Citation: Zheng, Y.; Zhang, C. L.; Bao, Y. Z.; Shan, G. R.; Pan, P. J. Temperature-dependent crystallization and phase transition of poly(L-lactic acid)/CO2 complex crystals. Chinese J. Polym. Sci. 2021, 39, 484–492 doi: 10.1007/s10118-021-2502-6 shu

Temperature-dependent Crystallization and Phase Transition of Poly(L-lactic acid)/CO2 Complex Crystals

  • Corresponding author: Peng-Ju Pan, E-mail:
  • Received Date: 2020-07-20
    Available Online: 2020-10-10


  • Semicrystalline polymers can crystallize in the unique crystalline polymorph and show different phase behaviors under the high-pressure CO2 treatment. Understanding such unique crystallization and phase transition behavior is of fundamental importance for the CO2-assisited processing of semicrystalline polymers. Herein, we investigated the polymorphic crystalline structure, phase transition, and structure-property relationships of poly(L-lactic acid) (PLLA) treated by CO2 at different pressures (1−13 MPa) and crystallization temperatures (Tc’s, 10−110 °C). PLLA crystallized in the PLLA/CO2 complex crystals under 7−13 MPa CO2 at Tc≤50 °C but the common α crystals under the high-pressure CO2 at Tc≥70 °C. Solid-state nuclear magnetic resonance analysis indicated that the PLLA/CO2 complex crystals possessed weaker interactions between the PLLA chains than the common α crystals. The PLLA/CO2 complex crystals were metastable and transformed into the thermally stable α crystals via the solid-to-solid route during heating or annealing at the temperature above 50 °C. The complex crystals of PLLA produced at low Tc was more ductile than the α crystals due to the lower crystallinity and the plasticizing effect of CO2.
  • 加载中
    1. [1]

      Michalski, A.; Brzezinski, M.; Lapienis, G.; Biela, T. Star-shaped and branched polylactides: synthesis, characterization, and properties. Prog. Polym. Sci. 2019, 89, 159−212. doi: 10.1016/j.progpolymsci.2018.10.004

    2. [2]

      Nofar, M.; Park, C. B. Poly(lactic acid) foaming. Prog. Polym. Sci. 2014, 39, 1721−1741. doi: 10.1016/j.progpolymsci.2014.04.001

    3. [3]

      Pan, P.; Inoue, Y. Polymorphism and isomorphism in biodegradable polyesters. Prog. Polym. Sci. 2009, 34, 605−640. doi: 10.1016/j.progpolymsci.2009.01.003

    4. [4]

      Liu, G. M.; Zhang, X. Q.; Wang, D. J. Tailoring crystallization: towards high-performance poly(lactic acid). Adv. Mater. 2014, 26, 6905−6911. doi: 10.1002/adma.201305413

    5. [5]

      Pan, P.; Han, L.; Shan, G.; Bao, Y. Heating and annealing induced structural reorganization and embrittlement of solution-crystallized poly(L-lactic acid). Macromolecules 2014, 47, 8126−8130. doi: 10.1021/ma501956f

    6. [6]

      Di Lorenzo, M. L.; Androsch, R. Influence of α'-/α-crystal polymorphism on properties of poly(L-lactic acid). Polym. Int. 2019, 68, 320−334. doi: 10.1002/pi.5707

    7. [7]

      Sasaki, S.; Asakura, T. Helix distortion and crystal structure of the α-form of poly(L-lactide). Macromolecules 2003, 36, 8385−8390. doi: 10.1021/ma0348674

    8. [8]

      Zhang, J.; Duan, Y.; Sato, H.; Tsuji, H.; Noda, I.; Yan, S.; Ozaki, Y. Crystal modifications and thermal behavior of poly(L-lactic acid) revealed by infrared spectroscopy. Macromolecules 2005, 38, 8012−8021. doi: 10.1021/ma051232r

    9. [9]

      Pan, P.; Kai, W.; Zhu, B.; Dong, T.; Inoue, Y. Polymorphous crystallization and multiple melting behavior of poly(L-lactide): molecular weight dependence. Macromolecules 2007, 40, 6898−6905. doi: 10.1021/ma071258d

    10. [10]

      Marubayashi, H.; Akaishi, S.; Akasaka, S.; Asai, S.; Sumita, M. Crystalline structure and morphology of poly(L-lactide) formed under high-pressure CO2. Macromolecules 2008, 41, 9192−9203. doi: 10.1021/ma800766h

