Citation: Zheng, S. S.; Dong, H.; Wang, S. H.; Dong, J.; Guo, T.; Zhao, X.; Zhang, Q. H. Scalable reaction-spinning of rigid-rod Upilex-S® type polyimide fiber with an ultrahigh T g. Chinese J. Polym. Sci. 2021, 39, 592–600 doi: 10.1007/s10118-021-2508-0 shu

Scalable Reaction-spinning of Rigid-rod Upilex-S® Type Polyimide Fiber with an Ultrahigh Tg

  • Corresponding author: Jie Dong, E-mail: dj01@dhu.edu.cn
    Qing-Hua Zhang, E-mail: qhzhang@dhu.edu.cn
  • Received Date: 2020-08-26
    Accepted Date: 2020-09-14
    Available Online: 2020-10-13

Figures(7) / Tables(1)

  • In the family of polyimide (PI) materials, Upilex-S® film has been a shining star through the research PI materials due to its appealing merits. Unfortunately, the wholly rigid-rod backbone and easily formed skin-core micromorphology and microvoids of Upilex-S® type PI lead to the high difficulty in melt- and wet-spinning fabrication. Herein, we propose a facile and scalable method, reaction-spinning, to fabricate the Upilex-S® type PI fiber, in which the rapid solidification of spinning dope and partial imidization take place simultaneously. Thus, the stability and mechanical strength of as-spun fibers can be improved, and the microvoids in fibers can be greatly reduced in relative to the wet-spun fibers. The resultant Upilex-S® type PI fiber shows higher tensile strength and modulus than most commercial thermal-oxidative polymeric fibers with an ultrahigh glass transition temperature Tg of 478 °C. Moreover, the WAXS and SAXS results indicate that orthorhombic crystals are formed for Upilex-S® type PI fiber in the post hot-drawing process. Increasing the hot-drawing temperature results in a continuous crystallization and high orientation of PI chains in amorphous phase and perfects the existing lamellar structure, which make a great contribution to the improved mechanical property.
    1. [1]

      Chae, H. G.; Kumar, S. Rigid-rod polymeric fibers. J. Appl. Polym. Sci. 2006, 100, 791−802. doi: 10.1002/app.22680

    2. [2]

      Andres Leal, A.; Deitzel, J. M.; Gillespie, J. W. Assessment of compressive properties of high performance organic fibers. Compos. Sci. Technol. 2007, 67, 2786−2794. doi: 10.1016/j.compscitech.2007.02.003

    3. [3]

      Said, M. A.; Dingwall, B.; Gupta, A.; Seyam, A. M.; Mock, G.; Theyson, T. Investigation of ultra violet (UV) resistance for high strength fibers. Adv. Space. Res. 2006, 37, 2052−2058. doi: 10.1016/j.asr.2005.04.098

    4. [4]

      Hu, Z.; Lu, F.; Liu, Y.; Zhao, L.; Yu, L.; Xu, X.; Yuan, W.; Zhang, Q.; Huang, Y. Construction of anti-ultraviolet “shielding clothes” on poly(p-phenylene benzobisoxazole) fibers: metal organic framework-mediated absorption strategy. ACS Appl. Mater. Interfaces 2018, 10, 43262−43274. doi: 10.1021/acsami.8b16845

    5. [5]

      Liu, Y.; Liu, Y.; Tan, H.; Wang, C.; Wei, H.; Guo, Z. Structural evolution and degradation mechanism of Vectran® fibers upon exposure to UV-radiation. Polym. Degrad. Stabil. 2013, 98, 1744−1753. doi: 10.1016/j.polymdegradstab.2013.05.023

    6. [6]

      Dai, X. M.; Gao, H.; Zhang, R.; Du, Z. J.; Shi, T. F.; Ji, X. L.; Qiu, X. P.; Men, Y. F. Preparation and properties of high-performance polyimide copolymer fibers derived from 5-amino-2-(2-hydroxy-5-aminobenzene)-benzoxazole. Chinese J. Polym. Sci. 2019, 37, 478−492. doi: 10.1007/s10118-019-2205-4

    7. [7]

      Niu, H.; Huang, M.; Qi, S.; Han, E.; Tian, G.; Wang, X.; Wu, D. High-performance copolyimide fibers containing quinazolinone moiety: preparation, structure and properties. Polymer 2013, 54, 1700−1708. doi: 10.1016/j.polymer.2013.01.047

    8. [8]

      Zhao, Y.; Gao, H.; Li, G. M.; Liu, F. F.; Dai, X. M.; Dong, Z. X.; Qiu, X. P. Synthesis and AO resistant properties of novel polyimide fibers containing phenylphosphine oxide groups in main chain. Chinese J. Polym. Sci. 2019, 37, 59−67. doi: 10.1007/s10118-019-2179-2

