Citation: Behzadi, S.; Zou, C.; Yang, B. P.; Tan, C.; Chen, C. L. Styrene-containing phosphine-sulfonate ligands for nickel- and palladium-catalyzed ethylene polymerization. Chinese J. Polym. Sci. 2021, 39, 447–454 doi: 10.1007/s10118-021-2509-z shu

Styrene-containing Phosphine-sulfonate Ligands for Nickel- and Palladium-catalyzed Ethylene Polymerization

Figures(5) / Tables(1)

  • A series of phosphine-sulfonate ligands bearing 2-, 3- and 4-vinylphenyl on the phosphorus atom were designed, synthesized, characterized and investigated in Ni- and Pd-catalyzed ethylene polymerization. The structure of the phosphine-sulfonate Pd complex bearing 2-vinylphenyl on the phosphorus atom showed 2,1-insertion for the 2-vinyl group. The phosphine-sulfonate Ni complex bearing 2-vinylphenyl resulted in significantly increased thermal stability and polyethylene molecular weights (Mn=3.69×104 g·mol−1 at 80 °C) versus the counterparts bearing 3-/4-vinyl groups as well as previously reported phosphine-sulfonate Ni complexes bearing bulky biaryl substituents.
  • 加载中
    1. [1]

      Chen, Z.; Brookhart, M. Exploring ethylene/polar vinyl monomer copolymerizations using Ni and Pd α-diimine catalysts. Acc. Chem. Res. 2018, 51, 1831−1839. doi: 10.1021/acs.accounts.8b00225

    2. [2]

      Walsh, D. J.; Hyatt, M. G.; Miller, S. A.; Guironnet, D. Recent trends in catalytic polymerizations. ACS Catal. 2019, 9, 11153−11188. doi: 10.1021/acscatal.9b03226

    3. [3]

      Tan, C.; Chen, C. Emerging palladium and nickel catalysts for copolymerization of olefins with polar monomers. Angew. Chem. Int. Ed. 2019, 58, 7192−7200. doi: 10.1002/anie.201814634

    4. [4]

      Chen, M.; Chen, C. Direct and tandem routes for the copolymerization of ethylene with polar functionalized internal olefins. Angew. Chem. Int. Ed. 2020, 59, 1206−1210. doi: 10.1002/anie.201913088

    5. [5]

      Zou, C.; Chen, C. Polar-functionalized, crosslinkable, self-healing and photoresponsive polyolefins. Angew. Chem. Int. Ed. 2020, 59, 395−402. doi: 10.1002/anie.201910002

    6. [6]

      Dai, S.; Chen, C. A self-supporting strategy for gas-phase and slurry-phase ethylene polymerization using late-transition-metal catalysts. Angew. Chem. Int. Ed. 2020, 59, 14884−14890. doi: 10.1002/anie.202004024

    7. [7]

      Na, Y.; Chen, C. Catechol functionalized polyolefins. Angew. Chem. Int. Ed. 2020, 59, 7953−7959. doi: 10.1002/anie.202000848

    8. [8]

      Keyes, A.; Basbug, A. H.; Ordonez, E.; Ha, U.; Beezer, D. B.; Dau, H.; Liu, Y. S.; Tsogtgerel, E.; Jones, G. R.; Harth, E. Olefins and vinyl polar monomers: bridging the gap for next generation materials. Angew. Chem. Int. Ed. 2019, 58, 12370−12391. doi: 10.1002/anie.201900650

    9. [9]

      Takeuchi, D.; Osakada, K. Controlled isomerization polymerization of olefins, cycloolefins, and dienes. Polymer 2016, 82, 392−405. doi: 10.1016/j.polymer.2015.09.077

    10. [10]

      Dai, S.; Li, S.; Xu, G.; Chen, C. Direct synthesis of polar functionalized polyethylene thermoplastic elastomer. Macromolecules 2020, 53, 2539−2546. doi: 10.1021/acs.macromol.0c00083

    11. [11]

      Nishiura, M.; Guo, F.; Hou, Z. Half-sandwich rare-earth-catalyzed olefin polymerization, carbometalation, and hydroarylation. Acc. Chem. Res. 2015, 48, 2209−2220. doi: 10.1021/acs.accounts.5b00219

    12. [12]

      Chen, M.; Chen, C. L. Polar functionalized polyolefins: new catalysts, new modulation strategies and new materials. Acta Polymerica Sinica (in Chinese) 2018, 11, 1372−1384.

