Citation: Yu, C. Y.; Mu, J. H.; Fu, Y. L.; Zhang, Y. C.; Han, J. S.; Zhao, R. Y.; Zhao, J.; Wang, Z. H.; Zhao, Z. C.; Li, W. J.; Liu, F. S. Azobenzene based photo-responsive mechanical actuator fabricated by intermolecular H-bond interaction. Chinese J. Polym. Sci. 2021, 39, 417–424 doi: 10.1007/s10118-021-2504-4 shu

Azobenzene Based Photo-responsive Mechanical Actuator Fabricated by Intermolecular H-bond Interaction

Figures(7)

  • Photo-responsive mechanical actuator is a class of stimuli-responsive materials transferring light to mechanical energy through macroscopic transformation. To fabricate photo-responsive mechanical actuator, soft polymeric materials crosslinked with functional bridging structures are desired. Supramolecular interaction is a relatively common way to fabricate crosslinked materials due to its excellent self-assembly performance. And azobenzene and derivatives are ideal candidates of photo-responsive materials because of the unique photo-induced trans-cis isomerization. Here, a new kind of crosslinked materials based on supramolecular interaction between 4,4'-dihydroxyazobenzene and chitosan is reported. Under 355 nm irradiation, the macroscopic bending of polymeric materials occurs rapidly due to the photo-isomerization of 4,4'-dihydroxyazobenzene. Meanwhile, the photo-responsive mechanical actuator can also lift weight which is up to 200 times that of the actuator itself, and convert energy from light to mechanical work efficiently. This report suggests a new kind of photo-responsive actuator based on supramolecular interaction and may be helpful to contribute a theoretical basis to the design and synthesis of photo-responsive mechanical actuator suitable for large-scale manufacturing industrialization in future.
  • 加载中
    1. [1]

      Hirokawa, N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 1998, 279, 519−526. doi: 10.1126/science.279.5350.519

    2. [2]

      Vale, R.; Milligan, R. The way things move: looking under the hood of molecular motor proteins. Science 2000, 288, 88−95. doi: 10.1126/science.288.5463.88

    3. [3]

      Majidi, C. Soft robotics: a perspective-current trends and prospects for the future. Soft Robot 2014, 1, 5−11. doi: 10.1089/soro.2013.0001

    4. [4]

      Yamauchi, K.; Takashima, Y.; Hashidzume, A.; Yamaguchi, H.; Harada, A. Switching between supramolecular dimer and nonthreaded supramolecular self-assembly of stilbene amide-α-cyclodextrin by photoirradiation. J. Am. Chem. Soc. 2008, 130, 5024−5025. doi: 10.1021/ja7113135

    5. [5]

      Tsuda, S.; Aso, Y.; Kaneda, T. Linear oligomers composed of a photochromically contractible and extendable Janus [2]rotaxane. Chem. Commun. 2006, 29, 3072−3074.

    6. [6]

      Liu, Y. Y.; Wu, W.; Wei, J.; Yu, Y. L. Visible light responsive liquid crystal polymers containing reactive moieties with good processability. ACS Appl. Mater. Interfaces 2017, 9, 782−789. doi: 10.1021/acsami.6b11550

    7. [7]

      Stoychev, G.; Kirillova, A. Light-responsive shape-changing polymers. Adv. Opt. Mater. 2019, 7, 1−30.

    8. [8]

      Liu, J. Q.; Li, A. H.; Tang, J. G.; Wang, R.; Kong, N.; Davis, T. Thermoresponsive silver/polymer nanohybrids with switchable metal enhanced fluorescence. Chem. Commun. 2012, 48, 4680−4682. doi: 10.1039/c2cc18069c

    9. [9]

      Yoshida, R.; Uchida, K.; Kaneko, Y.; Sakai, K.; Kikuchi, A.; Sakurai, Y.; Okano, T. Comb-type grafted hydrogels with rapid deswelling response to temperature changes. Nature 1995, 374, 240−242. doi: 10.1038/374240a0

    10. [10]

      Hu, Z. B.; Lu, X. H.; Gao, J. Hydrogel opals. Adv. Mater. 2001, 13, 1708−1712. doi: 10.1002/1521-4095(200111)13:22<1708::AID-ADMA1708>3.0.CO;2-L

    11. [11]

      Bowen, J.; Rose, M.; Konda, A.; Morin, S. Surface molding of microscale hydrogels with microactuation functionality. Angew. Chem. Int. Ed. 2018, 57, 1236−1240. doi: 10.1002/anie.201710612

    12. [12]

