Antimicrobial Properties and Application of Polysaccharides and Their Derivatives
-
Corresponding author:
Run-Hui Liu, E-mail: rliu@ecust.edu.cn
Citation:
Allegranzi, B.; Nejad, S. B.; Combescure, C.; Graafmans, W.; Attar, H.; Donaldson, L.; Pittet, D. Burden of endemic health-care-associated infection in developing countries: systematic review and meta-analysis. The Lancet 2011, 377, 228−241. doi: 10.1016/S0140-6736(10)61458-4
Worthington, R. J.; Melander, C. Combination approaches to combat multidrug-resistant bacteria. Trends Biotechnol. 2013, 31, 177−184. doi: 10.1016/j.tibtech.2012.12.006
Brown, E. D.; Wright, G. D. Antibacterial drug discovery in the resistance era. Nature 2016, 529, 336−343. doi: 10.1038/nature17042
Tang, Q.; Song, P.; Li, J.; Kong, F.; Sun, L.; Xu, L. Control of antibiotic resistance in China must not be delayed: the current state of resistance and policy suggestions for the government, medical facilities, and patients. BioSci. Trends 2016, 10, 1−6. doi: 10.5582/bst.2016.01034
Imberty, A.; Varrot, A. Microbial recognition of human cell surface glycoconjugates. Curr. Opin. Struct. Biol. 2008, 18, 567−576. doi: 10.1016/j.sbi.2008.08.001
Bishop, J. R.; Gagneux, P. Evolution of carbohydrate antigens--microbial forces shaping host glycomes? Glycobiology 2007, 17, 23R−34R. doi: 10.1093/glycob/cwm005
Yu, Y.; Shen, M.; Song, Q.; Xie, J. Biological activities and pharmaceutical applications of polysaccharide from natural resources: a review. Carbohydr. Polym. 2018, 183, 91−101. doi: 10.1016/j.carbpol.2017.12.009
Perinelli, D. R.; Fagioli, L.; Campana, R.; Lam, J. K. W.; Baffone, W.; Palmieri, G. F.; Casettari, L.; Bonacucina, G. Chitosan-based nanosystems and their exploited antimicrobial activity. Eur. J. Pharm. Sci. 2018, 117, 8−20. doi: 10.1016/j.ejps.2018.01.046
Li, Y. T.; Chen, B. J.; Wu, W. D.; Ge, K.; Wei, X. Y.; Kong, L. M.; Xie, Y. Y.; Gu, J. P.; Zhang, J. C.; Zhou, T. Antioxidant and antimicrobial evaluation of carboxymethylated and hydroxamated degraded polysaccharides from Sargassum fusiforme. Int. J. Biol. Macromol. 2018, 118, 1550−1557. doi: 10.1016/j.ijbiomac.2018.06.196
No, H. K.; Park, N. Y.; Lee, S. H.; Meyers, S. P. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int. J. Food Microbiol. 2002, 74, 65−72. doi: 10.1016/S0168-1605(01)00717-6
Synowiecki, J.; Al-Khateeb, N. A. Production, properties, and some new applications of chitin and its derivatives. Crit. Rev. Food Sci. Nutr. 2003, 43, 145−171. doi: 10.1080/10408690390826473
Muzzarelli, R. A. A. Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr. Polym. 2009, 76, 167−182. doi: 10.1016/j.carbpol.2008.11.002
Peng, X. H.; Zhang, L. Surface fabrication of hollow microspheres from N-methylated chitosan cross-linked with gultaraldehyde. Langmuir 2005, 21, 1091−1095. doi: 10.1021/la047689w
Allan, C. R.; Hadwiger, L. A. The fungicidal effect of chitosan on fungi of varying cell wall composition. Exp. Mycol. 1979, 3, 285−287. doi: 10.1016/S0147-5975(79)80054-7
Palma-Guerrero, J.; Lopez-Jimenez, J. A.; Pérez-Berná, A. J.; Huang, I. C.; Jansson, H. B.; Salinas, J.; Villalaín, J.; Read, N. D.; Lopez-Llorca, L. V. Membrane fluidity determines sensitivity of filamentous fungi to chitosan. Mol. Microbiol. 2010, 75, 1021−1032. doi: 10.1111/j.1365-2958.2009.07039.x
Young, D. H.; Kohle, H.; Kauss, H. Effect of chitosan on membrane permeability of suspension-cultured glycine max and phaseolus vulgaris cells. Plant Physiology 1982, 70, 1449−1454. doi: 10.1104/pp.70.5.1449
Helander, I. M.; Nurmiaho-Lassila, E. L.; Ahvenainen, R.; Rhoades, J.; Roller, S. Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. Int. J. Food Microbiol. 2001, 71, 235−244. doi: 10.1016/S0168-1605(01)00609-2
Muzzarelli, R.; Jeuniaux, C.; Gooday, G. W. Chitin in nature and technology. Springer US, New York, 1986.