    13. [13]

      Carrow, B. P.; Nozaki, K. Transition-metal-catalyzed functional polyolefin synthesis: effecting control through chelating ancillary ligand design and mechanistic insights. Macromolecules 2014, 47, 2541−2555. doi: 10.1021/ma500034g

    14. [14]

      Nakamura, A.; Anselment, T. M.; Claverie, J. P.; Goodall, B.; Jordan, R. F.; Mecking, S.; Rieger, B.; Sen, A.; van Leeuwen, P. W. N. M.; Nozaki, K. Ortho-phosphinobenzenesulfonate: a superb ligand for palladium-catalyzed coordination-insertion copolymerization of polar vinyl monomers. Acc. Chem. Res. 2013, 46, 1438−1449. doi: 10.1021/ar300256h

    15. [15]

      Nakamura, A.; Ito, S.; Nozaki, K. Coordination-insertion copolymerization of fundamental polar monomers. Chem. Rev. 2009, 109, 5215−5244. doi: 10.1021/cr900079r

    16. [16]

      Wilke, G. Fifty years of ziegler catalysts: consequences and development of an invention. Angew. Chem. Int. Ed. 2003, 42, 5000−5008. doi: 10.1002/anie.200330056

    17. [17]

      Tan, C.; Chen, C. Nickel catalysts for the synthesis of ultra-high molecular weight polyethylene. Sci. Bull. 2020, 65, 1137−1138. doi: 10.1016/j.scib.2020.04.009

    18. [18]

      Johnson, L. K.; Killian, C. M; Brookhart, M. New Pd(II)- and Ni(II)-based catalysts for polymerization of ethylene and α-olefins. J. Am. Chem. Soc. 1995, 117, 6414−6415. doi: 10.1021/ja00128a054

    19. [19]

      Muhammad, Q.; Tan, C.; Chen, C. Concerted steric and electronic effects on α-diimine nickel- and palladium-catalyzed ethylene polymerization and copolymerization. Sci. Bull. 2020, 65, 300−307. doi: 10.1016/j.scib.2019.11.019

    20. [20]

      Wang, F.; Chen, C. A continuing legend: the Brookhart-type α-diimine nickel and palladium catalysts. Polym. Chem. 2019, 10, 2354−2369. doi: 10.1039/C9PY00226J

    21. [21]

      Tan, C.; Pang, W.; Chen, C. A phenol-containing α-diimine ligand for nickel- and palladium-catalyzed ethylene polymerization. Chinese J. Polym. Sci. 2019, 37, 974−980. doi: 10.1007/s10118-019-2232-1

    22. [22]

      Fang, J.; Sui, X.; Li, Y.; Chen, C. Synthesis of polyolefin elastomers from unsymmetrical α-diimine nickel catalyzed olefin polymerization. Polym. Chem. 2018, 9, 4143−4149. doi: 10.1039/C8PY00725J

    23. [23]

      Wang, F.; Tian, S.; Lia, R.; Li, W.; Chen, C. Ligand steric effects on naphthyl-α-diimine nickel catalyzed α-olefin polymerization. Chinese J. Polym. Sci. 2018, 36, 157−162. doi: 10.1007/s10118-018-2038-6

    24. [24]