    9. [9]

      Zhao, Y.; Li, G. M.; Liu, F. F.; Dai, X. M.; Dong, Z. X.; Qiu, X. P. Synthesis and properties of novel polyimide fibers containing phosphorus groups in the side chain (DATPPO). Chinese J. Polym. Sci. 2017, 35, 372−385. doi: 10.1007/s10118-017-1896-7

    10. [10]

      Zhang, M.; Niu, H.; Wu, D. Polyimide fibers with high strength and high modulus: preparation, structures, properties, and applications. Macromol. Rapid Commun. 2018, 39, 1800141. doi: 10.1002/marc.201800141

    11. [11]

      Liaw, D. J.; Wang, K. L.; Huang, Y. C.; Lee, K. R.; Lai, J. Y.; Ha, C. S. Advanced polyimide materials: syntheses, physical properties and applications. Prog. Polym. Sci. 2012, 37, 907−974. doi: 10.1016/j.progpolymsci.2012.02.005

    12. [12]

      Maier, G. Low dielectric constant polymers for microelectronics. Prog. Polym. Sci. 2001, 26, 3−65. doi: 10.1016/S0079-6700(00)00043-5

    13. [13]

      Fang, Y.; Dong, J.; Zhang, D.; Zhao, X.; Zhang, Q. Preparation of high-performance polyimide fibers via a partial pre-imidization process. J. Mater. Sci. 2019, 54, 3619−3631. doi: 10.1007/s10853-018-3068-8

    14. [14]

      Gan, F.; Dong, J.; Tang, M.; Li, X.; Li, M.; Zhao, X.; Zhang, Q. High-tenacity and high-modulus polyimide fibers containing benzimidazole and pyrimidine units. React. Funct. Polym. 2019, 141, 112−122. doi: 10.1016/j.reactfunctpolym.2019.05.005

    15. [15]

      Strobl, G. R.; Schneider, M. J.; Voigt-Martin, I. G. Model of partial crystallization and melting derived from small-angle X-ray scattering and electron microscopic studies on low-density polyethylene. J. Polym. Sci., Part B: Polym. Phys. 1980, 18, 1361−1381. doi: 10.1002/pol.1980.180180615

    16. [16]

      Shaiju, P.; Murthy, N. S.; Gowd, E. B. Molecular, crystalline, and lamellar length-scale changes in the poly(L-lactide) (PLLA) during cyclopentanone (CPO) desorption in PLLA/CPO cocrystals. Macromolecules 2016, 49, 224−233. doi: 10.1021/acs.macromol.5b02425

    17. [17]

      Seo, Y.; Lee, S. M.; Kim, D. Y.; Kim, K. U. Kinetic study of the imidization of a poly(ester amic acid) by FT-Raman spectroscopy. Macromolecules 1997, 30, 3747−3753. doi: 10.1021/ma961482v

    18. [18]

      Sun, G.; Zhang, M.; Chen, N.; Niu, H.; Qi, S.; Wu, D. Fabrication of ultrahigh-strength polybenzimidazole fibers via a novel and green integrated liquid crystal spinning process. Macromol. Mater. Eng. 2020, 305, 1900717. doi: 10.1002/mame.201900717

    19. [19]

      Gu, H. Research on thermal properties of Nomex/Viscose FR fibre blended fabric. Mater. Design 2009, 30, 4324−4327. doi: 10.1016/j.matdes.2009.04.012

    20. [20]

      Luan, J.; Zhang, S.; Geng, Z.; Wang, G. Influence of the addition of lubricant on the properties of poly(ether ether ketone) fibers. Polym. Eng. Sci. 2013, 53, 2254−2260. doi: 10.1002/pen.23613

    21. [21]

      Li, H.; Zhu, Y.; Xu, B.; Wu, C.; Zhao, J.; Dai, M. Preparation and characterization of all para-position polysulfonamide fiber. J. Appl. Polym. Sci. 2013, 127, 342−348. doi: 10.1002/app.37896

    22. [22]

      Yang, F.; Bai, Y.; Min, B. G.; Kumar, S.; Polk, M. B. Synthesis and properties of star-like wholly aromatic polyester fibers. Polymer 2003, 44, 3837−3846. doi: 10.1016/S0032-3861(03)00323-9

    23. [23]

      Xu, Y.; Wang, S.; Li, Z.; Xu, Q.; Zhang, Q. Polyimide fibers prepared by dry-spinning process: imidization degree and mechanical properties. J. Mater. Sci. 2013, 48, 7863−7868. doi: 10.1007/s10853-013-7310-0

    24. [24]

      Luo, L.; Pang, Y.; Jiang, X.; Wang, X.; Zhang, P.; Chen, Y.; Peng, C.; Liu, X. Preparation and characterization of novel polyimide films containing amide groups. J. Polym. Res. 2011, 19, 9783.

