Citation: Xia, G. X.; Wu, Y. M.; Bi, Y. F.; Chen, K.; Zhang, W. W.; Liu, S. Q.; Zhang, W. J.; Liu, R. H. Antimicrobial properties and application of polysaccharides and their derivatives. Chinese J. Polym. Sci. 2021, 39, 133–146 doi: 10.1007/s10118-021-2506-2 shu

Antimicrobial Properties and Application of Polysaccharides and Their Derivatives

  • Corresponding author: Run-Hui Liu, E-mail: rliu@ecust.edu.cn
  • Received Date: 2020-08-11
    Available Online: 2020-10-16

Figures(11) / Tables(1)

  • With the quick emergence of antibiotic resistance and multi-drug resistant microbes, more and more attention has been paid to the development of new antimicrobial agents that have potential to take the challenge. Polysaccharides, as one of the major classes of biopolymers, were explored for their antimicrobial properties and applications, owing to their easy accessibility, biocompatibility and easy modification. Polysaccharides and their derivatives have variable demonstrations and applications as antimicrobial agents and antimicrobial biomaterials. A variety of polysaccharides, such as chitosan, dextran, hyaluronic acid, cellulose, other plant/animal-derived polysaccharides and their derivatives have been explored for antimicrobial applications. We expect that this review can summarize the important progress of this field and inspire new concepts, which will contribute to the development of novel antimicrobial agents in combating antibiotic resistance and drug-resistant antimicrobial infections.
  • 加载中
    1. [1]

      Allegranzi, B.; Nejad, S. B.; Combescure, C.; Graafmans, W.; Attar, H.; Donaldson, L.; Pittet, D. Burden of endemic health-care-associated infection in developing countries: systematic review and meta-analysis. The Lancet 2011, 377, 228−241. doi: 10.1016/S0140-6736(10)61458-4

    2. [2]

      Worthington, R. J.; Melander, C. Combination approaches to combat multidrug-resistant bacteria. Trends Biotechnol. 2013, 31, 177−184. doi: 10.1016/j.tibtech.2012.12.006

    3. [3]

      Brown, E. D.; Wright, G. D. Antibacterial drug discovery in the resistance era. Nature 2016, 529, 336−343. doi: 10.1038/nature17042

    4. [4]

      Tang, Q.; Song, P.; Li, J.; Kong, F.; Sun, L.; Xu, L. Control of antibiotic resistance in China must not be delayed: the current state of resistance and policy suggestions for the government, medical facilities, and patients. BioSci. Trends 2016, 10, 1−6. doi: 10.5582/bst.2016.01034

    5. [5]

      Imberty, A.; Varrot, A. Microbial recognition of human cell surface glycoconjugates. Curr. Opin. Struct. Biol. 2008, 18, 567−576. doi: 10.1016/j.sbi.2008.08.001

    6. [6]

      Bishop, J. R.; Gagneux, P. Evolution of carbohydrate antigens--microbial forces shaping host glycomes? Glycobiology 2007, 17, 23R−34R. doi: 10.1093/glycob/cwm005

    7. [7]

      Yu, Y.; Shen, M.; Song, Q.; Xie, J. Biological activities and pharmaceutical applications of polysaccharide from natural resources: a review. Carbohydr. Polym. 2018, 183, 91−101. doi: 10.1016/j.carbpol.2017.12.009

    8. [8]

      Perinelli, D. R.; Fagioli, L.; Campana, R.; Lam, J. K. W.; Baffone, W.; Palmieri, G. F.; Casettari, L.; Bonacucina, G. Chitosan-based nanosystems and their exploited antimicrobial activity. Eur. J. Pharm. Sci. 2018, 117, 8−20. doi: 10.1016/j.ejps.2018.01.046

    9. [9]

      Li, Y. T.; Chen, B. J.; Wu, W. D.; Ge, K.; Wei, X. Y.; Kong, L. M.; Xie, Y. Y.; Gu, J. P.; Zhang, J. C.; Zhou, T. Antioxidant and antimicrobial evaluation of carboxymethylated and hydroxamated degraded polysaccharides from Sargassum fusiforme. Int. J. Biol. Macromol. 2018, 118, 1550−1557. doi: 10.1016/j.ijbiomac.2018.06.196

    10. [10]

      No, H. K.; Park, N. Y.; Lee, S. H.; Meyers, S. P. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int. J. Food Microbiol. 2002, 74, 65−72. doi: 10.1016/S0168-1605(01)00717-6

    11. [11]

      Synowiecki, J.; Al-Khateeb, N. A. Production, properties, and some new applications of chitin and its derivatives. Crit. Rev. Food Sci. Nutr. 2003, 43, 145−171. doi: 10.1080/10408690390826473

    12. [12]

      Muzzarelli, R. A. A. Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr. Polym. 2009, 76, 167−182. doi: 10.1016/j.carbpol.2008.11.002

    13. [13]

      Peng, X. H.; Zhang, L. Surface fabrication of hollow microspheres from N-methylated chitosan cross-linked with gultaraldehyde. Langmuir 2005, 21, 1091−1095. doi: 10.1021/la047689w

    14. [14]

      Allan, C. R.; Hadwiger, L. A. The fungicidal effect of chitosan on fungi of varying cell wall composition. Exp. Mycol. 1979, 3, 285−287. doi: 10.1016/S0147-5975(79)80054-7

