Citation: Hu, Z. Y.; Pu, H. T.; Wu, J. G. Platinum atoms dispersed in single-chain polymer nanoparticles. Chinese J. Polym. Sci. 2021, 39, 441–446 doi: 10.1007/s10118-021-2499-x shu

Platinum Atoms Dispersed in Single-chain Polymer Nanoparticles

  • Corresponding author: Hong-Ting Pu, E-mail: puhongting@tongji.edu.cn
  • Received Date: 2020-08-03
    Available Online: 2020-09-18

Figures(5) / Tables(1)

  • The intramolecular cross-linking of single polymer chains can form single-chain nanoparticles (SCNPs), which have many applications. In this study, styrenic copolymers with pendent triphenylphosphine as the coordination site for platinum ions (Pt(II)) and benzocyclobutene as the latent reactive groups are synthesized. Triphenylphosphine groups in the chains can coordinate Pt(II) and aid slight single-chain folding in dilute solution. The intramolecular cross-linking caused by the ring-open reaction of benzocyclobutene completes the single-chain collapse and forms stable SCNPs in dilute solution. Pt(II) embedded in SCNPs can be further reduced to platinum atoms (Pt(0)). Pt(0) steadily and atomically dispersed in SCNPs exhibits better catalytic properties than normal polymer carried platinum particles do for the reduction of p-nitrophenol to p-aminophenol.
  • 加载中
    1. [1]

      Zhang, O.; Yu, H. M.; Lu, L. M.; Wen, Y. P.; Duan, X. M. Poly(thiophene-3-acetic acid)-palladium nanoparticle composite modified electrodes for supersensitive determination of hydrazine. Chinese J. Polym. Sci. 2013, 31, 419−426. doi: 10.1007/s10118-013-1230-y

    2. [2]

      Xu, Q. L.; Li, H. X.; Wang, G. C. Preparation of polyalkylcyanoacrylate nanoparticles with various morphologies. Chinese J. Polym. Sci. 2011, 29, 336−341. doi: 10.1007/s10118-011-1033-y

    3. [3]

      Li, Q. L.; Li, L.; Wang, H. S.; Wang, R.; Wang, W.; Jiang, Y. J.; Tian, Q.; Liu, J. P. The doubly thermo-responsive triblock copolymer nanoparticles prepared through seeded RAFT polymerization. Chinese J. Polym. Sci. 2017, 35, 66−77. doi: 10.1007/s10118-016-1859-4

    4. [4]

      Ormategui, N.; Zhang, S. W.; Loinaz, I.; Brydson, R.; Nelson, A.; Vakurov, A. Interaction of poly(N-isopropylacrylamide) (pNIPAM) based nanoparticles and their linear polymer precursor with phospholipid membrane models. Bioelectrochemistry 2012, 87, 211−219. doi: 10.1016/j.bioelechem.2011.12.006

    5. [5]

      Knoefel, N. D.; Rothfuss, H.; Barner-Kowollik, C.; Roesky, P. W. \begin{document}$ {{\rm{M}}_{2}^{4+}} $\end{document} paddlewheel clusters as junction points in single-chain nanoparticles. Polym. Chem. 2019, 10, 86−93. doi: 10.1039/C8PY01486H

    6. [6]

      Willenbacher, J.; Altintas, O.; Trouillet, V.; Knöfel, N.; Monteiro, M. J.; Roesky, P. W.; Barner-Kowollik, C. Pd-complex driven formation of single-chain nanoparticles. Polym. Chem. 2015, 6, 4358−4365. doi: 10.1039/C5PY00389J

    7. [7]

      Rubio-Cervilla, J.; Gonzalez, E.; Pomposo, J. A. Advances in single-chain nanoparticles for catalysis applications. Nanomaterials 2017, 7, 341. doi: 10.3390/nano7100341

    8. [8]

      Kroger, A. P. P.; Paulusse, J. M. J. Single-chain polymer nanoparticles in controlled drug delivery and targeted imaging. J. Control. Release 2018, 286, 326−347. doi: 10.1016/j.jconrel.2018.07.041

    9. [9]

