via in situ reduction treatment, and its application as recyclable reduction catalyst for organic pollutant p-nitrophenol (4-NP) was preliminarily investigated here to provide the example for possible downstream application of ssBIC. We think that this current work could provide a new pathway for the construction of functional PAs through facile and sustainable ssBIC protocol.
    1. [1]

      Wang, G. W. Mechanochemical organic synthesis. Chem. Soc. Rev. 2013, 42, 7668−7700. doi: 10.1039/c3cs35526h

    2. [2]

      Braga, D.; Maini, L.; Grepioni, F. Mechanochemical preparation of co-crystals. Chem. Soc. Rev. 2013, 42, 7638−7648. doi: 10.1039/c3cs60014a

    3. [3]

      James, S. L.; Adams, C. J.; Bolm, C.; Braga, D.; Collier, P.; Friscic, T.; Grepioni, F.; Harris, K. D. M.; Hyett, G.; Jones, W.; Krebs, A.; Mack, J.; Maini, L.; Orpen, A. G.; Parkin, I. P.; Shearouse, W. C.; Steed, J. W.; Waddell, D. C. Mechanochemistry: opportunities for new and cleaner synthesis. Chem. Soc. Rev. 2012, 41, 413−447. doi: 10.1039/C1CS15171A

    4. [4]

      Friscic, T.; Jones, W. Recent advances in understanding the mechanism of cocrystal formation via grinding. Cryst. Growth Des. 2009, 9, 1621−1637. doi: 10.1021/cg800764n

    5. [5]

      Gratz, S.; Beyer, D.; Tkachova, V.; Hellmann, S.; Berger, R.; Feng, X. L.; Borchardt, L. The mechanochemical scholl reaction—a solvent-free and versatile graphitization tool. Chem. Commun. 2018, 54, 5307−5310. doi: 10.1039/C8CC01993B

    6. [6]

      Fulmer, D. A.; Shearouse, W. C.; Medonza, S. T.; Mack, J. Solvent-free sonogashira coupling reaction via high speed ball milling. Green Chem. 2009, 11, 1821−1825. doi: 10.1039/b915669k

    7. [7]

      Hestericova, M.; Sebesta, R. Higher enantioselectivities in thiourea-catalyzed Michael additions under solvent-free conditions. Tetrahedron 2014, 70, 901−905. doi: 10.1016/j.tet.2013.12.029

    8. [8]

      Cook, T. L.; Walker, J. A.; Mack, J. Scratching the catalytic surface of mechanochemistry: a multi-component cuaac reaction using a copper reaction vial. Green Chem. 2013, 15, 617−619. doi: 10.1039/c3gc36720g

    9. [9]

      Dokli, I.; Gredicak, M. Mechanochemical ritter reaction: a rapid approach to functionalized amides at room temperature. Eur. J. Org. Chem. 2015, 2727−2732.

    10. [10]

      Kean, Z. S.; Craig, S. L. Mechanochemical remodeling of synthetic polymers. Polymer 2012, 53, 1035−1048. doi: 10.1016/j.polymer.2012.01.018

    11. [11]

      Li, J.; Nagamani, C.; Moore, J. S. Polymer mechanochemistry: from destructive to productive. Acc. Chem. Res. 2015, 48, 2181−2190. doi: 10.1021/acs.accounts.5b00184

    12. [12]

      Chen, Z.; Mercer, J. A. M.; Zhu, X.; Romaniuk, J. A. H.; Pfattner, R.; Cegelski, L.; Martinez, T. J.; Burns, N. Z.; Xia, Y. Mechanochemical unzipping of insulating polyladderene to semiconducting polyacetylene. Science 2017, 357, 475. doi: 10.1126/science.aan2797

    13. [13]

      Gratz, S.; Wolfrum, B.; Borchardt, L. Mechanochemical Suzuki polycondensation—from linear to hyperbranched polyphenylenes. Green Chem. 2017, 19, 2973−2979. doi: 10.1039/C7GC00693D

    14. [14]