      Ma, Y.; Zhang, Y. Y.; Wu, B. S.; Sun, W. P.; Li, Z. G.; Sun, J. Q. Polyelectrolyte multilayer films for building energetic walking devices. Angew. Chem. Int. Ed. 2011, 50, 6254−6257. doi: 10.1002/anie.201101054

    13. [13]

      Chen, P. N.; Xu, Y. F.; He, S. S.; Sun, X. M.; Pan, S. W.; Deng, J.; Chen, D. Y.; Peng, H. S. Hierarchically arranged helical fibre actuators driven by solvents and vapours. Nat. Nanotechnol. 2015, 10, 1077−1083. doi: 10.1038/nnano.2015.198

    14. [14]

      Palleau, E.; Morales, D.; Dickey, M.; Velev, O. Reversible patterning and actuation of hydrogels by electrically assisted ionoprinting. Nat. Commun. 2013, 4, 2257. doi: 10.1038/ncomms3257

    15. [15]

      Must, I.; Kaasik, F.; Poldsalu, I.; Mihkels, L.; Johanson, U.; Punning, A.; Aabloo, A. Ionic and capacitive artificial muscle for biomimetic soft robotics. Adv. Eng. Mater. 2015, 17, 84−94. doi: 10.1002/adem.201400246

    16. [16]

      Wu, J.; Leung, K.; Benitez, D.; Han, J.; Cantrill, S.; Fang, L.; Stoddart, J. An acid-base-controllable [c2]daisy chain. Angew. Chem. Int. Ed. 2008, 47, 7470−744. doi: 10.1002/anie.200803036

    17. [17]

      Coutrot, F.; Romuald, C.; Busseron, E. A new pH-switchable dimannosyl[c2]daisy chain molecular machine. Org. Lett. 2008, 10, 3741−3744. doi: 10.1021/ol801390h

    18. [18]

      Bruns, C.; Frasconi, M.; Iehl, J.; Hartlieb, K.; Schneebeli, S.; Cheng, C.; Stupp, S.; Stoddart, J. Redox switchable daisy chain rotaxanes driven by radical-radical interactions. J. Am. Chem. Soc. 2014, 136, 4714−4723. doi: 10.1021/ja500675y

    19. [19]

      Bruns, C.; Li, J.; Frasconi, M. An electrochemically and thermally switchable donor-acceptor[c2]daisy chain rotaxane. Angew. Chem. Int. Ed. 2014, 53, 1953−1958. doi: 10.1002/anie.201308498

    20. [20]

      Stoychev, G.; Kirillova, A.; Ionov, L. Light-responsive shape-changing polymers. Adv. Optical. Mater. 2019, 7, 1−30.

    21. [21]

      Jiang, H.; Kelch, S.; Lendlein, A. Polymers move in response to light. Adv. Mater. 2006, 18, 1471−1475. doi: 10.1002/adma.200502266

    22. [22]

      Habault, D.; Zhang, H.; Zhao, Y. Light-triggered self-healing and shape-memory polymers. Chem. Soc. Rev. 2013, 42, 7244−7256. doi: 10.1039/c3cs35489j

    23. [23]

      Han, D.; Zhang, Y.; Ma, J.; Liu, Y.; Han, B.; Sun, H. Light-mediated manufacture and manipulation of actuators. Adv. Mater. 2016, 28, 8328−8343. doi: 10.1002/adma.201602211

    24. [24]

      Bushuyev, O.; Aizawa, M.; Shishido, A.; Barrett, C. Shape-shifting azo dye polymers: towards sunlight-driven molecular devices. Macromol. Rapid Commun. 2018, 39, 1700253. doi: 10.1002/marc.201700253

    25. [25]

      Jochum, F.; Theato, P. Temperature-and light-responsive smart polymer materials. Chem. Soc. Rev. 2013, 42, 7468−7483. doi: 10.1039/C2CS35191A

    26. [26]

      Natansohn, A.; Rochon, P. Photoinduced motions in azo-containing polymers. Chem. Rev. 2002, 102, 4139−4176. doi: 10.1021/cr970155y

    27. [27]

      Wei, J.; Yu, Y. L. Photodeformable polymer gels and crosslinked liquid-crystalline polymers. Soft Matter 2012, 8, 8050−8059. doi: 10.1039/c2sm25474c

    28. [28]

      Liu, D.; Broer, D. Self-assembled dynamic 3D fingerprints in liquid-crystal coatings towards controllable friction and adhesion. Angew. Chem. Int. Ed. 2014, 53, 4542−4546. doi: 10.1002/anie.201400370