      Kroger, A. P. P.; Hamelmann, N. M.; Juan, A.; Lindhoud, S.; Paulusse, J. M. J. Biocompatible single-chain polymer nanoparticles for drug delivery a dual approach. ACS Appl. Mater. Interfaces 2018, 10, 30946−30951. doi: 10.1021/acsami.8b07450

    10. [10]

      Kilic, D.; Pamukcu, C.; Balta, D. K.; Temel, B. A.; Temel, G. Rapid synthesis of fluorescent single-chain nanoparticles via photoinduced step-growth polymerization of pendant carbazole units. Eur. Polym. J. 2020, 125, 109469. doi: 10.1016/j.eurpolymj.2019.109469

    11. [11]

      Fu, C. L.; Sun, Z. Y.; An, L. J. The properties of a single polymer chain in solvent confined in a slit: a molecular dynamics simulation. Chinese J. Polym. Sci. 2012, 31, 388−398.

    12. [12]

      Tuten, B. T.; Chao, D. M.; Lyon, C. K.; Berda, E. B. Single-chain polymer nanoparticles via reversible disulfide bridges. Polym. Chem. 2012, 3, 3068−3071. doi: 10.1039/c2py20308a

    13. [13]

      Ana, S. S.; Fulton, D. A.; Pomposo, J. A. pH-responsive single-chain polymer nanoparticles utilising dynamic covalent enamine bonds. Chem. Commun. 2014, 50, 1871−1874. doi: 10.1039/C3CC48733D

    14. [14]

      Wang, F.; Pu, H. T.; Che, X. Voltage-responsive single-chain polymer nanoparticles via host-guest interaction. Chem. Commun. 2016, 52, 3516−3519. doi: 10.1039/C5CC09984F

    15. [15]

      Zhu, Z. G.; Xu, N.; Yu, Q. P.; Guo, L.; Cao, H.; Lu, X. H.; Cai, Y. L. Construction and self-assembly of single-chain polymer nanoparticles via coordination association and electrostatic repulsion in water. Macromol. Rapid Commun. 2015, 36, 1521−1527. doi: 10.1002/marc.201500281

    16. [16]

      Wang, F.; Zhang, J. Q.; Ding, X.; Dong, S. Y.; Liu, M.; Zheng, B.; Li, S. J.; Wu, L.; Yu, Y. H. ; Gibson, W.; Huang, F. H. Metal coordination mediated reversible conversion between linear and cross-linked supramolecular polymers. Angew. Chem. Int. Ed. 2010, 49, 1090−1094. doi: 10.1002/anie.200906389

    17. [17]

      Fischer, T. S.; Spann, S.; An, Q.; Luy, B.; Tsotsalas, M.; Blinco, J. P.; Mutlu, H.; Barner-Kowollik, C. Self-reporting and refoldable profluorescent single-chain nanoparticles. Chem. Sci. 2018, 9, 4696−4702. doi: 10.1039/C8SC01009A

    18. [18]

      Willenbacher, J.; Wuest, K. N. R.; Mueller, J. O.; Kaupp, M.; Wagenknech, H. A.; Barner-Kowollik, C. Photochemical design of functional fluorescent single-chain nanoparticles. ACS Macro Lett. 2014, 3, 574−579. doi: 10.1021/mz500292e

    19. [19]

      Rubio-Cervilla, J.; M. De Molina, P.; Robles-Hernandez, B.; Arbe, A.; Moreno, A.; Alegria, A.; Colmenero, J.; Pomposo, J. A. Facile access to completely deuterated single-chain nanoparticles enabled by intramolecular azide photodecomposition. Macromol. Rapid Commun. 2019, 40, e1900046. doi: 10.1002/marc.201900046

    20. [20]

      Saha, R.; Sekar, G. Selective oxidation of alkylarenes to aromatic acids/ketone in water by using reusable binaphthyl stabilized Pt nanoparticles (Pt-BNP) as catalyst. Appl. Catal. B-Environ. 2019, 250, 325−336. doi: 10.1016/j.apcatb.2019.03.052

    21. [21]