    11. [11]

      Sawai, D.; Takahashi, K.; Sasashige, A.; Kanamoto, T.; Hyon, S. H. Preparation of oriented β-form poly(L-lactic acid) by solid-state coextrusion: effect of extrusion variables. Macromolecules 2003, 36, 3601−3605. doi: 10.1021/ma030050z

    12. [12]

      Bao, J.; Chang, X.; Xie, Q.; Yu, C.; Shan, G.; Bao, Y.; Pan, P. Preferential formation of β-form crystals and temperature-dependent polymorphic structure in supramolecular poly(L-lactic acid) bonded by multiple hydrogen bonds. Macromolecules 2017, 50, 8619−8630. doi: 10.1021/acs.macromol.7b01705

    13. [13]

      Cartier, L.; Okihara, T.; Ikada, Y.; Tsuji, H.; Puiggali, J.; Lotz, B. Epitaxial crystallization and crystalline polymorphism of polylactides. Polymer 2000, 41, 8909−8919. doi: 10.1016/S0032-3861(00)00234-2

    14. [14]

      Zhang, T.; Hu, J.; Duan, Y.; Pi, F.; Zhang, J. Physical aging enhanced mesomorphic structure in melt-quenched poly(L-lactic acid). J. Phys. Chem. B 2011, 115, 13835−13841. doi: 10.1021/jp2087863

    15. [15]

      Lan, Q.; Li, Y.; Chi, H. Highly enhanced mesophase formation in glassy poly(L-lactide) at low temperatures by low-pressure CO2 that provides moderately increased molecular mobility. Macromolecules 2016, 49, 2262−2271. doi: 10.1021/acs.macromol.6b00044

    16. [16]

      Marubayashi, H.; Asai, S.; Sumita, M. Crystal structures of poly(L-lactide)-CO2 complex and its emptied form. Polymer 2012, 53, 4262−4271. doi: 10.1016/j.polymer.2012.07.044

    17. [17]

      Marubayashi, H.; Asai, S.; Sumita, M. Guest-induced crystal-to-crystal transitions of poly(L-lactide) complexes. J. Phys. Chem. B 2013, 117, 385−97. doi: 10.1021/jp308999t

    18. [18]

      Marubayashi, H.; Asai, S.; Sumita, M. Complex crystal formation of poly(L-lactide) with solvent molecules. Macromolecules 2012, 45, 1384−1397. doi: 10.1021/ma202324g

    19. [19]

      Rizzo, P.; Ianniello, G.; Venditto, V.; Tarallo, O.; Guerra, G. Poly(L-lactic acid): uniplanar orientation in cocrystalline films and structure of the cocrystalline form with cyclopentanone. Macromolecules 2015, 48, 7513−7520. doi: 10.1021/acs.macromol.5b00908

    20. [20]

      Nalawade, S. P.; Picchioni, F.; Janssen, L. P. B. M. Supercritical carbon dioxide as a green solvent for processing polymer melts: Processing aspects and applications. Prog. Polym. Sci. 2006, 31, 19−43. doi: 10.1016/j.progpolymsci.2005.08.002

    21. [21]

      Forest, C.; Chaumont, P.; Cassagnau, P.; Swoboda, B.; Sonntag, P. Polymer nano-foams for insulating applications prepared from CO2 foaming. Prog. Polym. Sci. 2015, 41, 122−145. doi: 10.1016/j.progpolymsci.2014.07.001

    22. [22]

      Ma, W.; Yu, J.; He, J. Direct formation of γ form crystal of syndiotactic polystyrene from amorphous state in supercritical CO2. Macromolecules 2004, 37, 6912−6917. doi: 10.1021/ma0491715

    23. [23]

      Liao, X.; He, J.; Yu, J. Process analysis of phase transformation of α to β-form crystal of syndiotactic polystyrene investigated in supercritical CO2. Polymer 2005, 46, 5789−5796. doi: 10.1016/j.polymer.2005.04.062

    24. [24]

      Ma, W.; Yu, J.; He, J. Empty δ crystal as an intermediate form for the δ to γ transition of syndiotactic polystyrene in supercritical carbon dioxide. Macromolecules 2005, 38, 4755−4760. doi: 10.1021/ma050488u

    25. [25]

      Baseri, S.; Karimi, M.; Morshed, M. Study of structural changes and mesomorphic transitions of oriented poly(ethylene therephthalate) fibers in supercritical CO2. Eur. Polym. J. 2012, 48, 811−820. doi: 10.1016/j.eurpolymj.2012.01.017