    25. [25]

      Ishige, R.; Masuda, T.; Kozaki, Y.; Fujiwara, E.; Okada, T.; Ando, S. Correction to precise analysis of thermal volume expansion of crystal lattice for fully aromatic crystalline polyimides by X-ray diffraction method: relationship between molecular structure and linear/volumetric thermal expansion. Macromolecules 2017, 50, 2599−2600. doi: 10.1021/acs.macromol.7b00476

    26. [26]

      Yoon, D. Y.; Parrish, W.; Depero, L. E.; Ree, M. Chain conformations of aromatic polvimides and their ordering in thin films. MRS Proceedings 2011, 227, 387.

    27. [27]

      Ishige, R.; Masuda, T.; Kozaki, Y.; Fujiwara, E.; Okada, T.; Ando, S. Precise analysis of thermal volume expansion of crystal lattice for fully aromatic crystalline polyimides by X-ray diffraction method: Relationship between molecular structure and linear/volumetric thermal expansion. Macromolecules 2017, 50, 2112−2123. doi: 10.1021/acs.macromol.7b00095

    28. [28]

      Northolt, M. G.; Hout, R. V. D. Elastic extension of an oriented crystalline fibre. Polymer 1985, 26, 310−316. doi: 10.1016/0032-3861(85)90047-3

    29. [29]

      Murthy, N. S.; Bednarczyk, C.; Moore, R. A. F.; Grubb, D. T. Analysis of small-angle X-ray scattering from fibers: structural changes in nylon 6 upon drawing and annealing. J. Polym. Sci., Part B Polym. Phys. 1996, 34, 821−835. doi: 10.1002/(SICI)1099-0488(19960415)34:5<821::AID-POLB1>3.0.CO;2-P

  • 加载中
    1. [1]

      Jiang WuHai-xin ZhouQi LiuShou-ke Yan . APPLICATION OF ELECTRON DIFFRACTION iN THE STRUCTURE CHARACTERIZATION OF POLYMER CRYSTALS. Chinese J. Polym. Sci, 2013, 31(6): 841-852. doi: 10.1007/s10118-013-1269-9

    2. [2]

      Xue-Min DaiHong GaoRan ZhangZhi-Jun DuTong-Fei ShiXiang-Ling JiXue-Peng QiuYong-Feng Men . Preparation and Properties of High-performance Polyimide Copolymer Fibers Derived from 5-Amino-2-(2-hydroxy-5-aminobenzene)-benzoxazole. Chinese J. Polym. Sci, 2019, 37(5): 478-492. doi: 10.1007/s10118-019-2205-4

    3. [3]

      Hong ZhengWei YuHong-bin ZhangChi-xing Zhou . Structure Evolution of Polymer Chains for Necking Formation in High-Speed Fiber Spinning Process. Chinese J. Polym. Sci, 2006, 24(1): 1-11.

    4. [4]

      Huan ZhouZheng-zhong ShaoXin Chen . Wet-spinning of Regenerated Silk Fiber from Aqueous Silk Fibroin Solutions:Influence of Calcium Ion Addition in Spinning Dope on the Performance of Regenerated Silk Fiber. Chinese J. Polym. Sci, 2014, 32(1): 29-34. doi: 10.1007/s10118-014-1368-2

    5. [5]

      Qi LiuHui-hui LiShou-ke Yan . Structure and Properties of -Polypropylene Reinforced by Polypropylene Fiber and Polyamide Fiber. Chinese J. Polym. Sci, 2014, 32(4): 509-518. doi: 10.1007/s10118-014-1417-x

    6. [6]

      Xian-feng LiChang-fa Xiao . STRUCTURE AND PROPERTIES OF COMPOSITE POLYURETHANE HOLLOW FIBER MEMBRANES. Chinese J. Polym. Sci, 2005, 23(2): 203-210.

    7. [7]

      SUN ZhenhuaZHUANG YugangLI ShichunDING MengxianFENG Zhiliu . STRUCTURE AND THERMAL MECHANICAL PROPERTIES OF ORIENTED POLYIMIDE (PEI-E). Chinese J. Polym. Sci, 1992, 10(2): 145-151.

    8. [8]

      LI BaozhongHE TianbaiDING Mengxian . COMPENSATION EFFECT OF POLYIMIDE THIN FILMS ON NORMALLY WHITE TWISTED NEMATIC LIQUID CRYSTAL DISPLAYS*. Chinese J. Polym. Sci, 1997, 15(2): 139-145.