      Long, B. K.; Eagan, J. M.; Mulzer, M.; Coates, G. W. Semi-crystalline polar polyethylene: ester-functionalized linear polyolefins enabled by a functional-group-tolerant, cationic nickel catalyst. Angew. Chem. Int. Ed. 2016, 55, 7106−7110. doi: 10.1002/anie.201601703

    25. [25]

      Padilla-Vélez, O.; O’Connor, K. S.; LaPointe, A. M.; MacMillan, S. N.; Coates, G. W. Switchable living nickel(II) α-diimine catalyst for ethylene polymerisation. Chem. Commun. 2019, 55, 7607−7610. doi: 10.1039/C9CC03154E

    26. [26]

      Vaccarello, D. N.; Oconnor, K. S.; Iacono, P.; Rose, J. M.; Cherian, A. E.; Coates, G. W. Synthesis of semicrystalline polyolefin materials: precision methyl branching via stereoretentive chain walking. J. Am. Chem. Soc. 2018, 140, 6208−6211. doi: 10.1021/jacs.8b02963

    27. [27]

      Zhong, S.; Tan, Y.; Zhong, L.; Gao, J.; Liao, H.; Jiang, L.; Gao, H.; Wu, Q. Precision synthesis of ethylene and polar monomer copolymers by palladium-catalyzed living coordination copolymerization. Macromolecules 2017, 50, 5661−5669. doi: 10.1021/acs.macromol.7b01132

    28. [28]

      Zhong, L.; Li, G.; Liang, G.; Gao, H.; Wu, Q. Enhancing thermal stability and living fashion in α-diimine-nickel-catalyzed (co)polymerization of ethylene and polar monomer by increasing the steric bulk of ligand backbone. Macromolecules 2017, 50, 2675−2682. doi: 10.1021/acs.macromol.7b00121

    29. [29]

      Liao, G.; Xiao, Z.; Chen, X.; Du, C.; Zhong, L.; Cheung, C. S.; Gao, H. Fast and regioselective polymerization of para-alkoxystyrene by palladium catalysts for precision production of high-molecular-weight polystyrene derivatives. Macromolecules 2020, 53, 256−266. doi: 10.1021/acs.macromol.9b02274

    30. [30]

      Zhong, L.; Du, C.; Liao, G.; Liao, H.; Zheng, H.; Wu, Q.; Gao, H. Effects of backbone substituent and intra-ligand hydrogen bonding interaction on ethylene polymerizations with α-diimine nickel catalysts. J. Catal. 2019, 375, 113−123. doi: 10.1016/j.jcat.2019.05.026

    31. [31]

      Zhong, L.; Zheng, H.; Du, C.; Du, W.; Liao, G.; Cheung, C. S.; Gao, H. Thermally robust α-diimine nickel and palladium catalysts with constrained space for ethylene (co)polymerizations. J. Catal. 2020, 384, 208−217. doi: 10.1016/j.jcat.2020.02.022

    32. [32]

      Zhang, R. F.; Hou, Y. H.; Wei, X. L.; Zhao, D. D.; Cui, M. M.; Zhai, F. F.; Li, X. L.; Liu, B. Y.; Yang, M. Thermostable α-diimine nickel complexes with substituents on acenaphthequinone-backbone for ethylene polymerization. Chinese J. Polym. Sci. 2020, 38, 1214−1220. doi: 10.1007/s10118-020-2430-x

    33. [33]

      Kenyon, P.; Mecking, S. Pentafluorosulfanyl substituents in polymerization catalysis. J. Am. Chem. Soc. 2017, 139, 13786−13790. doi: 10.1021/jacs.7b06745

    34. [34]

      Younkin, T. R.; Connor, E. F.; Henderson, J. I.; Friedrich, S.; Grubbs, R. H.; Bansleben, D. A. Neutral, single-component nickel(II) polyolefin catalysts that tolerate heteroatoms. Science 2000, 287, 460−462. doi: 10.1126/science.287.5452.460

    35. [35]

      Falivene, L.; Wiedemann, T.; Gottkerschnetmann, I.; Caporaso, L.; Cavallo, L.; Mecking, S. Control of chain walking by weak neighboring group interactions in unsymmetrical catalysts. J. Am. Chem. Soc. 2017, 140, 1305−1312.