      Gratz, S.; Borchardt, L. Mechanochemical polymerization—controlling a polycondensation reaction between a diamine and a dialdehyde in a ball mill. RSC Adv. 2016, 6, 64799−64802. doi: 10.1039/C6RA15677K

    15. [15]

      Troschke, E.; Gratz, S.; Lubken, T.; Borchardt, L. Mechanochemical friedel-crafts alkylation—a sustainable pathway towards porous organic polymers. Angew. Chem. Int. Ed. 2017, 56, 6859−6863. doi: 10.1002/anie.201702303

    16. [16]

      Gratz, S.; Oltermann, M.; Troschke, E.; Paasch, S.; Krause, S.; Brunner, E.; Borchardt, L. Solvent-free synthesis of a porous thiophene polymer by mechanochemical oxidative polymerization. J. Mater. Chem. A 2018, 6, 21901−21905. doi: 10.1039/C8TA03684E

    17. [17]

      Zhu, X.; Tian, C. C.; Jin, T.; Browning, K. L.; Sacci, R. L.; Veith, G. M.; Dai, S. Solid-state synthesis of conjugated nanoporous polycarbazoles. ACS Macro Lett. 2017, 6, 1056−1059. doi: 10.1021/acsmacrolett.7b00480

    18. [18]

      Ohn, N.; Kim, J. G. Mechanochemical post-polymerization modification: solvent-free solid-state synthesis of functional polymers. ACS Macro Lett. 2018, 7, 561−565. doi: 10.1021/acsmacrolett.8b00171

    19. [19]

      Ravnsbaek, J. B.; Swager, T. M. Mechanochemical synthesis of poly(phenylene vinylenes). ACS Macro Lett. 2014, 3, 305−309. doi: 10.1021/mz500098r

    20. [20]

      Akther, N.; Phuntsho, S.; Chen, Y.; Ghaffour, N.; Shon, H. K. Recent advances in nanomaterial-modified polyamide thin-film composite membranes for forward osmosis processes. J. Membr. Sci. 2019, 584, 20−45. doi: 10.1016/j.memsci.2019.04.064

    21. [21]

      Sum, J. Y.; Ahmad, A. L.; Ooi, B. S. Selective separation of heavy metal ions using amine-rich polyamide TFC membrane. J. Ind. Eng. Chem. 2019, 76, 277−287. doi: 10.1016/j.jiec.2019.03.052

    22. [22]

      Yu, D. Y.; Wang, Y. J.; Wu, M. H.; Zhang, L.; Wang, L. L.; Ni, H. G. Surface functionalization of cellulose with hyperbranched polyamide for efficient adsorption of organic dyes and heavy metals. J. Clean Prod. 2019, 232, 774−783. doi: 10.1016/j.jclepro.2019.06.024

    23. [23]

      Rajput, L.; Banerjee, R. Mechanochemical synthesis of amide functionalized porous organic polymers. Cryst. Growth Des. 2014, 14, 2729−2732. doi: 10.1021/cg500439f

    24. [24]

      Yang, Y.; Bu, F. X.; Liu, J. J.; Shakir, I.; Xu, Y. X. Mechanochemical synthesis of two-dimensional aromatic polyamides. Chem. Commun. 2017, 53, 7481−7484. doi: 10.1039/C7CC02648J

    25. [25]

      Li, G. L.; Ye, J. R.; Fang, Q. L.; Liu, F. Amide-based covalent organic frameworks materials for efficient and recyclable removal of heavy metal lead(II). Chem. Eng. J. 2019, 370, 822−830. doi: 10.1016/j.cej.2019.03.260

    26. [26]

      Polindara-Garcia, L. A.; Juaristi, E. Synthesis of Ugi 4-CR and Passerini 3-CR adducts under mechanochemical activation. Eur. J. Org. Chem. 2016, 1095−1102.