    15. [15]

      Palma-Guerrero, J.; Lopez-Jimenez, J. A.; Pérez-Berná, A. J.; Huang, I. C.; Jansson, H. B.; Salinas, J.; Villalaín, J.; Read, N. D.; Lopez-Llorca, L. V. Membrane fluidity determines sensitivity of filamentous fungi to chitosan. Mol. Microbiol. 2010, 75, 1021−1032. doi: 10.1111/j.1365-2958.2009.07039.x

    16. [16]

      Young, D. H.; Kohle, H.; Kauss, H. Effect of chitosan on membrane permeability of suspension-cultured glycine max and phaseolus vulgaris cells. Plant Physiology 1982, 70, 1449−1454. doi: 10.1104/pp.70.5.1449

    17. [17]

      Helander, I. M.; Nurmiaho-Lassila, E. L.; Ahvenainen, R.; Rhoades, J.; Roller, S. Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. Int. J. Food Microbiol. 2001, 71, 235−244. doi: 10.1016/S0168-1605(01)00609-2

    18. [18]

      Muzzarelli, R.; Jeuniaux, C.; Gooday, G. W. Chitin in nature and technology. Springer US, New York, 1986.

    19. [19]

      Krajewska, B.; Wydro, P.; Jańczyk, A. Probing the modes of antibacterial activity of chitosan. Effects of pH and molecular weight on chitosan interactions with membrane lipids in langmuir films. Biomacromolecules 2011, 12, 4144−4152. doi: 10.1021/bm2012295

    20. [20]

      Rabea, E. I.; Badawy, M. E. T.; Stevens, C. V.; Smagghe, G.; Steurbaut, W. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 2003, 4, 1457−1465. doi: 10.1021/bm034130m

    21. [21]

      Kong, M.; Chen, X. G.; Xing, K.; Park, H. J. Antimicrobial properties of chitosan and mode of action: a state of the art review. Int. J. Food Microbiol. 2010, 144, 51−63. doi: 10.1016/j.ijfoodmicro.2010.09.012

    22. [22]

      Li, R.; Guo, Z. Synthesis, characterization and antifungal properties of N,O-(acyl)-N-(trimethyl) chitosan chloride. e-Polymers 2010, 10, 1273−1278.

    23. [23]

      Mohamed, N. A.; Al-mehbad, N. Y. Novel terephthaloyl thiourea cross-linked chitosan hydrogels as antibacterial and antifungal agents. Int. J. Biol. Macromol 2013, 57, 111−117. doi: 10.1016/j.ijbiomac.2013.03.007

    24. [24]

      Chen, Y.; Li, J.; Li, Q.; Shen, Y.; Ge, Z.; Zhang, W.; Chen, S. Enhanced water-solubility, antibacterial activity and biocompatibility upon introducing sulfobetaine and quaternary ammonium to chitosan. Carbohydr. Polym. 2016, 143, 246−253. doi: 10.1016/j.carbpol.2016.01.073

    25. [25]

      Tan, H.; Peng, Z.; Li, Q.; Xu, X.; Guo, S.; Tang, T. The use of quaternised chitosan-loaded PMMA to inhibit biofilm formation and downregulate the virulence-associated gene expression of antibiotic-resistant staphylococcus. Biomaterials 2012, 33, 365−377. doi: 10.1016/j.biomaterials.2011.09.084

    26. [26]

      Sajomsang, W.; Gonil, P.; Saesoo, S. Synthesis and antibacterial activity of methylated N-(4-N,N-dimethylaminocinnamyl) chitosan chloride. Eur. Polym. J. 2009, 45, 2319−2328. doi: 10.1016/j.eurpolymj.2009.05.009

    27. [27]

      Sahariah, P.; Snorradottir, B. S.; Hjalmarsdottir, M. A.; Sigurjonsson, O. E.; Masson, M. Experimental design for determining quantitative structure activity relationship for antibacterial chitosan derivatives. J. Mater. Chem. B 2016, 4, 4762−4770. doi: 10.1039/C6TB00546B

    28. [28]

      Zhao, X.; Li, P.; Guo, B.; Ma, P. X. Antibacterial and conductive injectable hydrogels based on quaternized chitosan-graft-polyaniline/oxidized dextran for tissue engineering. Acta Biomater. 2015, 26, 236−248. doi: 10.1016/j.actbio.2015.08.006

    29. [29]

      Guo, Z.; Chen, R.; Xing, R.; Liu, S.; Yu, H.; Wang, P.; Li, C.; Li, P. Novel derivatives of chitosan and their antifungal activities in vitro. Carbohydr. Res. 2006, 341, 351−354. doi: 10.1016/j.carres.2005.11.002

    30. [30]

      Rabea, E. I.; Badawy, M. E.; Rogge, T. M.; Stevens, C. V.; Hofte, M.; Steurbaut, W.; Smagghe, G. Insecticidal and fungicidal activity of new synthesized chitosan derivatives. Pest Manage. Sci. 2005, 61, 951−960. doi: 10.1002/ps.1085

    31. [31]