    36. [36]

      Kenyon, P.; Worner, M.; Mecking, S. Controlled polymerization in polar solvents to ultrahigh molecular weight polyethylene. J. Am. Chem. Soc. 2018, 140, 6685−6689. doi: 10.1021/jacs.8b03223

    37. [37]

      Chen, Z.; Allen, K. E.; White, P. S.; Daugulis, O.; Brookhart, M. Synthesis of branched polyethylene with “half-sandwich” pyridine-imine nickel complexes. Organometallics 2016, 35, 1756−1760. doi: 10.1021/acs.organomet.6b00165

    38. [38]

      Dai, S.; Sui, X.; Chen, C. Synthesis of high molecular weight polyethylene using iminopyridyl nickel catalysts. Chem. Commun. 2016, 52, 9113−9116. doi: 10.1039/C6CC00457A

    39. [39]

      Chen, X. L.; Gao, J.; Liao, H.; Gao, H. Y.; Wu, Q. Synthesis, characterization, and catalytic ethylene oligomerization of pyridine-imine palladium complexes. Chinese J. Polym. Sci. 2018, 36, 176−184. doi: 10.1007/s10118-018-2052-8

    40. [40]

      Zou, C.; Dai, S.; Chen, C. Ethylene Polymerization and copolymerization using nickel 2-iminopyridine-N-oxide catalysts: modulation of polymer molecular weights and molecular-weight distributions. Macromolecules 2018, 51, 49−56. doi: 10.1021/acs.macromol.7b02156

    41. [41]

      Liang, T.; Goudari, S.; Chen, C. A simple and versatile nickel platform for the generation of branched high molecular weight polyolefins. Nat. Commun. 2020, 11, 372. doi: 10.1038/s41467-019-14211-0

    42. [42]

      Kocen, A.; Brookhart, M.; Daugulis, O. A highly active Ni(II)-triadamantylphosphine catalyst for ultrahigh-molecular-weight polyethylene synthesis. Nat. Commun. 2019, 10, 438. doi: 10.1038/s41467-019-08309-8

    43. [43]

      Xin, B.; Sato, N.; Tanna, A.; Oishi, Y.; Konishi, Y.; Shimizu, F. Nickel catalyzed copolymerization of ethylene and alkyl acrylates. J. Am. Chem. Soc. 2017, 139, 3611−3614. doi: 10.1021/jacs.6b13051

    44. [44]

      Zhang, Y.; Mu, H.; Pan, L.; Wang, X.; Li, Y. Robust bulky [P,O] neutral nickel catalysts for copolymerization of ethylene with polar vinyl monomers. ACS Catal. 2018, 8, 5963−5976. doi: 10.1021/acscatal.8b01088

    45. [45]

      Mu, H.; Pan, L.; Song, D.; Li, Y. Neutral nickel catalysts for olefin homo- and copolymerization: relationships between catalyst structures and catalytic properties. Chem. Rev. 2015, 115, 12091−12137. doi: 10.1021/cr500370f

    46. [46]

      Mu, H. L.; Ye, J. H.; Zhou, G. L.; Li, K. K.; Jian, Z. B. Ethylene polymerization and copolymerization with polar monomers by benzothiophene-bridged BPMO-Pd catalysts. Chinese J. Polym. Sci. 2020, 38, 579−586. doi: 10.1007/s10118-020-2359-0

    47. [47]

      Ito, S.; Ota, Y.; Nozaki, K. Ethylene/allyl monomer cooligomerization by nickel/phosphine-sulfonate catalysts. Dalton Trans. 2012, 41, 13807−13809. doi: 10.1039/c2dt31771k

    48. [48]