    27. [27]

      Shi, W.; Liu, Q.; Zhang, J.; Zhou, X. Y.; Yang, C.; Zhang, K. S.; Xie, Z. F. Tetraphenylethene-decorated functional polybenzoxazines: post-polymerization synthesis via benzoxazine-isocyanide chemistry and application in probing and catalyst fields. Polym. Chem. 2019, 10, 1130−1139. doi: 10.1039/C8PY01689E

    28. [28]

      Zhang, J.; Shi, W.; Liu, Q.; Chen, T. L.; Zhou, X. Y.; Yang, C.; Zhang, K. S.; Xie, Z. F. Atom-economical, room-temperature, and high-efficiency synthesis of polyamides via a three-component polymerization involving benzoxazines, odorless isocyanides, and water. Polym. Chem. 2018, 9, 5566−5571. doi: 10.1039/C8PY01256C

    29. [29]

      Yang, C.; Shi, W.; Chen, X.; Zhang, K.; Zhou, X.; Sun, X.; Ding, S.; Liu, S.; Xie, Z. Novel triphenylamine-based polyamides: efficient preparation via benzoxazine-isocyanide-chemistry at room temperature and electrochromic properties investigation. Dyes Pigments 2020, 176, 108206. doi: 10.1016/j.dyepig.2020.108206

    30. [30]

      Rajkumar, C.; Veerakumar, P.; Chen, S. M.; Thirumalraj, B.; Lin, K. C. Ultrathin sulfur-doped graphitic carbon nitride nanosheets as metal-free catalyst for electrochemical sensing and catalytic removal of 4-nitrophenol. ACS Sustain. Chem. Eng. 2018, 6, 16021−16031. doi: 10.1021/acssuschemeng.8b02041

    31. [31]

      Wang, M. W.; Jeng, R. J.; Lin, C. H. Study on the ring-opening polymerization of benzoxazine through multisubstituted polybenzoxazine precursors. Macromolecules 2015, 48, 530−535. doi: 10.1021/ma502336j

    32. [32]

      Zhang, X. C.; Shi, W.; Chen, X.; Xie, Z. F. Isocyano-functionalized, 1,8-naphthalimide-based chromophore as efficient ratiometric fluorescence probe for Hg2+ in aqueous medium. Sens. Actuator B-Chem. 2018, 255, 3074−3084. doi: 10.1016/j.snb.2017.09.132

    33. [33]

      Zhang, K.; Shi, W.; Yang, C.; Zhou, X. Diphenylmethane-based cross-linked polyisocyanide: synthesis and application as nitrite electrochemical probe and N-doped carbon precursor. J. Mater. Sci. 2020, 55, 5021−5037.

    34. [34]

      Wang, P.; Xia, L.; Jian, R. K.; Ai, Y. F.; Zheng, X. L.; Chen, G. L.; Wang, J. S. Flame-retarding epoxy resin with an efficient P/N/S-containing flame retardant: preparation, thermal stability, and flame retardance. Polym. Degrad. Stab. 2018, 149, 69−77. doi: 10.1016/j.polymdegradstab.2018.01.026

    35. [35]

      Zhang, W. C.; Li, X. M.; Yang, R. J. Study on flame retardancy of tgddm epoxy resins loaded with DOPO-POSS compound and OPS/DOPO mixture. Polym. Degrad. Stab. 2014, 99, 118−126. doi: 10.1016/j.polymdegradstab.2013.11.015

    36. [36]

      Doidge, E. D.; Carson, I.; Tasker, P. A.; Ellis, R. J.; Morrison, C. A.; Love, J. B. A simple primary amide for the selective recovery of gold from secondary resources. Angew. Chem. Int. Ed. 2016, 55, 12436−12439. doi: 10.1002/anie.201606113

    37. [37]

      Sangili, A.; Annalakshmi, M.; Chen, S. M.; Balasubramanian, P.; Sundrarajan, M. Synthesis of silver nanoparticles decorated on core-shell structured tannic acid-coated iron oxide nanospheres for excellent electrochemical detection and efficient catalytic reduction of hazardous 4-nitrophenol. Compos. B Eng. 2019, 162, 33−42. doi: 10.1016/j.compositesb.2018.10.084

    38. [38]

      Zhang, K.; Shang, Z. K.; Wang, J. Y.; Wu, S. P.; Zhu, M. Y.; Li, S. J. Smart synthesis of silver nanoparticles supported in porous polybenzoxazine nanocomposites via a main-chain type benzoxazine resin. Chin. Chem. Lett. 2018, 29, 1367−1371. doi: 10.1016/j.cclet.2017.10.040