      De-La-Cuesta, J.; Gonzalez, E.; Pomposo, J. A. Advances in fluorescent single-chain nanoparticles. Molecules 2017, 22, 1819. doi: 10.3390/molecules22111819

    22. [22]

      Croce, T. A.; Hamilton, S. K.; Chen, M. L.; Muchalski, H.; Harth, E. Alternative o-quinodimethane cross-linking precursors for intramolecular chain collapse nanoparticles. Macromolecules 2007, 40, 6028−6031. doi: 10.1021/ma071111m

    23. [23]

      Prasher, A.; Loynd, C. M.; Tuten, B. T.; Frank, P. G.; Chao, D. M.; Berda, E. B. Efficient fabrication of polymer nanoparticles via sonogashira cross-linking of linear polymers in dilute solution. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 209−217. doi: 10.1002/pola.27942

    24. [24]

      Asenjo-Sanz, I.; Verde-Sesto, E.; Pomposo, J. A. Valuable structure-size relationships for tadpole-shaped single-chain nanoparticles with long and short flexible tails unveiled. Phys. Chem. Chem. Phys. 2019, 21, 10884−10887. doi: 10.1039/C9CP01318K

    25. [25]

      Wang, P.; Pu, H. T.; Jin, M. Single-chain nanoparticles with well-defined structure via intramolecular crosslinking of linear polymers with pendant benzoxazine groups. J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 5133−5141. doi: 10.1002/pola.25003

    26. [26]

      Knofel, N. D.; Rothfuss, H.; Willenbacher, J.; Barner-Kowollik, C.; Roesky, P. W. Platinum(II)-crosslinked single-chain nanoparticles: an approach towards recyclable homogeneous catalysts. Angew. Chem. Int. Ed. 2017, 56, 4950−4954. doi: 10.1002/anie.201700718

    27. [27]

      Wang, F.; Pu, H. T.; Jin, M.; Wan, D. C. Supramolecular nanoparticles via single-chain folding driven by ferrous ions. Macromol. Rapid Commun. 2016, 37, 330−336. doi: 10.1002/marc.201500616

    28. [28]

      Pomposo, J. A. Bioinspired single-chain polymer nanoparticles. Polym. Int. 2014, 63, 589−592. doi: 10.1002/pi.4671

    29. [29]

      Liu, Y. L.; Turunen, P.; De Waal, B. F. M.; Blank, K. G.; Rowan, A. E.; Palmans, A. R. A.; Meijer, E. W. Catalytic single-chain polymeric nanoparticles at work: from ensemble towards single-particle kinetics. Mol. Syst. Des. Eng. 2018, 3, 609−618. doi: 10.1039/C8ME00017D

    30. [30]

      Harth, E.; Van Horn, B.; Lee, V. Y.; Germack, D. S.; Gonzales, C. P.; Miller, R. D.; Hawker, C. J. A facile approach to architecturally defined nanoparticles via intramolecular chain collapse. J. Am. Chem. Soc. 2002, 124, 8653−8660. doi: 10.1021/ja026208x

    31. [31]

      Zhu, L. P.; Yi, Z.; Liu, F.; Wei, X. Z.; Zhu, B. K.; Xu, Y. Y. Amphiphilic graft copolymers based on ultrahigh molecular weight poly(styrene-alt-maleic anhydride) with poly(ethylene glycol) side chains for surface modification of polyethersulfone membranes. Eur. Polym. J. 2008, 44, 1907−1914. doi: 10.1016/j.eurpolymj.2008.03.015

    32. [32]

      Harrisson, S.; Wooley, K. L. Shell-crosslinked nanostructures from amphiphilic AB and ABA block copolymers of styrene-alt-(maleic anhydride) and styrene: polymerization, assembly and stabilization in one pot. Chem. Commun. 2005, 26, 3259−3261.

    33. [33]

      Tuteja, A.; Mackay, M. E.; Hawker, C. J.; van Horn, B.; Ho, D. L. Molecular architecture and rheological characterization of novel intramolecularly crosslinked polystyrene nanoparticles. J. Polym. Sci., Part B: Polym. Phys. 2010, 44, 1930−1947.