      Chen, M.; Chen, C. Rational design of high-performance phosphine sulfonate nickel catalysts for ethylene polymerization and copolymerization with polar monomers. ACS Catal. 2017, 7, 1308−1312. doi: 10.1021/acscatal.6b03394

    49. [49]

      Liang, T.; Chen, C. Position makes the difference: electronic effects in nickel-catalyzed ethylene polymerizations and copolymerizations. Inorg. Chem. 2018, 57, 14913−14919. doi: 10.1021/acs.inorgchem.8b02687

    50. [50]

      Tan, C.; Qasim, M.; Pang, W.; Chen, C. Ligand-metal secondary interaction in phosphine-sulfonate palladium and nickel catalyzed ethylene (co)polymerization. Polym. Chem. 2020, 11, 411−416. doi: 10.1039/C9PY00904C

    51. [51]

      Song, G.; Pang, W.; Li, W; Chen, M.; Chen, C. Phosphine sulfonate-based nickel catalysts: ethylene polymerization and copolymerization with polar-functionalized norbornenes. Polym. Chem. 2017, 8, 7400−7405. doi: 10.1039/C7PY01661A

    52. [52]

      Yang, B.; Xiong, S.; Chen, C. Manipulation of polymer branching density in phosphine-sulfonate palladium and nickel catalyzed ethylene polymerization. Polym. Chem. 2017, 8, 6272−6276. doi: 10.1039/C7PY01281K

    53. [53]

      Wu, Z.; Hong, C.; Du, H.; Pang, W.; Chen, C. Influence of ligand backbone structure and connectivity on the properties of phosphine-sulfonate Pd(II)/Ni(II) catalysts. Polymers 2017, 9, 168. doi: 10.3390/polym9050168

    54. [54]

      Perrotin, P.; Mccahill, J. S.; Wu, G.; Scott, S. L. Linear, high molecular weight polyethylene from a discrete, mononuclear phosphinoarenesulfonate complex of nickel(II). Chem. Commun. 2011, 47, 6948−6950. doi: 10.1039/c1cc00095k

    55. [55]

      Xia, J.; Zhang, Y.; Zhang, J.; Jian, J. High-performance neutral phosphine-sulfonate nickel(II) catalysts for efficient ethylene polymerization and copolymerization with polar monomers. Organometallics 2019, 38, 1118−1126. doi: 10.1021/acs.organomet.8b00916

    56. [56]

      Ohno, K.; Nagasawa, A.; Fujihara, T. Dinuclear nickel(II) complexes with 2,5-diamino-1,4-benzoquinonediimine ligands as precatalysts for the polymerization of styrene: electronic and steric substituent effects. Dalton Trans. 2015, 44, 368−376. doi: 10.1039/C4DT02858A

    57. [57]

      Zhao, C.; Yuan, Q. Catalytic copolymerization of styrenen and ethylene by neutral nickel(II) complexes in emulsion. Chinese J. Polym. Sci. 2009, 27, 667−674. doi: 10.1142/S0256767909004369

    58. [58]

      Zhang, D.; Jin, G. Radical co-polymerization of diiminedibromidenickel(II)-functionalized olefin with styrene: synthesis of polymer-incorporated nickelII α-diimine catalysts for ethylene polymerization. Appl. Catal. A: Gen. 2004, 262, 13−18. doi: 10.1016/j.apcata.2003.11.003

    59. [59]

      Carlini, C.; Galletti, A. M.; Sbrana, G.; Caretti, D. Homo- and co-polymerization of styrene with ethylene by novel nickel catalysts. Polymer 2001, 42, 5069−5078. doi: 10.1016/S0032-3861(01)00002-7

    60. [60]

      Borkar, S.; Newsham, D. K.; Sen, A. Copolymerization of ethene with styrene derivatives, vinyl ketone, and vinylcyclohexane using a (phosphine-sulfonate)palladium(II) system: unusual functionality and solvent tolerance. Organometallics 2008, 27, 3331−3334. doi: 10.1021/om800237r