    39. [39]

      Wang, R. L.; Li, D. P.; Wang, L. J.; Zhang, X.; Zhou, Z. Y.; Mu, J. L.; Su, Z. M. The preparation of new covalent organic framework embedded with silver nanoparticles and its applications in degradation of organic pollutants from waste water. Dalton Trans. 2019, 48, 1051−1059. doi: 10.1039/C8DT04458A

    40. [40]

      Zhan, F. K.; Wang, R.; Yin, J. J.; Han, Z. S.; Zhang, L.; Jiao, T. F.; Zhou, J. X.; Zhang, L. X.; Peng, Q. M. Facile solvothermal preparation of Fe3O4-Ag nanocomposite with excellent catalytic performance. RSC Adv. 2019, 9, 878−883. doi: 10.1039/C8RA08516A

    41. [41]

      Xue, Z. H.; Zhang, F.; Qin, D. D.; Wang, Y. L.; Zhang, J. X.; Liu, J.; Feng, Y. J.; Lu, X. Q. One-pot synthesis of silver nanoparticle catalysts supported on N-doped ordered mesoporous carbon and application in the detection of nitrobenzene. Carbon 2014, 69, 481−489. doi: 10.1016/j.carbon.2013.12.051

    42. [42]

      Vinoth, R.; Babu, S. G.; Bahnemann, D.; Neppolian, B. Nitrogen doped reduced graphene oxide hybrid metal free catalyst for effective reduction of 4-nitrophenol. Sci. Adv. Mater. 2015, 7, 1443−1449. doi: 10.1166/sam.2015.2181

  • 加载中
    1. [1]

      Mohsen HajibeygiKhalil FaghihiMajid Khodaei-TehraniZeinab Mirzakhanian . Thermally Stable and Organo-soluble Polyamides Containing Triazine Rings and Ether Linkages in the Main Chain: Synthesis and Characterization. Chinese J. Polym. Sci, 2015, 33(1): 109-117. doi: 10.1007/s10118-015-1562-x

    2. [2]

      Ming-ji WangGuang-cui YuanCharles C. Han . Influences of Hyperbranched Polyethylenimine on the Reactive Compatibilization of Polycarbonate/Polyamide Blends. Chinese J. Polym. Sci, 2015, 33(4): 652-660. doi: 10.1007/s10118-014-1475-0

    3. [3]

      Xu-Lin YangKui LiMing-Zhen XuXiao-Bo Liu . Designing a Phthalonitrile/Benzoxazine Blend for the Advanced GFRP Composite Materials. Chinese J. Polym. Sci, 2018, 36(1): 106-112. doi: 10.1007/s10118-018-2033-y

    4. [4]

      Yagoub MansooriBehzad Koohi-ZargarHemayat ShekaariMohammad Reza ZamanlooGholam HassanImanzadeh . POLYAMIDES WITH PENDANT 1,3,4-OXADIAZOLE AND PYRIDINE MOIETIES. Chinese J. Polym. Sci, 2012, 30(1): 112-121. doi: 10.1007/s10118-012-1092-8

    5. [5]

      Ming-Xuan LiMin-Zhi RongMing-Qiu Zhang . Reversible Mechanochemistry Enabled Autonomous Sustaining of Robustness of Polymers—An Example of Next Generation Self-healing Strategy. Chinese J. Polym. Sci, 2021, 39(5): 545-553. doi: 10.1007/s10118-021-2532-0

    6. [6]

      Cyprian SuchockiRafał Molak . Rheological Properties of Polyamide: Experimental Studies and Constitutive Modeling. Chinese J. Polym. Sci, 2019, 37(2): 178-188. doi: 10.1007/s10118-019-2180-9

    7. [7]

      Wei-cheng XiongLi ChenDe-yi WangFei Song and Yu-zhong Wang . SYNERGISTIC EFFECTS OF NOVOLAC-BASED CHAR FORMER WITH A PHOSPHORUS/NITROGEN-CONTAINING FLAME RETARDANT IN POLYAMIDE 6. Chinese J. Polym. Sci, 2012, 30(1): 72-81. doi: 10.1007/s10118-012-1100-z