Krajewska, B.; Wydro, P.; Jańczyk, A. Probing the modes of antibacterial activity of chitosan. Effects of pH and molecular weight on chitosan interactions with membrane lipids in langmuir films. Biomacromolecules 2011, 12, 4144−4152. doi: 10.1021/bm2012295
Rabea, E. I.; Badawy, M. E. T.; Stevens, C. V.; Smagghe, G.; Steurbaut, W. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 2003, 4, 1457−1465. doi: 10.1021/bm034130m
Kong, M.; Chen, X. G.; Xing, K.; Park, H. J. Antimicrobial properties of chitosan and mode of action: a state of the art review. Int. J. Food Microbiol. 2010, 144, 51−63. doi: 10.1016/j.ijfoodmicro.2010.09.012
Li, R.; Guo, Z. Synthesis, characterization and antifungal properties of N,O-(acyl)-N-(trimethyl) chitosan chloride. e-Polymers 2010, 10, 1273−1278.
Mohamed, N. A.; Al-mehbad, N. Y. Novel terephthaloyl thiourea cross-linked chitosan hydrogels as antibacterial and antifungal agents. Int. J. Biol. Macromol 2013, 57, 111−117. doi: 10.1016/j.ijbiomac.2013.03.007
Chen, Y.; Li, J.; Li, Q.; Shen, Y.; Ge, Z.; Zhang, W.; Chen, S. Enhanced water-solubility, antibacterial activity and biocompatibility upon introducing sulfobetaine and quaternary ammonium to chitosan. Carbohydr. Polym. 2016, 143, 246−253. doi: 10.1016/j.carbpol.2016.01.073
Tan, H.; Peng, Z.; Li, Q.; Xu, X.; Guo, S.; Tang, T. The use of quaternised chitosan-loaded PMMA to inhibit biofilm formation and downregulate the virulence-associated gene expression of antibiotic-resistant staphylococcus. Biomaterials 2012, 33, 365−377. doi: 10.1016/j.biomaterials.2011.09.084
Sajomsang, W.; Gonil, P.; Saesoo, S. Synthesis and antibacterial activity of methylated N-(4-N,N-dimethylaminocinnamyl) chitosan chloride. Eur. Polym. J. 2009, 45, 2319−2328. doi: 10.1016/j.eurpolymj.2009.05.009
Sahariah, P.; Snorradottir, B. S.; Hjalmarsdottir, M. A.; Sigurjonsson, O. E.; Masson, M. Experimental design for determining quantitative structure activity relationship for antibacterial chitosan derivatives. J. Mater. Chem. B 2016, 4, 4762−4770. doi: 10.1039/C6TB00546B
Zhao, X.; Li, P.; Guo, B.; Ma, P. X. Antibacterial and conductive injectable hydrogels based on quaternized chitosan-graft-polyaniline/oxidized dextran for tissue engineering. Acta Biomater. 2015, 26, 236−248. doi: 10.1016/j.actbio.2015.08.006
Guo, Z.; Chen, R.; Xing, R.; Liu, S.; Yu, H.; Wang, P.; Li, C.; Li, P. Novel derivatives of chitosan and their antifungal activities in vitro. Carbohydr. Res. 2006, 341, 351−354. doi: 10.1016/j.carres.2005.11.002
Rabea, E. I.; Badawy, M. E.; Rogge, T. M.; Stevens, C. V.; Hofte, M.; Steurbaut, W.; Smagghe, G. Insecticidal and fungicidal activity of new synthesized chitosan derivatives. Pest Manage. Sci. 2005, 61, 951−960. doi: 10.1002/ps.1085
Dragostin, O. M.; Samal, S. K.; Dash, M.; Lupascu, F.; Panzariu, A.; Tuchilus, C.; Ghetu, N.; Danciu, M.; Dubruel, P.; Pieptu, D.; Vasile, C.; Tatia, R.; Profire, L. New antimicrobial chitosan derivatives for wound dressing applications. Carbohydr. Polym. 2016, 141, 28−40. doi: 10.1016/j.carbpol.2015.12.078
Prichystalova, H.; Almonasy, N.; Abdel-Mohsen, A. M.; Abdel-Rahman, R. M.; Fouda, M. M.; Vojtova, L.; Kobera, L.; Spotz, Z.; Burgert, L.; Jancar, J. Synthesis, characterization and antibacterial activity of new fluorescent chitosan derivatives. Int. J. Biol. Macromol. 2014, 65, 234−240. doi: 10.1016/j.ijbiomac.2014.01.050
Zhang, J.; Tan, W.; Wei, L.; Chen, Y.; Mi, Y.; Sun, X.; Li, Q.; Dong, F.; Guo, Z. Synthesis of urea-functionalized chitosan derivatives for potential antifungal and antioxidant applications. Carbohydr. Polym. 2019, 215, 108−118. doi: 10.1016/j.carbpol.2019.03.067
Kritchenkov, A. S.; Egorov, A. R.; Kurasova, M. N.; Volkova, O. V.; Meledina, T. V.; Lipkan, N. A.; Tskhovrebov, A. G.; Kurliuk, A. V.; Shakola, T. V.; Dysin, A. P.; Egorov, M. Y.; Savicheva, E. A.; Dos, Santos W. M. Novel non-toxic high efficient antibacterial azido chitosan derivatives with potential application in food coatings. Food Chem. 2019, 301, 125247. doi: 10.1016/j.foodchem.2019.125247
Pei, L.; Cai, Z.; Shang, S.; Song, Z. Synthesis and antibacterial activity of alkylated chitosan under basic ionic liquid conditions. J. Appl. Polym. Sci. 2014, 131, 2540−2540.