    29. [29]

      Zhao, R. Y.; Zhan, X. P.; Yao, L.; Chen, Q. D.; Xie, Z. Q.; Ma, Y. G. Electrochemical deposition of azobenzene-containing network films with high-contrast and stable photoresponse. Macromol. Rapid Commun. 2016, 37, 610−615. doi: 10.1002/marc.201500646

    30. [30]

      Zhao, R. Y.; Zhan, X. P.; Yao, J.; Sun, G. N.; Chen, Q. D.; Xie, Z. Q.; Ma, Y. G. Reversible photo-controlled mass transfer in a photo-responsive conjugated main-chain polymer film for high contrast surface patterning. Polym. Chem. 2013, 4, 5382−5386. doi: 10.1039/c3py00770g

    31. [31]

      Yu, Y. L.; Nakano, M.; Ikeda, T. Photomechanics: directed bending of a polymer film by light. Nature 2003, 425, 145−145. doi: 10.1038/425145a

    32. [32]

      Lopez, M.; Finkelmann, H.; Muhoray, P.; Shelley, M. Fast liquid-crystal elastomer swims into the dark. Nat. Mater. 2004, 3, 307−310. doi: 10.1038/nmat1118

    33. [33]

      Zeng, H.; Wasylczyk, P.; Parmeggiani, C.; Martella, D.; Burresi, M.; Wiersma, D. Light-fueled microscopic walkers. Adv. Mater. 2015, 27, 3883−3887. doi: 10.1002/adma.201501446

    34. [34]

      Ichimura, K.; Oh, S.; Nakagawa, M. Light-driven motion of liquids on a photoresponsive surface. Science 2000, 288, 1624−1626. doi: 10.1126/science.288.5471.1624

    35. [35]

      Yu, H.; Ikeda, T. Photocontrollable liquid-crystalline actuators. Adv. Mater. 2011, 23, 2149−2180. doi: 10.1002/adma.201100131

    36. [36]

      Qin, C.; Feng, Y.; Luo, W.; Cao, C.; Hu, W.; Feng, W. A supramolecular assembly of cross-linked azobenzene/polymers for a high-performance light-driven actuator. J. Mater. Chem. A 2015, 3, 16453−16460. doi: 10.1039/C5TA01543J

    37. [37]

      Ikejiri, S.; Takashima, Y.; Osaki, M.; Yamaguchi, H.; Harada, A. Solvent-free photoresponsive artificial muscles rapidly driven by molecular machines. J. Am. Chem. Soc. 2018, 140, 17308−17315. doi: 10.1021/jacs.8b11351

    38. [38]

      Takashima, Y.; Hayashi, Y.; Osaki, M.; Kaneko, F.; Yamaguchi, H.; Harada, A. A photoresponsive polymeric actuator topologically cross-linked by movable units based on a [2]rotaxane. Macromolecules 2018, 51, 4688−4693. doi: 10.1021/acs.macromol.8b00939

    39. [39]

      Mauro, M. Gel-based soft actuators driven by light. J. Mater. Chem. B 2019, 7, 4234−4242. doi: 10.1039/C8TB01893F

    40. [40]

      Iwaso, K.; Takashima, Y.; Harada, A. Fast response dry-type artificial molecular muscles with [c2]daisy chains. Nat. Chem. 2016, 8, 625−632. doi: 10.1038/nchem.2513

    41. [41]

      Iamsaard, S.; Abhoff, S.; Matt, B.; Kudernac, T.; Cornelissen, J.; Fletcher, S.; Katsonis, N. Conversion of light into macroscopic helical motion. Nat. Chem. 2014, 6, 229−235. doi: 10.1038/nchem.1859

    42. [42]

      Qin, C. Q.; Feng, Y. Y.; Luo, W.; Cao, C.; Hu, W. P.; Feng, W. A supramolecular assembly of cross-linked azobenzene/polymers for a high-performance light-driven actuator. J. Mater. Chem. A 2015, 3, 16453−16460. doi: 10.1039/C5TA01543J

    43. [43]

      Ma, S. D.; Li, X.; Huang, S.; Hu, J.; Yu, H. F. A Light-activated polymer composite enables on-demand photocontrol of biomimetic swimming towards transportation at liquid/air interface. Angew. Chem. Int. Ed. 2019, 58, 2655−2659. doi: 10.1002/anie.201811808

    44. [44]