    26. [26]

      Li, L.; Liu, T.; Zhao, L.; Yuan, W. K. CO2-induced phase transition of isotactic poly-1-butene with form III upon heating. Macromolecules 2011, 44, 4836−4844. doi: 10.1021/ma200988y

    27. [27]

      Li, L.; Liu, T.; Zhao, L.; Yuan, W. K. CO2-induced crystal phase transition from form II to I in isotactic poly-1-butene. Macromolecules 2009, 42, 2286−2290. doi: 10.1021/ma8025496

    28. [28]

      Shieh, Y. T.; Hsiao, T. T.; Chang, S. K. CO2 pressure effects on melting, crystallization, and morphology of poly(vinylidene fluoride). Polymer 2006, 47, 5929−5937. doi: 10.1016/j.polymer.2006.06.022

    29. [29]

      Zhai, W.; Yu, J.; Ma, W.; He, J. Influence of long-chain branching on the crystallization and melting behavior of polycarbonates in supercritical CO2. Macromolecules 2007, 40, 73−80. doi: 10.1021/ma062181g

    30. [30]

      Lan, Q.; Yu, J.; He, J.; Maurer, F. H. J.; Zhang, J. Thermal behavior of poly(L-lactide) Having low L-isomer content of 94% after compressed CO2 treatment. Macromolecules 2010, 43, 8602−8609. doi: 10.1021/ma101473r

    31. [31]

      Lan, Q.; Li, Y. Mesophase-mediated crystallization of poly(L-lactide): deterministic pathways to nanostructured morphology and superstructure control. Macromolecules 2016, 49, 7387−7399. doi: 10.1021/acs.macromol.6b01442

    32. [32]

      Li, S.; Chen, T.; Liao, X.; Han, W.; Yan, Z.; Li, J.; Li, G. Effect of macromolecular chain movement and the interchain interaction on crystalline nucleation and spherulite growth of polylactic acid under high-pressure CO2. Macromolecules 2020, 53, 312−322. doi: 10.1021/acs.macromol.9b01601

    33. [33]

      Mi, Y.; Zheng, S. A new study of glass transition of polymers by high pressure DSC. Polymer 1998, 39, 3709−3712. doi: 10.1016/S0032-3861(97)10357-3

    34. [34]

      Takada, M.; Hasegawa, S.; Ohshima, M. Crystallization kinetics of poly(L-lactide) in contact with pressurized CO2. Polym. Eng. Sci. 2004, 44, 186−196. doi: 10.1002/pen.20017

    35. [35]

      Hirota, S. I.; Sato, T.; Tominaga, Y.; Asai, S.; Sumita, M. The effect of high-pressure carbon dioxide treatment on the crystallization behavior and mechanical properties of poly(L-lactic acid)/poly(methyl methacrylate) blends. Polymer 2006, 47, 3954−3960. doi: 10.1016/j.polymer.2006.03.069

    36. [36]

      Ho, R. M.; Lin, C. P.; Tsai, H. Y.; Woo, E. M. Metastability studies of syndiotactic polystyrene polymorphism. Macromolecules 2000, 33, 6517−6526. doi: 10.1021/ma000666d

    37. [37]

      Woo, E. M.; Sun, Y. S.; Yang, C. P. Polymorphism, thermal behavior, and crystal stability in syndiotactic polystyrene vs its miscible blends. Prog. Polym. Sci. 2001, 26, 945−983. doi: 10.1016/S0079-6700(01)00010-7

    38. [38]

      Pan, P.; Zhu, B.; Inoue, Y. Enthalpy relaxation and embrittlement of poly(L-lactide) during physical aging. Macromolecules 2007, 40, 9664−9671. doi: 10.1021/ma071737c

    39. [39]

      Fischer, E. W.; Sterzel, H. J.; Wegner, G. Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Kolloid Z. Z. Polym. 1973, 251, 980−990. doi: 10.1007/BF01498927

    40. [40]

      Kazarian, S. G.; Vincent, M. F.; Bright, F. V.; Liotta, C. L.; Eckert, C. A. Specific intermolecular interaction of carbon dioxide with polymers. J. Am. Chem. Soc. 1996, 118, 1729−1736. doi: 10.1021/ja950416q

    41. [41]