Sadeghi, A. M. M.; Dorkoosh, F. A.; Avadi, M. R.; Saadat, P.; Rafiee-Tehrani, M.; Junginger, H. E. Preparation, characterization and antibacterial activities of chitosan, N-trimethyl chitosan (TMC) and N-diethylmethyl chitosan (DEMC) nanoparticles loaded with insulin using both the ionotropic gelation and polyelectrolyte complexation methods. Int. J. Pharm. 2008, 355, 299−306. doi: 10.1016/j.ijpharm.2007.11.052
Marangon, C. A.; Martins, V. C. A.; Ling, M. H.; Melo, C. C.; Plepis, A. M. G.; Meyer, R. L.; Nitschke, M. Combination of rhamnolipid and chitosan in nanoparticles boosts their antimicrobial efficacy. ACS Appl. Mater. Interfaces 2020, 12, 5488−5499. doi: 10.1021/acsami.9b19253
Omidi, S.; Kakanejadifard, A. Modification of chitosan and chitosan nanoparticle by long chain pyridinium compounds: synthesis, characterization, antibacterial, and antioxidant activities. Carbohydr. Polym. 2019, 208, 477−485. doi: 10.1016/j.carbpol.2018.12.097
Martin, I.; Ruysschaerti, J. M.; Sanders, D.; Giffard, C. J. Interaction of the lantibiotic nisin with membranes revealed by fluorescence quenching of an introduced tryptophan. Eur. J. Biochem. 1996, 239, 156−164. doi: 10.1111/j.1432-1033.1996.0156u.x
Cai, J.; Yang, J.; Wang, C.; Hu, Y.; Lin, J.; Fan, L. Structural characterization and antimicrobial activity of chitosan (CS-40)/nisin complexes. J. Appl. Polym. Sci. 2010, 116, 3702−3707.
Zhu, C.; Zou, S.; Rao, Z.; Min, L.; Liu, M.; Liu, L.; Fan, L. Preparation and characterization of hydroxypropyl chitosan modified with nisin. Int. J. Biol. Macromol. 2017, 105, 1017−1024. doi: 10.1016/j.ijbiomac.2017.07.136
Min, L.; Liu, M.; Zhu, C.; Liu, L.; Rao, Z.; Fan, L. Synthesis and in vitro antimicrobial and antioxidant activities of quaternary ammonium chitosan modified with nisin. J. Biomater. Sci. Polym. Ed. 2017, 28, 2034−2052. doi: 10.1080/09205063.2017.1368615
Sahariah, P.; Sorensen, K. K.; Hjalmarsdottir, M. A.; Sigurjonsson, O. E.; Jensen, K. J.; Masson, M.; Thygesen, M. B. Antimicrobial peptide shows enhanced activity and reduced toxicity upon grafting to chitosan polymers. Chem. Commun. 2015, 51, 11611−11614. doi: 10.1039/C5CC04010H
Su, Y.; Tian, L.; Yu, M.; Gao, Q.; Wang, D.; Xi, Y.; Yang, P.; Lei, B.; Ma, P. X.; Li, P. Cationic peptidopolysaccharides synthesized by 'click' chemistry with enhanced broad-spectrum antimicrobial activities. Polym. Chem. 2017, 8, 3788−3800. doi: 10.1039/C7PY00528H
Zhou, C.; Wang, M.; Zou, K.; Chen, J.; Zhu, Y.; Du, J. Antibacterial polypeptide-grafted chitosan-based nanocapsules as an “armed” carrier of anticancer and antiepileptic drugs. ACS Macro Lett. 2013, 2, 1021−1025. doi: 10.1021/mz400480z
Li, P.; Zhou, C.; Rayatpisheh, S.; Ye, K.; Poon, Y. F.; Hammond, P. T.; Duan, H.; Chan-Park, M. B. Cationic peptidopolysaccharides show excellent broad-spectrum antimicrobial activities and high selectivity. Adv. Mater. 2012, 24, 4130−4137. doi: 10.1002/adma.201104186
Hou, Z.; Shankar, Y. V.; Liu, Y.; Ding, F.; Subramanion, J. L.; Ravikumar, V.; Zamudio-Vazquez, R.; Keogh, D.; Lim, H.; Tay, M. Y. F.; Bhattacharjya, S.; Rice, S. A.; Shi, J.; Duan, H.; Liu, X. W.; Mu, Y.; Tan, N. S.; Tam, K. C.; Pethe, K.; Chan-Park, M. B. Nanoparticles of short cationic peptidopolysaccharide self-assembled by hydrogen bonding with antibacterial effect against multidrug-resistant bacteria. ACS Appl. Mater. Interfaces 2017, 9, 38288−38303. doi: 10.1021/acsami.7b12120