    8. [8]

      Yuan YuanYu-lan Chen . Visualized Bond Scission in Mechanically Activated Polymers. Chinese J. Polym. Sci, 2017, 35(11): 1315-1327. doi: 10.1007/s10118-017-2002-x

    9. [9]

      Li ZhouZhi-qiang JiangNa XuNa LiuZong-quan Wu . Polythiophene-block-poly(phenyl isocyanide) Copolymers:One-pot Synthesis, Properties and Applications. Chinese J. Polym. Sci, 2017, 35(12): 1447-1456. doi: 10.1007/s10118-017-2003-9

    10. [10]


    11. [11]

      ZHANG HongfangYANG BaoquanMO Zhishen . THE INFLUENCE OF HEAT TREATMENT ON STRUCTURES OF THE AGGREGATED STATE OF POLYAMIDE-1010*. Chinese J. Polym. Sci, 1996, 14(4): 318-323.

    12. [12]

      Yong-jin PengChen-ting CaiRong-chun ZhangTie-hong ChenPing-chuan SunBao-hui LiXiao-liang WangGi XueAn-Chang Shi . Probing the Two-stage Transition upon Crossing the Glass Transition of Polystyrene by Solid-state NMR. Chinese J. Polym. Sci, 2016, 34(4): 446-456. doi: 10.1007/s10118-016-1762-z

    13. [13]


    14. [14]

      Yu-ling HeYi-lan GuoRui HeTian-xiang JinFeng ChenQiang FuNan ZhouJi Shen . Towards High Molecular Weight Poly(bisphenol A carbonate) with Excellent Thermal Stability and Mechanical Properties by Solid-State Polymerization. Chinese J. Polym. Sci, 2015, 33(8): 1176-1185. doi: 10.1007/s10118-015-1667-2

    15. [15]

      Nicolau Molina BomÉrik Oda UsudaMariana da Silva GigliottiDenílson José Marcolino de AguiarWilliam ImamuraLucas Soares PaixãoAlexandre Magnus Gomes Carvalho . Waste Tire Rubber-based Refrigerants for Solid-state Cooling Devices. Chinese J. Polym. Sci, 2020, 38(7): 769-775. doi: 10.1007/s10118-020-2385-y

    16. [16]

      William ImamuraÉrik Oda UsudaLucas Soares PaixãoNicolau Molina BomAngelo Marcio GomesAlexandre Magnus Gomes Carvalho . Supergiant Barocaloric Effects in Acetoxy Silicone Rubber over a Wide Temperature Range: Great Potential for Solid-state Cooling. Chinese J. Polym. Sci, 2020, 38(9): 999-1005. doi: 10.1007/s10118-020-2423-9

    17. [17]

      YAN XinHU JianzhiYAO ShurenYE ChaohuiZHANG Baozhen . SOLID-STATE HIGH RESOLUTION NMR STUDY ON POLY (2, 6-DIMETHYL-1, 4-PHENYLENE OXIDE). Chinese J. Polym. Sci, 1995, 13(3): 252-258.

    18. [18]

      Jian HuangLing ShenHui ZouNa Liu . Enantiomer-selective Living Polymerization of rac-Phenyl Isocyanide Using Chiral Palladium Catalyst. Chinese J. Polym. Sci, 2018, 36(7): 799-804. doi: 10.1007/s10118-018-2136-5

    19. [19]

      M. SelviS. DevarajuK. SethuramanR. RevathiM. Alagar . Cyclotriphosphazene Fibre Reinforced Poly(benzoxazine-co-e-caprolactam) Nanocomposites for Flame Retardant Applications. Chinese J. Polym. Sci, 2014, 32(8): 1086-1098. doi: 10.1007/s10118-014-1479-9

    20. [20]


Article Metrics
  • PDF Downloads(2)
  • Abstract views(521)
  • HTML views(262)
  • Cited By(0)

通讯作者: 陈斌,
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索


DownLoad:  Full-Size Img  PowerPoint