      Dragostin, O. M.; Samal, S. K.; Dash, M.; Lupascu, F.; Panzariu, A.; Tuchilus, C.; Ghetu, N.; Danciu, M.; Dubruel, P.; Pieptu, D.; Vasile, C.; Tatia, R.; Profire, L. New antimicrobial chitosan derivatives for wound dressing applications. Carbohydr. Polym. 2016, 141, 28−40. doi: 10.1016/j.carbpol.2015.12.078

    32. [32]

      Prichystalova, H.; Almonasy, N.; Abdel-Mohsen, A. M.; Abdel-Rahman, R. M.; Fouda, M. M.; Vojtova, L.; Kobera, L.; Spotz, Z.; Burgert, L.; Jancar, J. Synthesis, characterization and antibacterial activity of new fluorescent chitosan derivatives. Int. J. Biol. Macromol. 2014, 65, 234−240. doi: 10.1016/j.ijbiomac.2014.01.050

    33. [33]

      Zhang, J.; Tan, W.; Wei, L.; Chen, Y.; Mi, Y.; Sun, X.; Li, Q.; Dong, F.; Guo, Z. Synthesis of urea-functionalized chitosan derivatives for potential antifungal and antioxidant applications. Carbohydr. Polym. 2019, 215, 108−118. doi: 10.1016/j.carbpol.2019.03.067

    34. [34]

      Kritchenkov, A. S.; Egorov, A. R.; Kurasova, M. N.; Volkova, O. V.; Meledina, T. V.; Lipkan, N. A.; Tskhovrebov, A. G.; Kurliuk, A. V.; Shakola, T. V.; Dysin, A. P.; Egorov, M. Y.; Savicheva, E. A.; Dos, Santos W. M. Novel non-toxic high efficient antibacterial azido chitosan derivatives with potential application in food coatings. Food Chem. 2019, 301, 125247. doi: 10.1016/j.foodchem.2019.125247

    35. [35]

      Pei, L.; Cai, Z.; Shang, S.; Song, Z. Synthesis and antibacterial activity of alkylated chitosan under basic ionic liquid conditions. J. Appl. Polym. Sci. 2014, 131, 2540−2540.

    36. [36]

      Sadeghi, A. M. M.; Dorkoosh, F. A.; Avadi, M. R.; Saadat, P.; Rafiee-Tehrani, M.; Junginger, H. E. Preparation, characterization and antibacterial activities of chitosan, N-trimethyl chitosan (TMC) and N-diethylmethyl chitosan (DEMC) nanoparticles loaded with insulin using both the ionotropic gelation and polyelectrolyte complexation methods. Int. J. Pharm. 2008, 355, 299−306. doi: 10.1016/j.ijpharm.2007.11.052

    37. [37]

      Marangon, C. A.; Martins, V. C. A.; Ling, M. H.; Melo, C. C.; Plepis, A. M. G.; Meyer, R. L.; Nitschke, M. Combination of rhamnolipid and chitosan in nanoparticles boosts their antimicrobial efficacy. ACS Appl. Mater. Interfaces 2020, 12, 5488−5499. doi: 10.1021/acsami.9b19253

    38. [38]

      Omidi, S.; Kakanejadifard, A. Modification of chitosan and chitosan nanoparticle by long chain pyridinium compounds: synthesis, characterization, antibacterial, and antioxidant activities. Carbohydr. Polym. 2019, 208, 477−485. doi: 10.1016/j.carbpol.2018.12.097

    39. [39]

      Martin, I.; Ruysschaerti, J. M.; Sanders, D.; Giffard, C. J. Interaction of the lantibiotic nisin with membranes revealed by fluorescence quenching of an introduced tryptophan. Eur. J. Biochem. 1996, 239, 156−164. doi: 10.1111/j.1432-1033.1996.0156u.x

    40. [40]

      Cai, J.; Yang, J.; Wang, C.; Hu, Y.; Lin, J.; Fan, L. Structural characterization and antimicrobial activity of chitosan (CS-40)/nisin complexes. J. Appl. Polym. Sci. 2010, 116, 3702−3707.

    41. [41]

      Zhu, C.; Zou, S.; Rao, Z.; Min, L.; Liu, M.; Liu, L.; Fan, L. Preparation and characterization of hydroxypropyl chitosan modified with nisin. Int. J. Biol. Macromol. 2017, 105, 1017−1024. doi: 10.1016/j.ijbiomac.2017.07.136

    42. [42]

      Min, L.; Liu, M.; Zhu, C.; Liu, L.; Rao, Z.; Fan, L. Synthesis and in vitro antimicrobial and antioxidant activities of quaternary ammonium chitosan modified with nisin. J. Biomater. Sci. Polym. Ed. 2017, 28, 2034−2052. doi: 10.1080/09205063.2017.1368615

    43. [43]

      Sahariah, P.; Sorensen, K. K.; Hjalmarsdottir, M. A.; Sigurjonsson, O. E.; Jensen, K. J.; Masson, M.; Thygesen, M. B. Antimicrobial peptide shows enhanced activity and reduced toxicity upon grafting to chitosan polymers. Chem. Commun. 2015, 51, 11611−11614. doi: 10.1039/C5CC04010H

    44. [44]