      Pan, P.; Yang, J.; Shan, G.; Bao, Y.; Weng, Z.; Cao, A.; Yazawa, K.; Inoue, Y. Temperature-variable FTIR and solid-state 13C NMR investigations on crystalline structure and molecular dynamics of polymorphic poly(L-lactide) and poly(L-lactide)/poly(D-lactide) stereocomplex. Macromolecules 2012, 45, 189−197. doi: 10.1021/ma201906a

    42. [42]

      Tsuji, H.; Kamo, S.; Horii, F. Solid-state 13C NMR analyses of the structures of crystallized and quenched poly(lactide)s: effects of crystallinity, water absorption, hydrolytic degradation, and tacticity. Polymer 2010, 51, 2215−2220. doi: 10.1016/j.polymer.2010.03.017

    43. [43]

      Hu, J.; Han, L. L.; Zhang, T. P.; Duan, Y. X.; Zhang, J. M. Study on phase transformation behavior of strain-induced PLLA mesophase by polarized infrared spectroscopy. Chinese J. Polym. Sci. 2019, 37, 253−257. doi: 10.1007/s10118-019-2184-5

    44. [44]

      Cocca, M.; Lorenzo, M. L. D.; Malinconico, M.; Frezza, V. Influence of crystal polymorphism on mechanical and barrier properties of poly(L-lactic acid). Eur. Polym. J. 2011, 47, 1073−1080. doi: 10.1016/j.eurpolymj.2011.02.009

    45. [45]

      Tsuji, H.; Ikada, Y. Properties and morphologies of poly(L-lactide): 1. Annealing condition effects on properties and morphologies of poly(L-lactide). Polymer 1995, 36, 2709−2716.

  • 加载中
    1. [1]

      Zhang Li-qinChen Li-wenZhong MingShi Fu-kuanLiu Xiao-yingXie Xu-ming . Phase Transition Temperature Controllable Poly(acrylamide-co-acrylic acid) Nanocomposite Physical Hydrogels with High Strength. Chinese J. Polym. Sci, 2016, 34(10): 1261-1269. doi: 10.1007/s10118-016-1848-7

    2. [2]

      Xu-feng NiuFeng TianLi-zhen WangXiao-ming LiGang ZhouYu-bo Fan . Synthesis and Characterization of Chitosan-graft-Poly(lactic acid) Copolymer. Chinese J. Polym. Sci, 2014, 32(1): 43-50. doi: 10.1007/s10118-014-1369-1

    3. [3]

      Zhuo-li LinJun LuoZheng-jian ChenJun YiHong-liang JiangKe-hua TuLi-qun Wang . A MONTE CARLO SIMULATION STUDY OF THE EFFECT OF CHAIN LENGTH ON THE HYDROLYSIS OF POLY(LACTIC ACID). Chinese J. Polym. Sci, 2013, 31(11): 1554-1562. doi: 10.1007/s10118-013-1353-1

    4. [4]

      Ying LuYing-ying SunRan ChenXiu-hong LiYong-feng Men . Deformation Temperature and Lamellar Thickness Dependency of Form Ⅰ to Form Ⅲ Phase Transition in Syndiotactic Polypropylene during Tensile Stretching. Chinese J. Polym. Sci, 2014, 32(9): 1210-1217. doi: 10.1007/s10118-014-1494-x

    5. [5]

      Yi-Ran ZhengJie ZhangXiao-Li SunHui-Hui LiZhong-Jie RenShou-Ke Yan . Enhanced αγ' Transition of Poly(vinylidene fluoride) by Step Crystallization and Subsequent Annealing. Chinese J. Polym. Sci, 2018, 36(5): 598-603. doi: 10.1007/s10118-018-2040-z

    6. [6]

      Xiu-li ZhuangHai-yang YuZhao-hui TangKenichi OyaizuHiroyuki NishideXue-si Chen . POLYMERIZATION OF LACTIC O-CARBOXYLIC ANHYDRIDE USING ORGANOMETALLIC CATALYSTS. Chinese J. Polym. Sci, 2011, 29(2): 197-202. doi: 10.1007/s10118-010-1013-7

    7. [7]

      Hong-wei QinHua-ji LiuYu Chen . Influence of Aliphatic Amide Terminals on the Thermoresponsive Properties of Hyperbranched Polyethylenimines. Chinese J. Polym. Sci, 2014, 32(10): 1338-1347. doi: 10.1007/s10118-014-1509-7

    8. [8]

      Hua-ji LiuRun-hua DongYu Chen . Preparation and Characterization of Thermoresponsive Hyperbranched Polyethylenimine with Plenty of Reactive Primary Amine Groups. Chinese J. Polym. Sci, 2014, 32(7): 961-968. doi: 10.1007/s10118-014-1471-4