    61. [61]

      Cui, L.; Chen, M.; Chen, C.; Liu, D.; Jian, Z. Systematic studies on (co)polymerization of polar styrene monomers with palladium catalysts. Macromolecules 2019, 52, 7197−7206. doi: 10.1021/acs.macromol.9b01299

    62. [62]

      Pellecchia, C.; Pappalardo, D.; D’Arc, M.; Zambelli, A. Alternating ethylene-styrene copolymerization with a methylaluminoxane-free half-titanocene catalyst. Macromolecules 1996, 29, 1158−1162. doi: 10.1021/ma951152v

    63. [63]

      Guo, N.; Stern, C. L; Marks, T. J. Bimetallic effects in homopolymerization of styrene and copolymerization of ethylene and styrenic comonomers: scope, kinetics, and mechanism. J. Am. Chem. Soc. 2008, 130, 2246−2261. doi: 10.1021/ja076407m

    64. [64]

      Nakano, R.; Chung, L. W.; Watanabe Y.; Okuno, Y.; Okumura, Y.; Ito, S.; Morokuma, K.; Nozaki, K. Elucidating the key role of phosphine-sulfonate ligands in palladium-catalyzed ethylene polymerization: effect of ligand structure on the molecular weight and linearity of polyethylene. ACS Catal. 2016, 6, 6101−6113. doi: 10.1021/acscatal.6b00911

    65. [65]

      Hansch, C.; Leo, A. J.; Taft, R. W. A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 1991, 91, 165−195. doi: 10.1021/cr00002a004

    66. [66]

      Cai, Z.; Shen, Z.; Zhou, X.; Jordan, R. F. Enhancement of chain growth and chain transfer rates in ethylene polymerization by (phosphine-sulfonate)PdMe catalysts by binding of B(C6F5)3 to the sulfonate group. ACS Catal. 2012, 2, 1187−1195. doi: 10.1021/cs300147c

    67. [67]

      Chen, M.; Zou, W.; Cai, Z.; Chen, C. Norbornene homopolymerization and copolymerization with ethylene by phosphine-sulfonate nickel catalysts. Polym. Chem. 2015, 6, 2669−2676. doi: 10.1039/C5PY00010F

    68. [68]

      Popeney, C. S.; Guan, Z. Effect of ligand electronics on the stability and chain transfer rates of substituted Pd(II) α-diimine catalysts. Macromolecules 2010, 43, 4091−4097. doi: 10.1021/ma100220n

    69. [69]

      Rhinehart, J. L.; Brown, L. A.; Long, B. K. A robust Ni(II) α-diimine catalyst for high temperature ethylene polymerization. J. Am. Chem. Soc. 2013, 135, 16316−16319. doi: 10.1021/ja408905t

    70. [70]

      Li, M.; Wang, X.; Luo, Y.; Chen, C. A second-coordination-sphere strategy to modulate nickel- and palladium-catalyzed olefin polymerization and copolymerization. Angew. Chem. Int. Ed. 2017, 56, 11604−11609. doi: 10.1002/anie.201706249

    71. [71]

      Zhang, D.; Chen, C. Influence of polyethylene glycol unit on palladium and nickel catalyzed ethylene polymerization and copolymerization. Angew. Chem. Int. Ed. 2017, 56, 14672−14676. doi: 10.1002/anie.201708212

    72. [72]

      Lian, K.; Zhu, Y.; Li, W.; Dai, S.; Chen, C. Direct synthesis of thermoplastic polyolefin elastomers from nickel catalyzed ethylene polymerization. Macromolecules 2017, 50, 6074−6080. doi: 10.1021/acs.macromol.7b01087

  • 加载中
    1. [1]

      Chen TanWen-Min PangChang-Le Chen . A Phenol-containing α-Diimine Ligand for Nickel- and Palladium-Catalyzed Ethylene Polymerization. Chinese J. Polym. Sci, 2019, 37(10): 974-980. doi: 10.1007/s10118-019-2232-1

