Citation: Li, S. Q.; Tang, M. Z.; Huang, C.; Zhang, R.; Huang, G. S.; Xu, Y. X. The relationship between pendant phosphate groups and mechanical properties of polyisoprene rubber. Chinese J. Polym. Sci. 2021, 39, 465–473 doi: 10.1007/s10118-021-2497-z shu

The Relationship between Pendant Phosphate Groups and Mechanical Properties of Polyisoprene Rubber

  • Corresponding author: Guang-Su Huang, E-mail: guangsuhuang@scu.edu.cn
    Yun-Xiang Xu, E-mail: yxxu@scu.edu.cn
  • Received Date: 2020-07-17
    Accepted Date: 2020-08-27
    Available Online: 2020-10-13

Figures(12) / Tables(2)

  • It is still a great challenge to mimic the structure and function of natural rubber by introducing polar components into synthetic polyisoprene. In order to explore the function of phosphate groups on the mechanical properties of polyisoprene rubber, a terminally functionalized compound (PIP-P) containing phosphate groups was synthesized and further vulcanized to prepare the model compound V-PIP-P. Through analyzing the test results, it was found that these phosphate groups formed polar aggregates in non-polar polyisoprene rubber matrix, serving as an additional dynamic cross-linking sites, which increases the cross-linking density and improves mechanical properties. The influence of the phosphate groups on the strain-induced crystallization (SIC) was further investigated via synchrotron wide-angle X-ray diffraction (WAXD) experiment. These phosphate group aggregates not only reduced the onset strain of SIC, but also slowed down the molecular chain mobility, which hinder the crystal lateral growth. The above results help us to gain a deeper understanding for the function of phosphate groups in the formation of “naturally occurring network” and guide the molecular design of next generation polyisoprene rubber.
  • 加载中
    1. [1]

      Zhang, H. P.; Niemczura, J.; Dennis, G.; Ravi-Chandar, K.; Marder, M. Toughening effect of strain-induced crystallites in natural rubber. Phys. Rev. Lett. 2009, 102, 245503. doi: 10.1103/PhysRevLett.102.245503

    2. [2]

      Amnuaypornsri, S.; Toki, S.; Hsiao, B. S.; Sakdapipanich, J. The effects of endlinking network and entanglement to stress-strain relation and strain-induced crystallization of un-vulcanized and vulcanized natural rubber. Polymer 2012, 53, 3325−3330. doi: 10.1016/j.polymer.2012.05.020

    3. [3]

      Tosaka, M. A route for the thermodynamic description of strain-induced crystallization in sulfur-cured natural rubber. Macromolecules 2009, 42, 6166−6174. doi: 10.1021/ma900954c

    4. [4]

      Nie, Y.; Huang, G.; Qu, L.; Wang, X.; Weng, G.; Wu, J. New insights into thermodynamic description of strain-induced crystallization of peroxide cross-linked natural rubber filled with clay by tube model. Polymer 2011, 52, 3234−3242. doi: 10.1016/j.polymer.2011.05.004

    5. [5]

      Hernández, M.; López-Manchado, M. A.; Sanz, A.; Nogales, A.; Ezquerra, T. A. Effects of strain-induced crystallization on the segmental dynamics of vulcanized natural rubber. Macromolecules 2011, 44, 6574−6580. doi: 10.1021/ma201021q

    6. [6]

      Liu, H.; Huang, G. S.; Wei, L. Y.; Zeng, J.; Fu, X.; Huang, C.; Wu, J. R. Inhomogeneous natural network promoting strain-induced crystallization: a mesoscale model of natural rubber. Chinese J. Polym. Sci. 2019, 37, 1142−1151. doi: 10.1007/s10118-019-2267-3

    7. [7]

      Zhang, M. M.; Zha, L. Y.; Gao, H. H.; Nie, Y. J.; Hu, W. B. How polydispersity of network polymers influences strain-induced crystal nucleation in a rubber. Chinese J. Polym. Sci. 2014, 32, 1218−1223. doi: 10.1007/s10118-014-1495-9

    8. [8]

      Kawazura, T.; Chaikumpollert, O.; Kawahara, S. Morphology dependence of crystallization of natural rubber in blends. Chinese J. Polym. Sci. 2013, 31, 1424−1431. doi: 10.1007/s10118-013-1314-8

    9. [9]

      Trabelsi, S.; Albouy, P. A.; Rault, J. Effective local deformation in stretched filled rubber. Macromolecules 2003, 36, 9093−9099. doi: 10.1021/ma0303566

    10. [10]

      Che, J.; Burger, C.; Toki, S.; Rong, L.; Hsiao, B. S.; Amnuaypornsri, S.; Sakdapipanich, J. Crystal and crystallites structure of natural rubber and synthetic cis-1,4-polyisoprene by a new two dimensional wide angle X-ray diffraction simulation method. I. Strain-induced crystallization. Macromolecules 2013, 46, 4520−4528. doi: 10.1021/ma400420k

    11. [11]

      Acosta, R. H.; Monti, G. A.; Villar, M. A.; Vallés, E. M.; Vega, D. A. Transiently trapped entanglements in model polymer networks. Macromolecules 2009, 42, 4674−4680. doi: 10.1021/ma8025546

    12. [12]

      Huang, C.; Huang, G.; Li, S.; Luo, M.; Liu, H.; Fu, X.; Qu, W.; Xie, Z.; Wu, J. Research on architecture and composition of natural network in natural rubber. Polymer 2018, 154, 90−100. doi: 10.1016/j.polymer.2018.08.057