    9. [9]

      Lu ChenKuan HuSi-Ting SunHai JiangDong HuangKun-Yu ZhangLi PanYue-Sheng Li . Toughening Poly(lactic acid) with Imidazolium-based Elastomeric Ionomers. Chinese J. Polym. Sci, 2018, 36(12): 1342-1352. doi: 10.1007/s10118-018-2143-6

    10. [10]

      Jia-Xing WangYan-Bin HuangWan-Tai Yang . Photo-grafting Poly(acrylic acid) onto Poly(lactic acid) Chains in Solution. Chinese J. Polym. Sci, 2020, 38(2): 137-142. doi: 10.1007/s10118-019-2308-y

    11. [11]

      Lin JiaWen-Chao ZhangBin TongRong-Jie Yang . Crystallization, Mechanical and Flame-retardant Properties of Poly(lactic acid) Composites with DOPO and DOPO-POSS. Chinese J. Polym. Sci, 2018, 36(7): 871-879. doi: 10.1007/s10118-018-2098-7

    12. [12]

      Lan XieXu-juan LiYu-zhu XiongQin ChenHai-bo XieQiang Zheng . Can Classic Avrami Theory Describe the Isothermal Crystallization Kinetics for Stereocomplex Poly(lactic acid)?. Chinese J. Polym. Sci, 2017, 35(6): 773-781. doi: 10.1007/s10118-017-1929-2

    13. [13]

      Hong-Yan ZhuFeng TianXiu-Hong LiHui-Bin QiuJie Wang . Crystallization and Phase Behavior in Block Copolymer Solution: An in Situ Small Angle X-ray Scattering Study. Chinese J. Polym. Sci, 2019, 37(11): 1162-1168. doi: 10.1007/s10118-019-2258-4

    14. [14]

      Sheng-tong SunPei-yi Wu . Spectral Insights into Microdynamics of Thermoresponsive Polymers from the Perspective of Two-dimensional Correlation Spectroscopy. Chinese J. Polym. Sci, 2017, 35(6): 700-712. doi: 10.1007/s10118-017-1938-1

    15. [15]

      Li-Wang SunHong LiXiao-Qin ZhangHe-Bei GaoMeng-Bo Luo . Identifying Conformation States of Polymer through Unsupervised Machine Learning. Chinese J. Polym. Sci, 2020, 38(12): 1403-1408. doi: 10.1007/s10118-020-2442-6

    16. [16]

      Da-Wei ShiXiang-Ling LaiYuan-Ping JiangCong YanZheng-Ying LiuWei YangMing-Bo Yang . Synthesis of Inorganic Silica Grafted Three-arm PLLA and Their Behaviors for PLA Matrix. Chinese J. Polym. Sci, 2019, 37(3): 216-226. doi: 10.1007/s10118-019-2191-6

    17. [17]

      Chu-Bo SunHong-Da MaoFeng ChenQiang Fu . Preparation of Polylactide Composite with Excellent Flame Retardance and Improved Mechanical Properties. Chinese J. Polym. Sci, 2018, 36(12): 1385-1393. doi: 10.1007/s10118-018-2150-7

    18. [18]

      Ru-Meng XuTian-Tian YangElvira VidovićRuo-Nan JiaJin-Ming ZhangQin-Yong MiJun Zhang . Cellulose Acetate Thermoplastics with High Modulus, Dimensional Stability and Anti-migration Properties by Using CA-g-PLA as Macromolecular Plasticizer. Chinese J. Polym. Sci, 2020, 38(10): 1141-1148. doi: 10.1007/s10118-020-2470-2

    19. [19]

      Yan-Ling XuAo-Ting QuRu-Jiang MaAng LiZhen-Kun ZhangZhi-Qiang ShangYao-Fang ZhangLu-Xia BuYing-Li An . pH-responsive Micelles from a Blend of PEG-b-PLA and PLA-b-PDPA Block Copolymers: Core Protection Against Enzymatic Degradation. Chinese J. Polym. Sci, 2018, 36(11): 1262-1268. doi: 10.1007/s10118-018-2149-0

    20. [20]


Article Metrics
  • PDF Downloads(1)
  • Abstract views(602)
  • HTML views(239)
  • Cited By(0)

通讯作者: 陈斌,
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索


DownLoad:  Full-Size Img  PowerPoint