    34. [34]

      Kim, Y.; Pyun, J.; Frechet, J. M. J.; Hawker, C. J.; Frank, C. W. The dramatic effect of architecture on the self-assembly of block copolymers at interfaces. Langmuir 2005, 21, 10444−10458. doi: 10.1021/la047122f

    35. [35]

      Dirlam, P. T.; Kim, H. J.; Arrington, K. J.; Chung, W. J.; Sahoo, R.; Hill, L. J.; Costanzo, P. J.; Theato, P.; Char, K.; Pyun, J. Single chain polymer nanoparticles via sequential ATRP and oxidative polymerization. Polym. Chem. 2013, 4, 3765−3773. doi: 10.1039/c3py00321c

    36. [36]

      Mei, Y.; Sharma, G.; Lu, Y.; Ballauff, M.; Drechsler, M.; Irrgang, T.; Kempe, R. High catalytic activity of platinum nanoparticles immobilized on spherical polyelectrolyte brushes. Langmuir 2005, 21, 12229−12234. doi: 10.1021/la052120w

    37. [37]

      Nie, R. F.; Liang, D.; Shen, L.; Gao, J.; Chen, P.; Hou, Z. Y. Selective oxidation of glycerol with oxygen in base-free solution over MWCNTs supported PtSb alloy nanoparticles. Appl. Catal. B-Environ. 2012, 127, 212−220. doi: 10.1016/j.apcatb.2012.08.026

    38. [38]

      Wunder, S.; Polzer, F.; Lu, Y.; Mei, Y.; Ballauff, M. Kinetic analysis of catalytic reduction of 4-nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes. J. Phys. Chem. C 2010, 114, 8814−8820. doi: 10.1021/jp101125j

  • 加载中
    1. [1]

      Xin-xin SangJing-nan ZhangYu-cai KeXin-yu CaoYong-mei MaFosong Wang . The Influence of Rare Earth Ions on the Rheological Behavior of Polyamide. Chinese J. Polym. Sci, 2015, 33(10): 1453-1461. doi: 10.1007/s10118-015-1699-7

    2. [2]

      Ruo-lin WangRui QuYan ZhaiChen JingAng LiYing-li AnLin-qi Shi . Enhanced Electron Transfer Ability via Coordination in Block Copolymer/Porphyrin/Fullerene Micelle. Chinese J. Polym. Sci, 2017, 35(11): 1328-1341. doi: 10.1007/s10118-017-1973-y

    3. [3]

      You-xiang Wang abYing Zhu cJia-cong Shen ab . NOVEL HYBRID GENE VECTOR STABILIZED BY CROSS-LINKING WITH GOLD NANOPARTICLES. Chinese J. Polym. Sci, 2008, 26(4): 507-512.

    4. [4]

      Xiaoteng MaGuangda HanHanying Zhao . Degradable Protein-loaded Polymer Capsules Fabricated by Thiol-disulfide Cross-linking Reaction at Liquid-liquid Interface. Chinese J. Polym. Sci, 2019, 37(8): 790-796. doi: 10.1007/s10118-019-2253-9

    5. [5]

      NI MingCHEN LiushengJIA ShijunJIN XigaoGE ShourenAtsushi TAKAHARATisato KAJIYAMA . MORPHOLOGICAL OBSERVATION OF SINGLE-CHAIN POLY (METHYL METHACRYLATE) PARTICLES*. Chinese J. Polym. Sci, 1997, 15(4): 368-372.

    6. [6]

      Matthew M. YonkeyDillip K. MohantyChristopher CrouseZhong-biao Zhang . CROSS-LINKING OF AROMATIC POLY(THIOETHER)S. Chinese J. Polym. Sci, 2007, 25(5): 509-517.

    7. [7]

      Sheng-Chao ChaiTian-Yang XuXiao CaoGang WangQuan ChenHao-Long Li . Ultrasmall Nanoparticles Diluted Chain Entanglement in Polymer Nanocomposites. Chinese J. Polym. Sci, 2019, 37(8): 797-805. doi: 10.1007/s10118-019-2262-8

    8. [8]

      . COMPUTER SIMULATION OF A SINGLE POLYMER CHAIN IN DIFFERENT SOLVENTS*. Chinese J. Polym. Sci, 2002, 20(1): 59-64.