Tsiligianni, M.; Papavergou, E.; Soultos, N.; Magra, T.; Savvaidis, I. N. Effect of chitosan treatments on quality parameters of fresh refrigerated swordfish (Xiphias gladius) steaks stored in air and under vacuum conditions. Int. J. Food Microbiol. 2012, 159, 101−106. doi: 10.1016/j.ijfoodmicro.2012.08.010
Shankar, S.; Rhim, J. W. Preparation of sulfur nanoparticle-incorporated antimicrobial chitosan films. Food Hydrocolloids 2018, 82, 116−123. doi: 10.1016/j.foodhyd.2018.03.054
Siripatrawan, U.; Kaewklin, P. Fabrication and characterization of chitosan-titanium dioxide nanocomposite film as ethylene scavenging and antimicrobial active food packaging. Food Hydrocolloids 2018, 84, 125−134. doi: 10.1016/j.foodhyd.2018.04.049
Cui, H.; Wu, J.; Li, C.; Lin, L. Improving anti-listeria activity of cheese packaging via nanofiber containing nisin-loaded nanoparticles. LWT--Food Sci. Technol. 2017, 81, 233−242. doi: 10.1016/j.lwt.2017.04.003
Fu, J.; Ji, J.; Yuan, W.; Shen, J. Construction of anti-adhesive and antibacterial multilayer films via layer-by-layer assembly of heparin and chitosan. Biomaterials 2005, 26, 6684−6692. doi: 10.1016/j.biomaterials.2005.04.034
Du, X.; Liu, Y.; Yan, H.; Rafique, M.; Li, S.; Shan, X.; Wu, L.; Qiao, M.; Kong, D.; Wang, L. Anti-infective and pro-coagulant chitosan-based hydrogel tissue adhesive for sutureless wound closure. Biomacromolecules 2020, 21, 1243−1253. doi: 10.1021/acs.biomac.9b01707
Yu, Q.; Chen, H. Smart antibacterial surfaces with switchable function to kill and release bacteria. Acta Polymerica Sinica (in Chinese)
Wei, T.; Yu, Q.; Chen, H. Responsive and synergistic antibacterial coatings: fighting against bacteria in a smart and effective way. Adv. Healthcare Mater. 2019, 8, e1801381. doi: 10.1002/adhm.201801381
Masood, N.; Ahmed, R.; Tariq, M.; Ahmed, Z.; Masoud, M. S.; Ali, I.; Asghar, R.; Andleeb, A.; Hasan, A. Silver nanoparticle impregnated chitosan-PEG hydrogel enhances wound healing in diabetes induced rabbits. Int. J. Pharm. 2019, 559, 23−36. doi: 10.1016/j.ijpharm.2019.01.019
Qu, J.; Zhao, X.; Liang, Y.; Xu, Y.; Ma, P. X.; Guo, B. Degradable conductive injectable hydrogels as novel antibacterial, anti-oxidant wound dressings for wound healing. Chem. Eng. J. 2019, 362, 548−560. doi: 10.1016/j.cej.2019.01.028
Zhao, X.; Wu, H.; Guo, B.; Dong, R.; Qiu, Y.; Ma, P. X. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials 2017, 122, 34−47. doi: 10.1016/j.biomaterials.2017.01.011
Zhao, X.; Guo, B.; Wu, H.; Liang, Y.; Ma, P. X. Injectable antibacterial conductive nanocomposite cryogels with rapid shape recovery for noncompressible hemorrhage and wound healing. Nat. Commun. 2018, 9, 2784. doi: 10.1038/s41467-018-04998-9
Li, P.; Poon, Y. F.; Li, W.; Zhu, H. Y.; Yeap, S. H.; Cao, Y.; Qi, X.; Zhou, C.; Lamrani, M.; Beuerman, R. W. A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability. Nat. Mater. 2011, 10, 149−156. doi: 10.1038/nmat2915
Tripodo, G.; Trapani, A.; Rosato, A.; Di Franco, C.; Tamma, R.; Trapani, G.; Ribatti, D.; Mandracchia, D. Hydrogels for biomedical applications from glycol chitosan and PEG diglycidyl ether exhibit pro-angiogenic and antibacterial activity. Carbohydr. Polym. 2018, 198, 124−130. doi: 10.1016/j.carbpol.2018.06.061