      Su, Y.; Tian, L.; Yu, M.; Gao, Q.; Wang, D.; Xi, Y.; Yang, P.; Lei, B.; Ma, P. X.; Li, P. Cationic peptidopolysaccharides synthesized by 'click' chemistry with enhanced broad-spectrum antimicrobial activities. Polym. Chem. 2017, 8, 3788−3800. doi: 10.1039/C7PY00528H

    45. [45]

      Zhou, C.; Wang, M.; Zou, K.; Chen, J.; Zhu, Y.; Du, J. Antibacterial polypeptide-grafted chitosan-based nanocapsules as an “armed” carrier of anticancer and antiepileptic drugs. ACS Macro Lett. 2013, 2, 1021−1025. doi: 10.1021/mz400480z

    46. [46]

      Li, P.; Zhou, C.; Rayatpisheh, S.; Ye, K.; Poon, Y. F.; Hammond, P. T.; Duan, H.; Chan-Park, M. B. Cationic peptidopolysaccharides show excellent broad-spectrum antimicrobial activities and high selectivity. Adv. Mater. 2012, 24, 4130−4137. doi: 10.1002/adma.201104186

    47. [47]

      Hou, Z.; Shankar, Y. V.; Liu, Y.; Ding, F.; Subramanion, J. L.; Ravikumar, V.; Zamudio-Vazquez, R.; Keogh, D.; Lim, H.; Tay, M. Y. F.; Bhattacharjya, S.; Rice, S. A.; Shi, J.; Duan, H.; Liu, X. W.; Mu, Y.; Tan, N. S.; Tam, K. C.; Pethe, K.; Chan-Park, M. B. Nanoparticles of short cationic peptidopolysaccharide self-assembled by hydrogen bonding with antibacterial effect against multidrug-resistant bacteria. ACS Appl. Mater. Interfaces 2017, 9, 38288−38303. doi: 10.1021/acsami.7b12120

    48. [48]

      Tsiligianni, M.; Papavergou, E.; Soultos, N.; Magra, T.; Savvaidis, I. N. Effect of chitosan treatments on quality parameters of fresh refrigerated swordfish (Xiphias gladius) steaks stored in air and under vacuum conditions. Int. J. Food Microbiol. 2012, 159, 101−106. doi: 10.1016/j.ijfoodmicro.2012.08.010

    49. [49]

      Shankar, S.; Rhim, J. W. Preparation of sulfur nanoparticle-incorporated antimicrobial chitosan films. Food Hydrocolloids 2018, 82, 116−123. doi: 10.1016/j.foodhyd.2018.03.054

    50. [50]

      Siripatrawan, U.; Kaewklin, P. Fabrication and characterization of chitosan-titanium dioxide nanocomposite film as ethylene scavenging and antimicrobial active food packaging. Food Hydrocolloids 2018, 84, 125−134. doi: 10.1016/j.foodhyd.2018.04.049

    51. [51]

      Cui, H.; Wu, J.; Li, C.; Lin, L. Improving anti-listeria activity of cheese packaging via nanofiber containing nisin-loaded nanoparticles. LWT--Food Sci. Technol. 2017, 81, 233−242. doi: 10.1016/j.lwt.2017.04.003

    52. [52]

      Fu, J.; Ji, J.; Yuan, W.; Shen, J. Construction of anti-adhesive and antibacterial multilayer films via layer-by-layer assembly of heparin and chitosan. Biomaterials 2005, 26, 6684−6692. doi: 10.1016/j.biomaterials.2005.04.034

    53. [53]

      Du, X.; Liu, Y.; Yan, H.; Rafique, M.; Li, S.; Shan, X.; Wu, L.; Qiao, M.; Kong, D.; Wang, L. Anti-infective and pro-coagulant chitosan-based hydrogel tissue adhesive for sutureless wound closure. Biomacromolecules 2020, 21, 1243−1253. doi: 10.1021/acs.biomac.9b01707

    54. [54]

      Yu, Q.; Chen, H. Smart antibacterial surfaces with switchable function to kill and release bacteria. Acta Polymerica Sinica (in Chinese) 2020, 51, 319−325.

    55. [55]

      Wei, T.; Yu, Q.; Chen, H. Responsive and synergistic antibacterial coatings: fighting against bacteria in a smart and effective way. Adv. Healthcare Mater. 2019, 8, e1801381. doi: 10.1002/adhm.201801381

    56. [56]

      Masood, N.; Ahmed, R.; Tariq, M.; Ahmed, Z.; Masoud, M. S.; Ali, I.; Asghar, R.; Andleeb, A.; Hasan, A. Silver nanoparticle impregnated chitosan-PEG hydrogel enhances wound healing in diabetes induced rabbits. Int. J. Pharm. 2019, 559, 23−36. doi: 10.1016/j.ijpharm.2019.01.019

    57. [57]

      Qu, J.; Zhao, X.; Liang, Y.; Xu, Y.; Ma, P. X.; Guo, B. Degradable conductive injectable hydrogels as novel antibacterial, anti-oxidant wound dressings for wound healing. Chem. Eng. J. 2019, 362, 548−560. doi: 10.1016/j.cej.2019.01.028

    58. [58]

      Zhao, X.; Wu, H.; Guo, B.; Dong, R.; Qiu, Y.; Ma, P. X. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials 2017, 122, 34−47. doi: 10.1016/j.biomaterials.2017.01.011

    59. [59]