    9. [9]

      CHEN YupingQI Zongneng . EFFECT OF CROSS-LINKING ON THE EXCESS ENTHALPY RELAXATION OF EPOXY. Chinese J. Polym. Sci, 1987, 5(1): 1-6.

    10. [10]

      Hong-mei YangZhi-gang LiuYong-zhu YangQiang Zheng . RHEOLOGIC STUDIES ON CHEMICAL CROSS-LINKING KINETICS FOR LDPE. Chinese J. Polym. Sci, 2012, 30(3): 378-386. doi: 10.1007/s10118-012-1137-z

    11. [11]

      Qing-Chen CaoXing WangDe-Cheng Wu . Controlled Cross-linking Strategy for Formation of Hydrogels, Microgels and Nanogels. Chinese J. Polym. Sci, 2018, 36(1): 8-17. doi: 10.1007/s10118-018-2061-7

    12. [12]

      HUANG MeiyuHUANG LiZHENG QingyaoWANG DianxunJIANG Yingyan . POLYMER-PLATINUM COMPLEX CATALYSTS FOR OXIDATION OF METHANOL TO FORMALDEHYDE*. Chinese J. Polym. Sci, 1984, 2(1): 71-77.

    13. [13]

      WANG ZhutingZHANG PeimingSUN Shumen . SYNTHESIS AND CHARACTERIZATION OF POLYMER DERIVATIVES OF cis-PLATINUM COMPLEXES. Chinese J. Polym. Sci, 1986, 4(4): 359-369.

    14. [14]

      LU FengcaiWANG YulanWANG DianxunYU Yang . STUDY OF HETEROCYCLIC POLYMER COMPLEXES Ⅰ. POLYPHENYLQUINOXALINE-PLATINUM AND RHODIUM COMPLEXES*. Chinese J. Polym. Sci, 1985, 3(1): 82-84.

    15. [15]

      Wei-xia TuXiao-bin ZuoHan-fan Liu . STUDY ON THE INTERACTION BETWEEN POLYVINYLPYRROLIDONE AND PLATINUM METALS DURING THE FORMATION OF THE COLLOIDAL METAL NANOPARTICLES. Chinese J. Polym. Sci, 2008, 26(1): 23-29.

    16. [16]

      Cui-liu FuZhao-yan SunLi-jia An . THE PROPERTIES OF A SINGLE POLYMER CHAIN IN SOLVENT CONFINED IN A SLIT: A MOLECULAR DYNAMICS SIMULATION. Chinese J. Polym. Sci, 2013, 31(3): 388-398. doi: 10.1007/s10118-013-1231-x

    17. [17]

      Xia ZhanJi-ding LiJun-qi HuangCui-xian Chen . PERVAPORATION PROPERTIES OF PDMS MEMBRANES CURED WITH DIFFERENT CROSS-LINKING REAGENTS FOR ETHANOL CONCENTRATION FROM AQUEOUS SOLUTIONS. Chinese J. Polym. Sci, 2009, 27(4): 533-542.

    18. [18]

      . CROSS-LINKING OF CHITOSAN WITH GLUTARALDEHYDE IN THE PRESENCE OF CITRIC ACID——A NEW GELLING SYSTEM*. Chinese J. Polym. Sci, 1999, 17(6): 551-556.

    19. [19]

      Lin WuTao PangYe-bin Guan . Miniemulsion Cross-linking: A Convenient Route to Hollow Polymeric Nanocapsule with a Liquid Core. Chinese J. Polym. Sci, 2016, 34(5): 523-531. doi: 10.1007/s10118-016-1784-6

    20. [20]

      Meng-Yun XieJiang WangQing-Yun Wu . Nanofiltration Membranes via Layer-by-layer Assembly and Cross-linking of Polyethyleneimine/Sodium Lignosulfonate for Heavy Metal Removal. Chinese J. Polym. Sci, 2020, 38(9): 965-972. doi: 10.1007/s10118-020-2422-x

Article Metrics
  • PDF Downloads(1)
  • Abstract views(500)
  • HTML views(191)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return