Adeli, H.; Khorasani, M. T.; Parvazinia, M. Wound dressing based on electrospun PVA/chitosan/starch nanofibrous mats: fabrication, antibacterial and cytocompatibility evaluation and in vitro healing assay. Int. J. Biol. Macromol. 2019, 122, 238−254. doi: 10.1016/j.ijbiomac.2018.10.115
Xia, G.; Lang, X.; Kong, M.; Cheng, X.; Liu, Y.; Feng, C.; Chen, X. Surface fluid-swellable chitosan fiber as the wound dressing material. Carbohydr. Polym. 2016, 136, 860−866. doi: 10.1016/j.carbpol.2015.09.074
Lin, W. C.; Lien, C. C.; Yeh, H. J.; Yu, C. M.; Hsu, S. H. Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications. Carbohydr. Polym. 2013, 94, 603−611. doi: 10.1016/j.carbpol.2013.01.076
Yin, M.; Wang, Y.; Zhang, Y.; Ren, X.; Qiu, Y.; Huang, T. S. Novel quaternarized N-halamine chitosan and polyvinyl alcohol nanofibrous membranes as hemostatic materials with excellent antibacterial properties. Carbohydr. Polym. 2020, 232, 115823. doi: 10.1016/j.carbpol.2019.115823
Gupta, D.; Haile, A. Multifunctional properties of cotton fabric treated with chitosan and carboxymethyl chitosan. Carbohydr. Polym. 2007, 69, 164−171. doi: 10.1016/j.carbpol.2006.09.023
Ye, W.; Leung, M. F.; Xin, J.; Kwong, T. L.; Lee, D. K. L.; Li, P. Novel core-shell particles with poly(n-butyl acrylate) cores and chitosan shells as an antibacterial coating for textiles. Polymer 2005, 46, 10538−10543. doi: 10.1016/j.polymer.2005.08.019
Arshad, N.; Zia, K. M.; Jabeen, F.; Anjum, M. N.; Akram, N.; Zuber, M. Synthesis, characterization of novel chitosan based water dispersible polyurethanes and their potential deployment as antibacterial textile finish. Int. J. Biol. Macromol. 2018, 111, 485−492. doi: 10.1016/j.ijbiomac.2018.01.032
Huang, G.; Huang, H. Application of dextran as nanoscale drug carriers. Nanomedicine 2018, 13, 3149−3158. doi: 10.2217/nnm-2018-0331
O'Connor, N. A.; Abugharbieh, A.; Yasmeen, F.; Buabeng, E.; Mathew, S.; Samaroo, D.; Cheng, H. P. The crosslinking of polysaccharides with polyamines and dextran-polyallylamine antibacterial hydrogels. Int. J. Biol. Macromol. 2015, 72, 88−93. doi: 10.1016/j.ijbiomac.2014.08.003
Tuchilus, C. G.; Nichifor, M.; Mocanu, G.; Stanciu, M. C. Antimicrobial activity of chemically modified dextran derivatives. Carbohydr. Polym. 2017, 161, 181−186. doi: 10.1016/j.carbpol.2017.01.006
Amiri, S.; Ramezani, R.; Aminlari, A. M. Antibacterial activity of dextran-conjugated lysozyme against Escherichia coli and Staphylococcus aureus in cheese curd. J. Food Prot. 2008, 71, 411−415. doi: 10.4315/0362-028X-71.2.411
Hoque, J.; Haldar, J. Direct synthesis of dextran-based antibacterial hydrogels for extended release of biocides and eradication of topical biofilms. ACS Appl. Mater. Interfaces 2017, 9, 15975−15985. doi: 10.1021/acsami.7b03208
Chen, Y.; Yu, L.; Zhang, B.; Feng, W.; Xu, M.; Gao, L.; Liu, N.; Wang, Q.; Huang, X.; Li, P.; Huang, W. Design and synthesis of biocompatible, hemocompatible, and highly selective antimicrobial cationic peptidopolysaccharides via click chemistry. Biomacromolecules 2019, 20, 2230−2240. doi: 10.1021/acs.biomac.9b00179
Radaeva, I. F.; Kostina, G. A.; Zmievskii, A. V. Hyaluronic acid: biological role, structure, synthesis, isolation, purification, and applications. Appl. Biochem. Microbiol. 1997, 33, 111−115.