    2. [2]

      Bing LiuMeng-zhe FangSu-yun JieZhi-yang BuBo-Geng Li . Nickel(II) -Diimine Catalysts with Carboxyl Groups for Ethylene Oligomerization and Polymerization. Chinese J. Polym. Sci, 2016, 34(2): 221-228. doi: 10.1007/s10118-016-1734-3

    3. [3]

      Sasan TalebnezhadSaeed Pourmahdian . Multi-walled Carbon Nanotubes as a Ligand in Nickel -Diimine Based Ethylene Polymerization. Chinese J. Polym. Sci, 2015, 33(10): 1389-1403. doi: 10.1007/s10118-015-1696-x

    4. [4]

      Fu-Zhou WangSu-Su TianRui-Ping LiWei-Min LiChang-Le Chen . Ligand Steric Effects on Naphthyl-α-diimine Nickel Catalyzed α-Olefin Polymerization. Chinese J. Polym. Sci, 2018, 36(2): 157-162. doi: 10.1007/s10118-018-2038-6

    5. [5]

      Qi-song ShiXiang HaoCarl RedshawWen-hua Sun . HALONICKEL 2,4-DI-t-BUTYL-6-(QUINOLIN-8-YLIMINOMETHYL)PHENOLATES: SYNTHESIS, CHARACTERIZATION AND ETHYLENE REACTIVITY. Chinese J. Polym. Sci, 2013, 31(5): 769-777. doi: 10.1007/s10118-013-1266-z

    6. [6]

      Xiao-Lin ChenJie GaoHeng LiaoHai-Yang GaoQing Wu . Synthesis, Characterization, and Catalytic Ethylene Oligomerization of Pyridine-imine Palladium Complexes. Chinese J. Polym. Sci, 2018, 36(2): 176-184. doi: 10.1007/s10118-018-2052-8

    7. [7]

      Rui-Fang ZhangYan-Hui HouXu-Ling WeiDing-Ding ZhaoMi-Mi CuiFei-Fan ZhaiXiang-Liu LiBin-Yuan LiuMin Yang . Thermostable α-Diimine Nickel Complexes with Substituents on Acenaphthequinone-backbone for Ethylene Polymerization

      . Chinese J. Polym. Sci, 2020, 38(11): 1214-1220. doi: 10.1007/s10118-020-2430-x

    8. [8]

      Xin-e DuanQi-feng XingZhen-ming DongJian-bin ChaoSheng-di BaiDian-sheng LiuWen-hua Sun . Trichlorozirconium 2-Hydrazonides: Synthesis, Characterization and Their Catalytic Behavior toward Ethylene Polymerization. Chinese J. Polym. Sci, 2016, 34(3): 390-398. doi: 10.1007/s10118-016-1768-6

    9. [9]

      Ya-lin QiaoPing HuGuo-xin Jin . SYNTHESES, CHARACTERIZATION AND ETHYLENE POLYMERIZATION OF HALF-SANDWICH GROUP IV METAL COMPLEXES WITH TRIDENTATE [O,N,S] LIGANDS. Chinese J. Polym. Sci, 2013, 31(5): 760-768. doi: 10.1007/s10118-013-1265-0

    10. [10]

      Yi WangHong FanSu-yun JieBo-geng Li . Ethylene Polymerization with Novel Phenoxy-imine Catalysts Bearing 4-Vinylphenyl Group. Chinese J. Polym. Sci, 2014, 32(7): 854-863. doi: 10.1007/s10118-014-1470-5

    11. [11]

      Yan-Ning ZengQi-Feng XingYan-Ping MaWen-Hua Sun . Dinuclear Nickel(Ⅱ) Chlorides Bearing N, N'-bis(5, 6, 7-trihydroquinolin-8-ylidene)-[1, 1'-biphenyl]-4, 4'-diamines: Synthesis and Ethylene Polymerization. Chinese J. Polym. Sci, 2018, 36(2): 207-213. doi: 10.1007/s10118-018-2054-6