      Zhao, X.; Guo, B.; Wu, H.; Liang, Y.; Ma, P. X. Injectable antibacterial conductive nanocomposite cryogels with rapid shape recovery for noncompressible hemorrhage and wound healing. Nat. Commun. 2018, 9, 2784. doi: 10.1038/s41467-018-04998-9

    60. [60]

      Li, P.; Poon, Y. F.; Li, W.; Zhu, H. Y.; Yeap, S. H.; Cao, Y.; Qi, X.; Zhou, C.; Lamrani, M.; Beuerman, R. W. A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability. Nat. Mater. 2011, 10, 149−156. doi: 10.1038/nmat2915

    61. [61]

      Tripodo, G.; Trapani, A.; Rosato, A.; Di Franco, C.; Tamma, R.; Trapani, G.; Ribatti, D.; Mandracchia, D. Hydrogels for biomedical applications from glycol chitosan and PEG diglycidyl ether exhibit pro-angiogenic and antibacterial activity. Carbohydr. Polym. 2018, 198, 124−130. doi: 10.1016/j.carbpol.2018.06.061

    62. [62]

      Adeli, H.; Khorasani, M. T.; Parvazinia, M. Wound dressing based on electrospun PVA/chitosan/starch nanofibrous mats: fabrication, antibacterial and cytocompatibility evaluation and in vitro healing assay. Int. J. Biol. Macromol. 2019, 122, 238−254. doi: 10.1016/j.ijbiomac.2018.10.115

    63. [63]

      Xia, G.; Lang, X.; Kong, M.; Cheng, X.; Liu, Y.; Feng, C.; Chen, X. Surface fluid-swellable chitosan fiber as the wound dressing material. Carbohydr. Polym. 2016, 136, 860−866. doi: 10.1016/j.carbpol.2015.09.074

    64. [64]

      Lin, W. C.; Lien, C. C.; Yeh, H. J.; Yu, C. M.; Hsu, S. H. Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications. Carbohydr. Polym. 2013, 94, 603−611. doi: 10.1016/j.carbpol.2013.01.076

    65. [65]

      Yin, M.; Wang, Y.; Zhang, Y.; Ren, X.; Qiu, Y.; Huang, T. S. Novel quaternarized N-halamine chitosan and polyvinyl alcohol nanofibrous membranes as hemostatic materials with excellent antibacterial properties. Carbohydr. Polym. 2020, 232, 115823. doi: 10.1016/j.carbpol.2019.115823

    66. [66]

      Gupta, D.; Haile, A. Multifunctional properties of cotton fabric treated with chitosan and carboxymethyl chitosan. Carbohydr. Polym. 2007, 69, 164−171. doi: 10.1016/j.carbpol.2006.09.023

    67. [67]

      Ye, W.; Leung, M. F.; Xin, J.; Kwong, T. L.; Lee, D. K. L.; Li, P. Novel core-shell particles with poly(n-butyl acrylate) cores and chitosan shells as an antibacterial coating for textiles. Polymer 2005, 46, 10538−10543. doi: 10.1016/j.polymer.2005.08.019

    68. [68]

      Arshad, N.; Zia, K. M.; Jabeen, F.; Anjum, M. N.; Akram, N.; Zuber, M. Synthesis, characterization of novel chitosan based water dispersible polyurethanes and their potential deployment as antibacterial textile finish. Int. J. Biol. Macromol. 2018, 111, 485−492. doi: 10.1016/j.ijbiomac.2018.01.032

    69. [69]

      Huang, G.; Huang, H. Application of dextran as nanoscale drug carriers. Nanomedicine 2018, 13, 3149−3158. doi: 10.2217/nnm-2018-0331

    70. [70]

      O'Connor, N. A.; Abugharbieh, A.; Yasmeen, F.; Buabeng, E.; Mathew, S.; Samaroo, D.; Cheng, H. P. The crosslinking of polysaccharides with polyamines and dextran-polyallylamine antibacterial hydrogels. Int. J. Biol. Macromol. 2015, 72, 88−93. doi: 10.1016/j.ijbiomac.2014.08.003

    71. [71]

      Tuchilus, C. G.; Nichifor, M.; Mocanu, G.; Stanciu, M. C. Antimicrobial activity of chemically modified dextran derivatives. Carbohydr. Polym. 2017, 161, 181−186. doi: 10.1016/j.carbpol.2017.01.006

    72. [72]

      Amiri, S.; Ramezani, R.; Aminlari, A. M. Antibacterial activity of dextran-conjugated lysozyme against Escherichia coli and Staphylococcus aureus in cheese curd. J. Food Prot. 2008, 71, 411−415. doi: 10.4315/0362-028X-71.2.411

    73. [73]

      Hoque, J.; Haldar, J. Direct synthesis of dextran-based antibacterial hydrogels for extended release of biocides and eradication of topical biofilms. ACS Appl. Mater. Interfaces 2017, 9, 15975−15985. doi: 10.1021/acsami.7b03208

    74. [74]

      Chen, Y.; Yu, L.; Zhang, B.; Feng, W.; Xu, M.; Gao, L.; Liu, N.; Wang, Q.; Huang, X.; Li, P.; Huang, W. Design and synthesis of biocompatible, hemocompatible, and highly selective antimicrobial cationic peptidopolysaccharides via click chemistry. Biomacromolecules 2019, 20, 2230−2240. doi: 10.1021/acs.biomac.9b00179

    75. [75]

      Radaeva, I. F.; Kostina, G. A.; Zmievskii, A. V. Hyaluronic acid: biological role, structure, synthesis, isolation, purification, and applications. Appl. Biochem. Microbiol. 1997, 33, 111−115.