Drago, L.; Cappelletti, L.; de Vecchi, E.; Pignataro, L.; Torretta, S.; Mattina, R. Antiadhesive and antibiofilm activity of hyaluronic acid against bacteria responsible for respiratory tract infections. APMIS 2014, 122, 1013−1019. doi: 10.1111/apm.12254
Lin, Z.; Wu, T.; Wang, W.; Li, B.; Wang, M.; Chen, L.; Xia, H.; Zhang, T. Biofunctions of antimicrobial peptide-conjugated alginate/hyaluronic acid/collagen wound dressings promote wound healing of a mixed-bacteria-infected wound. Int. J. Biol. Macromol. 2019, 140, 330−342. doi: 10.1016/j.ijbiomac.2019.08.087
Lequeux, I.; Ducasse, E.; Jouenne, T.; Thebault, P. Addition of antimicrobial properties to hyaluronic acid by grafting of antimicrobial peptide. Eur. Polym. J. 2014, 51, 182−190. doi: 10.1016/j.eurpolymj.2013.11.012
Yu, Q. H.; Zhang, C. M.; Jiang, Z. W.; Qin, S. Y.; Zhang, A. Q. Mussel-inspired adhesive polydopamine-functionalized hyaluronic acid hydrogel with potential bacterial inhibition. Glob. Chall. 2020, 4, 1900068. doi: 10.1002/gch2.201900068
Silvestro, I.; Lopreiato, M.; Scotto d'Abusco, A.; di Lisio, V.; Martinelli, A.; Piozzi, A.; Francolini, I. Hyaluronic acid reduces bacterial fouling and promotes fibroblasts' adhesion onto chitosan 2D-wound dressings. Int. J. Mol. Sci. 2020, 21, 2070. doi: 10.3390/ijms21062070
Zhang, L.; Yan, P.; Li, Y.; He, X.; Dai, Y.; Tan, Z. Preparation and antibacterial activity of a cellulose-based schiff base derived from dialdehyde cellulose and L-lysine. Ind. Crops Prod. 2020, 145, 112126. doi: 10.1016/j.indcrop.2020.112126
He, X.; Yang, Y.; Song, H.; Wang, S.; Zhao, H.; Wei, D. Polyanionic composite membranes based on bacterial cellulose and amino acid for antimicrobial application. ACS Appl. Mater. Interfaces 2020, 12, 14784−14796. doi: 10.1021/acsami.9b20733
He, W.; Zhang, Z.; Zheng, Y.; Qiao, S.; Xie, Y.; Sun, Y.; Qiao, K.; Feng, Z.; Wang, X.; Wang, J. Preparation of aminoalkyl-grafted bacterial cellulose membranes with improved antimicrobial properties for biomedical applications. J. Biomed. Mater. Res. A 2020, 108, 1086−1098. doi: 10.1002/jbm.a.36884
Wu, Y.; Li, Q.; Zhang, X.; Li, Y.; Li, B.; Liu, S. Cellulose-based peptidopolysaccharides as cationic antimicrobial package films. Int. J. Biol. Macromol. 2019, 128, 673−680. doi: 10.1016/j.ijbiomac.2019.01.172
Palanisamy, S.; Vinosha, M.; Marudhupandi, T.; Rajasekar, P.; Prabhu, N. M. In vitro antioxidant and antibacterial activity of sulfated polysaccharides isolated from Spatoglossum asperum. Carbohydr. Polym. 2017, 170, 296−304. doi: 10.1016/j.carbpol.2017.04.085
Zhu, H.; Sheng, K.; Yan, E.; Qiao, J.; Lv, F. Extraction, purification and antibacterial activities of a polysaccharide from spent mushroom substrate. Int. J. Biol. Macromol. 2012, 50, 840−843. doi: 10.1016/j.ijbiomac.2011.11.016
Meng, Q.; Li, Y.; Xiao, T.; Zhang, L.; Xu, D. Antioxidant and antibacterial activities of polysaccharides isolated and purified from Diaphragma juglandis fructus. Int. J. Biol. Macromol. 2017, 105, 431−437. doi: 10.1016/j.ijbiomac.2017.07.062
Ma, Y. L.; Zhu, D. Y.; Thakur, K.; Wang, C. H.; Wang, H.; Ren, Y. F.; Zhang, J. G.; Wei, Z. J. Antioxidant and antibacterial evaluation of polysaccharides sequentially extracted from onion (Allium cepa L.). Int. J. Biol. Macromol. 2018, 111, 92−101. doi: 10.1016/j.ijbiomac.2017.12.154