    12. [12]

      Hong-Liang MuJun-Hao YeGuang-Lin ZhouKang-Kang LiZhong-Bao Jian . Ethylene Polymerization and Copolymerization with Polar Monomers by Benzothiophene-bridged BPMO-Pd Catalysts. Chinese J. Polym. Sci, 2020, 38(6): 579-586. doi: 10.1007/s10118-020-2359-0

    13. [13]

      Meng-na YuChang-jin OuBin LiuDong-qing LinYu-yu LiuWei XueZong-qiong LinJin-yi LinYan QianSha-sha WangHong-tao CaoLin-yi BianLing-hai XieWei Huang . Progress in Fluorene-based Wide-bandgap Steric Semiconductors. Chinese J. Polym. Sci, 2017, 35(2): 155-170. doi: 10.1007/s10118-017-1897-6

    14. [14]

      Yu-Long JinLin LiuYu-Jie WangZhen LiuBo-Ping Liu . Mechanistic Study on the Dominant Promotion Effect of Al-/Ti-/Zr-modifications over the VOx/SiO2 UHMWPE Catalysts. Chinese J. Polym. Sci, 2019, 37(10): 995-1004. doi: 10.1007/s10118-019-2295-z

    15. [15]

      Kai-ti WangYong-xia WangBin WangYan-guo LiYue-sheng Li . Introduction of Constrained Cyclic Skeleton into β-Enaminoketonato Vanadium Complexes:A Strategy for Stabilization of Active Centre of Vanadium Catalyst for Ethylene Polymerization. Chinese J. Polym. Sci, 2017, 35(9): 1110-1121. doi: 10.1007/s10118-017-1956-z

    16. [16]

      Matthieu HumbertSébastien NorsicJean RaynaudVincent Monteil . Activity Enhancement of MgCl2-supported Ziegler-Natta Catalysts by Lewis-acid Pre-treatment for Ethylene Polymerization. Chinese J. Polym. Sci, 2019, 37(10): 1031-1038. doi: 10.1007/s10118-019-2335-8

    17. [17]

      Xiang-Hui HanXi-Wen YangSheng ChenHang LuoDou ZhangHai-Liang Zhang . Multiple Effects Tailoring the Self-organization Behaviors of Triphenylene Side-chain Liquid Crystalline Polymers via Changing the Spacer Length. Chinese J. Polym. Sci, 2018, 36(8): 960-969. doi: 10.1007/s10118-018-2108-9

    18. [18]

      Di XuXiang-Xiang ZhaoZhong-Tao ChenYu-Guo Ma . Synergistic Effect and Fluorination Effect in Ethylene Polymerization by Nickel Phenoxyiminato Catalysts. Chinese J. Polym. Sci, 2018, 36(2): 244-251. doi: 10.1007/s10118-018-2081-3

    19. [19]

      Jian-Yun HeLong CuiYan-Long QiQuan-Quan DaiChen-Xi Bai . Neodymium Organic Sulfonate Complexes: Tunable Electronegativity/Steric Hindrance and Application in Controlled Cis-1,4-polymerization of Butadiene. Chinese J. Polym. Sci, 2019, 37(3): 208-215. doi: 10.1007/s10118-019-2196-1

    20. [20]

      Chonggang WangShudan ChenHao ZhouJinlou GuAiguo Hu . Palladium-catalyzed Cycloaromatization Polymerization of Enediynes. Chinese J. Polym. Sci, 2018, 36(2): 237-243. doi: 10.1007/s10118-018-2088-9

Article Metrics
  • PDF Downloads(2)
  • Abstract views(915)
  • HTML views(292)
  • Cited By(0)

通讯作者: 陈斌,
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索


DownLoad:  Full-Size Img  PowerPoint