    76. [76]

      Drago, L.; Cappelletti, L.; de Vecchi, E.; Pignataro, L.; Torretta, S.; Mattina, R. Antiadhesive and antibiofilm activity of hyaluronic acid against bacteria responsible for respiratory tract infections. APMIS 2014, 122, 1013−1019. doi: 10.1111/apm.12254

    77. [77]

      Lin, Z.; Wu, T.; Wang, W.; Li, B.; Wang, M.; Chen, L.; Xia, H.; Zhang, T. Biofunctions of antimicrobial peptide-conjugated alginate/hyaluronic acid/collagen wound dressings promote wound healing of a mixed-bacteria-infected wound. Int. J. Biol. Macromol. 2019, 140, 330−342. doi: 10.1016/j.ijbiomac.2019.08.087

    78. [78]

      Lequeux, I.; Ducasse, E.; Jouenne, T.; Thebault, P. Addition of antimicrobial properties to hyaluronic acid by grafting of antimicrobial peptide. Eur. Polym. J. 2014, 51, 182−190. doi: 10.1016/j.eurpolymj.2013.11.012

    79. [79]

      Yu, Q. H.; Zhang, C. M.; Jiang, Z. W.; Qin, S. Y.; Zhang, A. Q. Mussel-inspired adhesive polydopamine-functionalized hyaluronic acid hydrogel with potential bacterial inhibition. Glob. Chall. 2020, 4, 1900068. doi: 10.1002/gch2.201900068

    80. [80]

      Silvestro, I.; Lopreiato, M.; Scotto d'Abusco, A.; di Lisio, V.; Martinelli, A.; Piozzi, A.; Francolini, I. Hyaluronic acid reduces bacterial fouling and promotes fibroblasts' adhesion onto chitosan 2D-wound dressings. Int. J. Mol. Sci. 2020, 21, 2070. doi: 10.3390/ijms21062070

    81. [81]

      Zhang, L.; Yan, P.; Li, Y.; He, X.; Dai, Y.; Tan, Z. Preparation and antibacterial activity of a cellulose-based schiff base derived from dialdehyde cellulose and L-lysine. Ind. Crops Prod. 2020, 145, 112126. doi: 10.1016/j.indcrop.2020.112126

    82. [82]

      He, X.; Yang, Y.; Song, H.; Wang, S.; Zhao, H.; Wei, D. Polyanionic composite membranes based on bacterial cellulose and amino acid for antimicrobial application. ACS Appl. Mater. Interfaces 2020, 12, 14784−14796. doi: 10.1021/acsami.9b20733

    83. [83]

      He, W.; Zhang, Z.; Zheng, Y.; Qiao, S.; Xie, Y.; Sun, Y.; Qiao, K.; Feng, Z.; Wang, X.; Wang, J. Preparation of aminoalkyl-grafted bacterial cellulose membranes with improved antimicrobial properties for biomedical applications. J. Biomed. Mater. Res. A 2020, 108, 1086−1098. doi: 10.1002/jbm.a.36884

    84. [84]

      Wu, Y.; Li, Q.; Zhang, X.; Li, Y.; Li, B.; Liu, S. Cellulose-based peptidopolysaccharides as cationic antimicrobial package films. Int. J. Biol. Macromol. 2019, 128, 673−680. doi: 10.1016/j.ijbiomac.2019.01.172

    85. [85]

      Palanisamy, S.; Vinosha, M.; Marudhupandi, T.; Rajasekar, P.; Prabhu, N. M. In vitro antioxidant and antibacterial activity of sulfated polysaccharides isolated from Spatoglossum asperum. Carbohydr. Polym. 2017, 170, 296−304. doi: 10.1016/j.carbpol.2017.04.085

    86. [86]

      Zhu, H.; Sheng, K.; Yan, E.; Qiao, J.; Lv, F. Extraction, purification and antibacterial activities of a polysaccharide from spent mushroom substrate. Int. J. Biol. Macromol. 2012, 50, 840−843. doi: 10.1016/j.ijbiomac.2011.11.016

    87. [87]

      Meng, Q.; Li, Y.; Xiao, T.; Zhang, L.; Xu, D. Antioxidant and antibacterial activities of polysaccharides isolated and purified from Diaphragma juglandis fructus. Int. J. Biol. Macromol. 2017, 105, 431−437. doi: 10.1016/j.ijbiomac.2017.07.062

    88. [88]

      Ma, Y. L.; Zhu, D. Y.; Thakur, K.; Wang, C. H.; Wang, H.; Ren, Y. F.; Zhang, J. G.; Wei, Z. J. Antioxidant and antibacterial evaluation of polysaccharides sequentially extracted from onion (Allium cepa L.). Int. J. Biol. Macromol. 2018, 111, 92−101. doi: 10.1016/j.ijbiomac.2017.12.154

    89. [89]