    9. [9]

      Cong-Jun GanXiao-Chen XuXue-Wei JiangFeng GanJie DongXin ZhaoQing-Hua Zhang . Fabrication of 6FDA-HFBAPP Polyimide Asymmetric Hollow Fiber Membranes and Their CO2/CH4 Separation Properties. Chinese J. Polym. Sci, 2019, 37(8): 815-826. doi: 10.1007/s10118-019-2255-7

    10. [10]

      Yi LiuXiao-Zhou XuSong MoBang-Wei LanCai-Zhen ZhuCui-Hua LiJian XuLin Fan . Long-term Thermo-oxidative Degradation Modeling of a Carbon Fiber Reinforced Polyimide Composite: Multistep Degradation Behaviors and Kinetics

      . Chinese J. Polym. Sci, 2020, 38(11): 1202-1213. doi: 10.1007/s10118-020-2425-7

    11. [11]

      Hong-Tao ZuoFeng GanJie DongPeng ZhangXin ZhaoQing-Hua Zhang . Highly Transparent and Colorless Polyimide Film with Low Dielectric Constant by Introducing Meta-substituted Structure and Trifluoromethyl Groups. Chinese J. Polym. Sci, 2021, 39(4): 455-464. doi: 10.1007/s10118-021-2514-2

    12. [12]

      . CRYSTAL STRUCTURE AND MORPHOLOGY OF NASCENT SAMPLES OF SYMMETRIC AROMATIC POLYESTERS——Ⅰ.POLY(P-PHENYLENE TEREPHTHALATE)*. Chinese J. Polym. Sci, 2003, 21(2): 189-204.

    13. [13]

      . CRYSTAL STRUCTURE AND MORPHOLOGY OF NASCENT SAMPLES OF SYMMETRIC AROMATIC POLYESTERS——Ⅱ. POLY(p-PHENYLENE 2,6-NAPHTHALATE)*. Chinese J. Polym. Sci, 2003, 21(2): 205-221.

    14. [14]

      SONG RuiCHEN JingGAO JinguiLIN XinFAN Qingrong . DETECTION OF Tg BY MODULATED DIFFERENTIAL SCANNING CALORIMETRY*. Chinese J. Polym. Sci, 1998, 16(4): 332-338.

    15. [15]

      SUN ZhenhuaDING MengxianFENG Zhiliu . EFFECT OF HOT STRETCHING ON THE STRUCTURE OF POLYIMIDE FROM 1,4--BIS (3', 4'--DICARBOXYPHENOXY) BENZENE AND 4,4'-OXYDIANILINE. Chinese J. Polym. Sci, 1992, 10(1): 20-25.

    16. [16]

      Peifeng Feng Guojun Song Wenjian Zhang Hao Zheng Bowen Li Shaofeng Zhou Yaqing Liu Guangshun Wu Lichun Ma . Interfacial improvement of carbon fiber/epoxy composites by incorporating superior and versatile multiscale gradient modulus intermediate layer with rigid-flexible hierarchical structure. Chinese J. Polym. Sci, 2021, (): -. doi: 10.1007/s10118-021-2549-4

    17. [17]

      Bi-qiang JinXin-peng LiMing JinDa-shan MiFei-fei WangChao XiaJie Zhang . Enhanced Mechanics in Injection Molded Isotactic Polypropylene/Polypropylene Random Copolymer Blends via Introducing Network-like Crystal Structure. Chinese J. Polym. Sci, 2016, 34(2): 164-173. doi: 10.1007/s10118-016-1747-y

    18. [18]

      Hai-jun WangHui-ping FengXue-chuan WangPei-ying GuoTing-shan ZhaoLong-fang RenXi-huai QiangYu-hao XiangChao Yan . Effects of Crystallization Temperature and Blend Ratio on the Crystal Structure of Poly(butylene adipate) in the Poly(butylene adipate)/Poly(butylene succinate) Blends. Chinese J. Polym. Sci, 2014, 32(4): 488-496. doi: 10.1007/s10118-014-1420-2

    19. [19]

      Shu-ying ShangXue-bang WuJia-peng ShuiZhen-gang Zhu . OBSERVATION OF ENERGY DISSIPATION PEAK IN POLYSTYRENE MELT ABOVE Tg. Chinese J. Polym. Sci, 2007, 25(6): 629-633.

    20. [20]

      LI WeiTONG GangZHOU YiqinQI Zongneng . TSC STUDIES ON SUB-Tg STORAGE OF POLYETHYLENE TEREPHTHALATE. Chinese J. Polym. Sci, 1987, 5(4): 285-291.

Article Metrics
  • PDF Downloads(1)
  • Abstract views(470)
  • HTML views(391)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return