Li, X. L.; Thakur, K.; Zhang, Y. Y.; Tu, X. F.; Zhang, Y. S.; Zhu, D. Y.; Zhang, J. G.; Wei, Z. J. Effects of different chemical modifications on the antibacterial activities of polysaccharides sequentially extracted from peony seed dreg. Int. J. Biol. Macromol. 2018, 116, 664−675. doi: 10.1016/j.ijbiomac.2018.05.082
Wang, Z.; Xue, R.; Cui, J.; Wang, J.; Fan, W.; Zhang, H.; Zhan, X. Antibacterial activity of a polysaccharide produced from Chaetomium globosum CGMCC 6882. Int. J. Biol. Macromol. 2019, 125, 376−382. doi: 10.1016/j.ijbiomac.2018.11.248
Wang, H. B. Cellulase-assisted extraction and antibacterial activity of polysaccharides from the dandelion Taraxacum officinale. Carbohydr. Polym. 2014, 103, 140−142. doi: 10.1016/j.carbpol.2013.12.029
Lu, H.; Gao, Y.; Shan, H.; Lin, Y. Preparation and antibacterial activity studies of degraded polysaccharide selenide from Enteromorpha prolifera. Carbohydr. Polym. 2014, 107, 98−102. doi: 10.1016/j.carbpol.2014.02.045
Vishwakarma, J.; Vavilala, S. L. Evaluating the antibacterial and antibiofilm potential of sulphated polysaccharides extracted from green algae Chlamydomonas reinhardtii. J. Appl. Microbiol. 2019, 127, 1004−1017. doi: 10.1111/jam.14364
Khlusov, I.; Avdeeva, E.; Shupletsova, V.; Khaziakhmatova, O.; Litvinova, L.; Porokhova, E.; Reshetov, Y.; Zvereva, I.; Mushtovatova, L.; Karpova, M.; Guryev, A.; Sukhodolo, I.; Belousov, M. Comparative in vitro evaluation of antibacterial and osteogenic activity of polysaccharide and flavonoid fractions isolated from the leaves of Saussurea controversa. Molecules 2019, 24, 3680. doi: 10.3390/molecules24203680
Hajji, M.; Hamdi, M.; Sellimi, S.; Ksouda, G.; Laouer, H.; Li, S.; Nasri, M. Structural characterization, antioxidant and antibacterial activities of a novel polysaccharide from Periploca laevigata root barks. Carbohydr. Polym. 2019, 206, 380−388. doi: 10.1016/j.carbpol.2018.11.020
Wang, C.; Sun, Z.; Liu, Y.; Zheng, D.; Liu, X.; Li, S. Earthworm polysaccharide and its antibacterial function on plant-pathogen microbes in vitro. Eur. J. Soil Biol. 2007, 43, S135−S142. doi: 10.1016/j.ejsobi.2007.08.035
Feng-bo Zhu , Hai-chao Yu , Wen-xi Lei , Ke-feng Ren , Jin Qian , Zi-liang Wu , Qiang Zheng . Tough Polyion Complex Hydrogel Films of Natural Polysaccharides. Chinese J. Polym. Sci, 2017, 35(10): 1276-1285. doi: 10.1007/s10118-017-1977-7
Maryam Bazhban , Mahdi Nouri , Javad Mokhtari . ELECTROSPINNING OF CYCLODEXTRIN FUNCTIONALIZED CHITOSAN/PVA NANOFIBERS AS A DRUG DELIVERY SYSTEM. Chinese J. Polym. Sci, 2013, 31(10): 1343-1351. doi: 10.1007/s10118-013-1309-5
Hua-jie Li , Zhong Yu , Shuang-ping Wang , Li-ming Zhang , Li-qun Yang . Protection of Photoactivity of Photosensitizers by Amphiphilic Polysaccharide Micelles. Chinese J. Polym. Sci, 2014, 32(10): 1413-1418. doi: 10.1007/s10118-014-1517-7
Cheng-zhen Geng , Xin Hu , Guang-hui Yang , Qin Zhang , Feng Chen , Qiang Fu . Mechanically Reinforced Chitosan/Cellulose Nanocrystals Composites with Good Transparency and Biocompatibility. Chinese J. Polym. Sci, 2015, 33(1): 61-69. doi: 10.1007/s10118-015-1558-6
Xu-feng Niu , Feng Tian , Li-zhen Wang , Xiao-ming Li , Gang Zhou , Yu-bo Fan . Synthesis and Characterization of Chitosan-graft-Poly(lactic acid) Copolymer. Chinese J. Polym. Sci, 2014, 32(1): 43-50. doi: 10.1007/s10118-014-1369-1
Hossein Ghasemzadeh , Mahdieh Sheikhahmadi , Fatemeh Nasrollah . Full Polysaccharide Crosslinked-chitosan and Silver Nano Composites, for Use as an Antibacterial Membrane. Chinese J. Polym. Sci, 2016, 34(8): 949-964. doi: 10.1007/s10118-016-1807-3