      Li, X. L.; Thakur, K.; Zhang, Y. Y.; Tu, X. F.; Zhang, Y. S.; Zhu, D. Y.; Zhang, J. G.; Wei, Z. J. Effects of different chemical modifications on the antibacterial activities of polysaccharides sequentially extracted from peony seed dreg. Int. J. Biol. Macromol. 2018, 116, 664−675. doi: 10.1016/j.ijbiomac.2018.05.082

    90. [90]

      Wang, Z.; Xue, R.; Cui, J.; Wang, J.; Fan, W.; Zhang, H.; Zhan, X. Antibacterial activity of a polysaccharide produced from Chaetomium globosum CGMCC 6882. Int. J. Biol. Macromol. 2019, 125, 376−382. doi: 10.1016/j.ijbiomac.2018.11.248

    91. [91]

      Wang, H. B. Cellulase-assisted extraction and antibacterial activity of polysaccharides from the dandelion Taraxacum officinale. Carbohydr. Polym. 2014, 103, 140−142. doi: 10.1016/j.carbpol.2013.12.029

    92. [92]

      Lu, H.; Gao, Y.; Shan, H.; Lin, Y. Preparation and antibacterial activity studies of degraded polysaccharide selenide from Enteromorpha prolifera. Carbohydr. Polym. 2014, 107, 98−102. doi: 10.1016/j.carbpol.2014.02.045

    93. [93]

      Vishwakarma, J.; Vavilala, S. L. Evaluating the antibacterial and antibiofilm potential of sulphated polysaccharides extracted from green algae Chlamydomonas reinhardtii. J. Appl. Microbiol. 2019, 127, 1004−1017. doi: 10.1111/jam.14364

    94. [94]

      Khlusov, I.; Avdeeva, E.; Shupletsova, V.; Khaziakhmatova, O.; Litvinova, L.; Porokhova, E.; Reshetov, Y.; Zvereva, I.; Mushtovatova, L.; Karpova, M.; Guryev, A.; Sukhodolo, I.; Belousov, M. Comparative in vitro evaluation of antibacterial and osteogenic activity of polysaccharide and flavonoid fractions isolated from the leaves of Saussurea controversa. Molecules 2019, 24, 3680. doi: 10.3390/molecules24203680

    95. [95]

      Hajji, M.; Hamdi, M.; Sellimi, S.; Ksouda, G.; Laouer, H.; Li, S.; Nasri, M. Structural characterization, antioxidant and antibacterial activities of a novel polysaccharide from Periploca laevigata root barks. Carbohydr. Polym. 2019, 206, 380−388. doi: 10.1016/j.carbpol.2018.11.020

    96. [96]

      Wang, C.; Sun, Z.; Liu, Y.; Zheng, D.; Liu, X.; Li, S. Earthworm polysaccharide and its antibacterial function on plant-pathogen microbes in vitro. Eur. J. Soil Biol. 2007, 43, S135−S142. doi: 10.1016/j.ejsobi.2007.08.035

  • 加载中
    1. [1]

      Feng-bo ZhuHai-chao YuWen-xi LeiKe-feng RenJin QianZi-liang WuQiang Zheng . Tough Polyion Complex Hydrogel Films of Natural Polysaccharides. Chinese J. Polym. Sci, 2017, 35(10): 1276-1285. doi: 10.1007/s10118-017-1977-7

    2. [2]

      Maryam BazhbanMahdi NouriJavad Mokhtari . ELECTROSPINNING OF CYCLODEXTRIN FUNCTIONALIZED CHITOSAN/PVA NANOFIBERS AS A DRUG DELIVERY SYSTEM. Chinese J. Polym. Sci, 2013, 31(10): 1343-1351. doi: 10.1007/s10118-013-1309-5

    3. [3]

      Hua-jie LiZhong YuShuang-ping WangLi-ming ZhangLi-qun Yang . Protection of Photoactivity of Photosensitizers by Amphiphilic Polysaccharide Micelles. Chinese J. Polym. Sci, 2014, 32(10): 1413-1418. doi: 10.1007/s10118-014-1517-7

    4. [4]

      Cheng-zhen GengXin HuGuang-hui YangQin ZhangFeng ChenQiang Fu . Mechanically Reinforced Chitosan/Cellulose Nanocrystals Composites with Good Transparency and Biocompatibility. Chinese J. Polym. Sci, 2015, 33(1): 61-69. doi: 10.1007/s10118-015-1558-6

    5. [5]

      Xu-feng NiuFeng TianLi-zhen WangXiao-ming LiGang ZhouYu-bo Fan . Synthesis and Characterization of Chitosan-graft-Poly(lactic acid) Copolymer. Chinese J. Polym. Sci, 2014, 32(1): 43-50. doi: 10.1007/s10118-014-1369-1

    6. [6]

      Hossein GhasemzadehMahdieh SheikhahmadiFatemeh Nasrollah . Full Polysaccharide Crosslinked-chitosan and Silver Nano Composites, for Use as an Antibacterial Membrane. Chinese J. Polym. Sci, 2016, 34(8): 949-964. doi: 10.1007/s10118-016-1807-3

    7. [7]