      Cheng, Z. X.; Wang, T. J.; Li, X.; Zhang, Y. H.; Yu, H. F. NIR-Vis-UV light-responsive actuator films of polymer-dispersed liquid crystal/graphene oxide nanocomposites. ACS Appl. Mater. Interfaces 2015, 7, 27494−27501. doi: 10.1021/acsami.5b09676

    45. [45]

      Lv, J. A.; Wang, W.; Wu, W.; Yu, Y. L. A reactive azobenzene liquid-crystalline block copolymer as a promising material for practical application of light-driven soft actuators. J. Mater. Chem. C 2015, 3, 6621−6626. doi: 10.1039/C5TC00595G

    46. [46]

      Pang, X. L.; Xu, B.; Qing, X.; Wei, J.; Yu, Y. L. Photo-induced bending behavior of post-crosslinked liquid crystalline polymer/polyurethane blend films. Macromol. Rapid Commun. 2018, 39, 1700237. doi: 10.1002/marc.201700237

    47. [47]

      Petr, M.; Katzman, B.; DiNatale, W.; Hammond, P. Synthesis of a new, low-Tg siloxane thermoplastic elastomer with a functionalizable backbone and its use as a rapid room temperature photoactuator. Macromolecules 2013, 46, 2823−2832. doi: 10.1021/ma400031z

    48. [48]

      Lahikainen, M.; Zeng, H.; Priimagi, A. Reconfigurable photoactuator through synergistic use of photochemical and photothermal effects. Nat. Commun. 2018, 9, 1. doi: 10.1038/s41467-017-02088-w

    49. [49]

      Lu, X. L.; Zhang, H.; Fei, G. X.; Yu, B.; Tong, X.; Xia, H. S.; Zhao, Y. Liquid-crystalline dynamic networks doped with gold nanorods showing enhanced photocontrol of actuation. Adv. Mater. 2018, 30, 1706597. doi: 10.1002/adma.201706597

    50. [50]

      Xiao, R. Q.; Zhou, L. P.; Dong, Z. Y.; Gao, Y. Z.; Liu, J. Q. A photo-responsive catalytic vesicle with GPx activity. Chinese J. Chem. 2014, 32, 37−43. doi: 10.1002/cjoc.201300695

    51. [51]

      Babu, R. R.; Kumaresan, S.; Vijayan, N.; Gunasekaran, M.; Gopalakrishnan, R.; Kannan, P.; Ramasamy, P. Growth of 4,4'-dihydroxyazobenzene (DHAB) and its characterization. J. Cryst. Growth 2003, 256, 387−392. doi: 10.1016/S0022-0248(03)01369-1

  • 加载中
    1. [1]

      Zhen WangShenglong LiaoYapei Wang . Supramolecular Polymer Emulsifiers for One-step Complex Emulsions. Chinese J. Polym. Sci, 2018, 36(3): 288-296. doi: 10.1007/s10118-018-2084-0

    2. [2]

      Serife O. Hacioglu . Copolymerization of Azobenzene-bearing Monomer and 3,4-Ethylenedioxythiophene (EDOT): Improved Electrochemical Performance for Electrochromic Device Applications. Chinese J. Polym. Sci, 2020, 38(2): 109-117. doi: 10.1007/s10118-019-2306-0

    3. [3]

      Yi-Jun LiuDong LiuSi-Han LiHua-Qing LiangFang-Ming Zhu . Investigation on Viscoelasticity of Waterborne Polyurethane with Azobenzene-containing Pendant Groups under Ultraviolet and Visible-light Irradiation. Chinese J. Polym. Sci, 2019, 37(12): 1267-1272. doi: 10.1007/s10118-019-2289-x

    4. [4]

      Shuo-Feng LiangChen NieJie YanQi-Jin ZhangSi Wu . Photoinduced Reversible Solid-to-Liquid Transitions and Directional Photofluidization of Azobenzene-containing Polymers. Chinese J. Polym. Sci, 2020, 38(): 1-10. doi: 10.1007/s10118-021-2519-x

    5. [5]

      Xin-Lei ZhangLei WangLiang ChenXiao-Yu MaHang-Xun Xu . Ultrathin 2D Conjugated Polymer Nanosheets for Solar Fuel Generation. Chinese J. Polym. Sci, 2019, 37(2): 101-114. doi: 10.1007/s10118-019-2171-x

    6. [6]

      Guan-Hang YuQing HanLiang-Ti Qu . Graphene Fibers: Advancing Applications in Sensor, Energy Storage and Conversion. Chinese J. Polym. Sci, 2019, 37(6): 535-547. doi: 10.1007/s10118-019-2245-9

    7. [7]

      . OPTICAL PHASE CONJUGATION RESPONSE OF PHOTOINDUCED POLYMER FILMS CONTAINING AZOBENZENE MOIETIES WITH CHIRAL GROUP*. Chinese J. Polym. Sci, 2002, 20(2): 99-104.