Meng-tan Cai , Jia-xing Zhang , Yuan-wei Chen , Jun Cao , Meng-tian Leng , Shao-dong Hu , Xiang-lin Luo . Preparation and Characterization of Chitosan Composite Membranes Crosslinked by Carboxyl-capped Poly(ethylene glycol). Chinese J. Polym. Sci, 2014, 32(2): 236-244. doi: 10.1007/s10118-014-1373-5
Sha-sheng Wang , Ying-qi Shu , Ben-liang Liang , Long-cheng Gao , Min Gao , Peng-gang Yin , Lin Guo . Nacre-inspired Green Artificial Bionanocomposite Films from the Layer-by-Layer Assembly of Montmorillonite and Chitosan. Chinese J. Polym. Sci, 2014, 32(6): 675-680. doi: 10.1007/s10118-014-1455-4
Gabriela Jandíková , Petra Stoplova , Antonio Di Martino , Petr Stloukal , Pavel Kucharczyk , Michal Machovsky , Vladimir Sedlarik . Effect of a Hybrid Zinc Stearate-Silver System on the Properties of Polylactide and Its Abiotic and the Biotic Degradation and Antimicrobial Activity Thereof. Chinese J. Polym. Sci, 2018, 36(8): 925-933. doi: 10.1007/s10118-018-2120-0
Liu Ya-lan , Wang Zheng-ke , Qin Wei , Hu Qiao-ling , Tang Ben Zhong . Fluorescent Detection of Cu(Ⅱ) by Chitosan-based AIE Bioconjugate. Chinese J. Polym. Sci, 2017, 35(3): 365-371. doi: 10.1007/s10118-017-1876-y
Jia-han Ke , Zheng-ke Wang , Yin-zhe Lib , Qiao-ling Hu , Jie Feng . FERROFERRIC OXIDE/CHITOSAN SCAFFOLDS WITH THREE-DIMENSIONAL ORIENTED STRUCTURE. Chinese J. Polym. Sci, 2012, 30(3): 436-442. doi: 10.1007/s10118-012-1133-3
Neama A. Reiad , Omar E. Abdel Salam , Ehab F. Abadir , Farid A. Harraz . GREEN SYNTHESIS OF ANTIBACTERIAL CHITOSAN FILMS LOADED WITH SILVER NANOPARTICLES. Chinese J. Polym. Sci, 2013, 31(7): 984-993. doi: 10.1007/s10118-013-1263-2
Ahmed Abed , Nabil Bouazizi , Stéphane Giraud , Ahmida El Achari , Christine Campagne , Olivier Thoumire , Reddad El Moznine , Omar Cherkaoui , Julien Vieillard , Abdelkrim Azzouz . Polyester-supported Chitosan-Poly(vinylidene fluoride)-Inorganic-Oxide-Nanoparticles Composites with Improved Flame Retardancy and Thermal Stability. Chinese J. Polym. Sci, 2020, 38(1): 84-91. doi: 10.1007/s10118-020-2336-7
Yi-Jie Zou , Shi-Sheng He , Jian-Zhong Du . ε-Poly(L-lysine)-based Hydrogels with Fast-acting and Prolonged Antibacterial Activities. Chinese J. Polym. Sci, 2018, 36(11): 1239-1250. doi: 10.1007/s10118-018-2156-1
Ji-Yu Yang , Yu Xia , Jin Zhao , Long-Fei Yi , Yong-Jiao Song , Hong Wu , Shao-Yun Guo , Li-Juan Zhao , Jin-Rong Wu . Flame-retardant and Self-healing Biomass Aerogels Based on Electrostatic Assembly. Chinese J. Polym. Sci, 2020, 38(12): 1294-1304. doi: 10.1007/s10118-020-2444-4
. LYOTROPIC LIQUID CRYSTALLINE BEHAVIOR OF FIVE CHITOSAN DERIVATIVES*. Chinese J. Polym. Sci, 1999, 17(1): 65-70.
Ke-long Huang , Ping Ding , Su-qin Liu , Gui-yin Li , Yan-fei Liu . PREPARATION AND CHARACTERIZATION OF NOVEL CHITOSAN DERIVATIVES: ADSORPTION EQUILIBRIUM OF IRON(Ⅲ) ION. Chinese J. Polym. Sci, 2008, 26(1): 1-11.
Dian-xiang Lu , Xian-tao Wen , Jie Liang , Xing-dong Zhang , Zhong-wei Gu , Yu-jiang Fan . NOVEL pH-SENSITIVE DRUG DELIVERY SYSTEM BASED ON NATURAL POLYSACCHARIDE FOR DOXORUBICIN RELEASE. Chinese J. Polym. Sci, 2008, 26(3): 369-374.
CHEN Lei , MA Wenyi , YU Xuehai , YANG Changzheng . SYNTHESES AND ANTIMICROBIAL ACTIVITY OF NOVEL POLYURETHANE IONOMERS. Chinese J. Polym. Sci, 1996, 14(3): 205-210.
Hui-dan Liu , Takahiro Sato . POLYMER COLLOIDS FORMED BY POLYELECTROLYTE COMPLEXATION OF VINYL POLYMERS AND POLYSACCHARIDES IN AQUEOUS SOLUTION. Chinese J. Polym. Sci, 2013, 31(1): 39-49. doi: 10.1007/s10118-013-1212-0