      Meng-tan CaiJia-xing ZhangYuan-wei ChenJun CaoMeng-tian LengShao-dong HuXiang-lin Luo . Preparation and Characterization of Chitosan Composite Membranes Crosslinked by Carboxyl-capped Poly(ethylene glycol). Chinese J. Polym. Sci, 2014, 32(2): 236-244. doi: 10.1007/s10118-014-1373-5

    8. [8]

      Sha-sheng WangYing-qi ShuBen-liang LiangLong-cheng GaoMin GaoPeng-gang YinLin Guo . Nacre-inspired Green Artificial Bionanocomposite Films from the Layer-by-Layer Assembly of Montmorillonite and Chitosan. Chinese J. Polym. Sci, 2014, 32(6): 675-680. doi: 10.1007/s10118-014-1455-4

    9. [9]

      Gabriela JandíkováPetra StoplovaAntonio Di MartinoPetr StloukalPavel KucharczykMichal MachovskyVladimir Sedlarik . Effect of a Hybrid Zinc Stearate-Silver System on the Properties of Polylactide and Its Abiotic and the Biotic Degradation and Antimicrobial Activity Thereof. Chinese J. Polym. Sci, 2018, 36(8): 925-933. doi: 10.1007/s10118-018-2120-0

    10. [10]

      Liu Ya-lanWang Zheng-keQin WeiHu Qiao-lingTang Ben Zhong . Fluorescent Detection of Cu(Ⅱ) by Chitosan-based AIE Bioconjugate. Chinese J. Polym. Sci, 2017, 35(3): 365-371. doi: 10.1007/s10118-017-1876-y

    11. [11]

      Jia-han KeZheng-ke WangYin-zhe LibQiao-ling HuJie Feng . FERROFERRIC OXIDE/CHITOSAN SCAFFOLDS WITH THREE-DIMENSIONAL ORIENTED STRUCTURE. Chinese J. Polym. Sci, 2012, 30(3): 436-442. doi: 10.1007/s10118-012-1133-3

    12. [12]

      Neama A. ReiadOmar E. Abdel SalamEhab F. AbadirFarid A. Harraz . GREEN SYNTHESIS OF ANTIBACTERIAL CHITOSAN FILMS LOADED WITH SILVER NANOPARTICLES. Chinese J. Polym. Sci, 2013, 31(7): 984-993. doi: 10.1007/s10118-013-1263-2

    13. [13]

      Ahmed AbedNabil BouaziziStéphane GiraudAhmida El AchariChristine CampagneOlivier ThoumireReddad El MoznineOmar CherkaouiJulien VieillardAbdelkrim Azzouz . Polyester-supported Chitosan-Poly(vinylidene fluoride)-Inorganic-Oxide-Nanoparticles Composites with Improved Flame Retardancy and Thermal Stability. Chinese J. Polym. Sci, 2020, 38(1): 84-91. doi: 10.1007/s10118-020-2336-7

    14. [14]

      Yi-Jie ZouShi-Sheng HeJian-Zhong Duε-Poly(L-lysine)-based Hydrogels with Fast-acting and Prolonged Antibacterial Activities. Chinese J. Polym. Sci, 2018, 36(11): 1239-1250. doi: 10.1007/s10118-018-2156-1

    15. [15]

      Ji-Yu YangYu XiaJin ZhaoLong-Fei YiYong-Jiao SongHong WuShao-Yun GuoLi-Juan ZhaoJin-Rong Wu . Flame-retardant and Self-healing Biomass Aerogels Based on Electrostatic Assembly. Chinese J. Polym. Sci, 2020, 38(12): 1294-1304. doi: 10.1007/s10118-020-2444-4

    16. [16]

      . LYOTROPIC LIQUID CRYSTALLINE BEHAVIOR OF FIVE CHITOSAN DERIVATIVES*. Chinese J. Polym. Sci, 1999, 17(1): 65-70.

    17. [17]

      Ke-long HuangPing DingSu-qin LiuGui-yin LiYan-fei Liu . PREPARATION AND CHARACTERIZATION OF NOVEL CHITOSAN DERIVATIVES: ADSORPTION EQUILIBRIUM OF IRON(Ⅲ) ION. Chinese J. Polym. Sci, 2008, 26(1): 1-11.

    18. [18]

      Dian-xiang LuXian-tao WenJie LiangXing-dong ZhangZhong-wei GuYu-jiang Fan . NOVEL pH-SENSITIVE DRUG DELIVERY SYSTEM BASED ON NATURAL POLYSACCHARIDE FOR DOXORUBICIN RELEASE. Chinese J. Polym. Sci, 2008, 26(3): 369-374.

    19. [19]

      CHEN LeiMA WenyiYU XuehaiYANG Changzheng . SYNTHESES AND ANTIMICROBIAL ACTIVITY OF NOVEL POLYURETHANE IONOMERS. Chinese J. Polym. Sci, 1996, 14(3): 205-210.

    20. [20]

      Hui-dan LiuTakahiro Sato . POLYMER COLLOIDS FORMED BY POLYELECTROLYTE COMPLEXATION OF VINYL POLYMERS AND POLYSACCHARIDES IN AQUEOUS SOLUTION. Chinese J. Polym. Sci, 2013, 31(1): 39-49. doi: 10.1007/s10118-013-1212-0

Article Metrics
  • PDF Downloads(6)
  • Abstract views(1710)
  • HTML views(259)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return