    8. [8]

      Zheng-Zheng WangHui-Qi Zhang . Synthesis of an Azobenzene-containing Main-chain Crystalline Polymer and Photodeformation Behaviors of Its Supramolecular Hydrogen-bonded Fibers. Chinese J. Polym. Sci, 2020, 38(1): 37-44. doi: 10.1007/s10118-019-2302-4

    9. [9]

      DING JianfuXUE GiCHENG Rongshi . DYNAMIC MECHANICAL RESPONSE OF CRAZES IN POLYSTYRENE*. Chinese J. Polym. Sci, 1994, 12(3): 266-277.

    10. [10]

      Jian WangJian-hui SongYu-yuan LuYong-jin RuanLi-jia An . Phase Behavior and Interfacial Properties of Diblock CopolymerHomopolymer Ternary Mixtures: Influence of Volume Fraction of Copolymers and Interaction Energy. Chinese J. Polym. Sci, 2017, 35(7): 874-886. doi: 10.1007/s10118-017-1915-8

    11. [11]

      LI TongLUO BinLI ShanjunCHU Guobei . CHARGE-TRANSFER AND ENERGY-TRANSFER IN THE PHOTO-INDUCED COPOLYMERIZATION OF 2-VINYLNAPHTHALENE WITH MALEIC ANHYDRIDE*. Chinese J. Polym. Sci, 1990, 8(2): 170-176.

    12. [12]

      Sheng WangZheng-Hai TangJing HuangBao-Chun Guo . Effects of Binding Energy of Bioinspired Sacrificial Bond on Mechanical Performance of cis-1,4-Polyisoprene with Dual-crosslink. Chinese J. Polym. Sci, 2018, 36(9): 1055-1062. doi: 10.1007/s10118-018-2131-x

    13. [13]

      LUO XiaolieZHENG SixunMA DezhuHU Keliang . MECHANICAL RELAXATION AND INTERMOLECULAR INTERACTION IN EPOXY RESINS/POLY (ETHYLENE OXIDE) BLENDS CURED WITH PHTHALIC ANHYDRIDE*. Chinese J. Polym. Sci, 1995, 13(2): 144-153.

    14. [14]

      . POLYMER SCAFFOLDS BEARING AZOBENZENE-POTENTIAL FOR OPTICAL INFORMATION STORAGE. Chinese J. Polym. Sci, 2001, 19(2): 147-153.

    15. [15]

      . DESIGN AND STUDY OF NEW AZOBENZENE LIQUID CRYSTAL/POLYMER MATERIALS. Chinese J. Polym. Sci, 2003, 21(6): 621-629.

    16. [16]

      ZHANG ShufanXIANG Qian . STUDY ON CHIRAL LIQUID CRYSTALLINE POLYMERS WITH BIPHENYLENE AND AZOBENZENE AS THE MESOGENS. Chinese J. Polym. Sci, 1995, 13(1): 28-34.

    17. [17]

      Jun ShiZhi-wei JiangLi ZhangShao-kui Cao . SYNTHESIS AND CHARACTERIZATION OF POLYMERS BEARING AZOBENZENE AND CARBAZOLE GROUPS VIA POST-AZO-COUPLING REACTION. Chinese J. Polym. Sci, 2005, 23(1): 5-9.

    18. [18]

      . PHOTOINDUCED BIREFRINGENCE AND NUMERICAL SOLUTION OF A NEW DYNAMIC MODEL IN AN AMORPHOUS COPOLYMER CONTAINING AZOBENZENE GROUPS*. Chinese J. Polym. Sci, 2001, 19(3): 255-263.

    19. [19]

      . SYNTHESIS AND PROPERTIES OF A NEW AZOBENZENE SIDE-CHAIN POLYMER CONTAINING A TEMPO RADICAL*. Chinese J. Polym. Sci, 2002, 20(4): 285-290.

    20. [20]

      . PHOTOINDUCED HOLOGRAPHIC PHASE GRATINGS BURIED IN AZOBENZENE SIDE-CHAIN POLYMER FILMS WITH A CHIRAL GROUP. Chinese J. Polym. Sci, 2003, 21(1): 93-98.

Article Metrics
  • PDF Downloads(2)
  • Abstract views(608)
  • HTML views(288)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return