    13. [13]

      Tang, M.; Zhang, R.; Li, S.; Zeng, J.; Luo, M.; Xu, Y. X.; Huang, G. Towards a supertough thermoplastic polyisoprene elastomer based on a biomimic strategy. Angew. Chem. Int. Ed. 2018, 57, 15836−15840. doi: 10.1002/anie.201809339

    14. [14]

      Li, S.; Tang, M.; Huang, C.; Zhang, R.; Wu, J.; Ling, F.; Xu, Y. X.; Huang, G. Branching function of terminal phosphate groups of polyisoprene chain. Polymer 2019, 174, 18−24. doi: 10.1016/j.polymer.2019.04.046

    15. [15]

      Xie, Z. T.; Fu, X.; Wei, L. Y.; Luo, M. C.; Liu, Y. H.; Ling, F. W.; Huang, C.; Huang, G.; Wu, J. New evidence disclosed for the engineered strong interfacial interaction of graphene/rubber nanocomposites. Polymer 2017, 118, 30−39. doi: 10.1016/j.polymer.2017.04.056

    16. [16]

      Wu, S.; Qiu, M.; Tang, Z.; Liu, J.; Guo, B. Carbon nanodots as high-functionality cross-linkers for bioinspired engineering of multiple sacrificial units toward strong yet tough elastomers. Macromolecules 2017, 50, 3244−3253. doi: 10.1021/acs.macromol.7b00483

    17. [17]

      Tang, Z.; Liu, Y.; Guo, B.; Zhang, L. Malleable, mechanically strong, and adaptive elastomers enabled by interfacial exchangeable bonds. Macromolecules 2017, 50, 7584−7592. doi: 10.1021/acs.macromol.7b01261

    18. [18]

      Liu, J.; Tang, Z.; Huang, J.; Guo, B.; Huang, G. Promoted strain-induced-crystallization in synthetic cis-1,4-polyisoprene via constructing sacrificial bonds. Polymer 2016, 97, 580−588. doi: 10.1016/j.polymer.2016.06.001

    19. [19]

      Li, C. H.; Wang, C.; Keplinger, C.; Zuo, J. L.; Jin, L.; Sun, Y.; Zheng, P.; Cao, Y.; Lissel, F.; Linder, C.; You, X. Z.; Bao, Z. A highly stretchable autonomous self-healing elastomer. Nat. Chem. 2016, 8, 618−24. doi: 10.1038/nchem.2492

    20. [20]

      Wang, S.; Tang, Z. H.; Huang, J.; Guo, B. C. Effects of binding energy of bioinspired sacrificial bond on mechanical performance of cis-1,4-polyisoprene with dual-crosslink. Chinese J. Polym. Sci. 2018, 36, 1055−1062. doi: 10.1007/s10118-018-2131-x

    21. [21]

      Ozbas, B.; Toki, S.; Hsiao, B. S.; Chu, B.; Register, R. A.; Aksay, I. A.; Prud'homme, R. K.; Adamson, D. H. Strain-induced crystallization and mechanical properties of functionalized graphene sheet-filled natural rubber. J. Polym. Sci., Part B: Polym. Phys. 2012, 50, 718−723. doi: 10.1002/polb.23060

    22. [22]

      Balzano, L.; Kukalyekar, N.; Rastogi, S.; Peters, G. W.; Chadwick, J. C. Crystallization and dissolution of flow-induced precursors. Phys. Rev. Lett. 2008, 100, 048302. doi: 10.1103/PhysRevLett.100.048302

    23. [23]

      Zhao, B.; Tian, N.; Liu, Y.; Yan, T.; Zhou, W.; Li, L.; Zhou, Y.; Weng, G.; Huang, G. Strain-induced crystallization of natural rubber with high strain rates. J. Polym. Sci., Part B: Polym. Phys. 2012, 50, 1630−1637. doi: 10.1002/polb.23172

    24. [24]

      Chenal, J. M.; Chazeau, L.; Guy, L.; Bomal, Y.; Gauthier, C. Molecular weight between physical entanglements in natural rubber: a critical parameter during strain-induced crystallization. Polymer 2007, 48, 1042−1046. doi: 10.1016/j.polymer.2006.12.031

    25. [25]

      Liu, Y.; Tang, Z.; Wu, S.; Guo, B. Integrating sacrificial bonds into dynamic covalent networks toward mechanically robust and malleable elastomers. ACS Macro Lett. 2019, 8, 193−199. doi: 10.1021/acsmacrolett.9b00012

    26. [26]

      Mayumi, K.; Marcellan, A.; Ducouret, G.; Creton, C.; Narita, T. Stress-strain relationship of highly stretchable dual cross-link gels: separability of strain and time effect. ACS Macro Lett. 2013, 2, 1065−1068. doi: 10.1021/mz4005106

    27. [27]

      Fu, X.; Huang, G.; Xie, Z.; Xing, W. New insights into reinforcement mechanism of nanoclay-filled isoprene rubber during uniaxial deformation by in situ synchrotron X-ray diffraction. RSC Adv. 2015, 5, 25171−25182. doi: 10.1039/C5RA02123E

    28. [28]

      Liu, J.; Wang, S.; Tang, Z.; Huang, J.; Guo, B.; Huang, G. Bioinspired engineering of two different types of sacrificial bonds into chemically cross-linked cis-1,4-polyisoprene toward a high-performance elastomer. Macromolecules 2016, 49, 8593−8604. doi: 10.1021/acs.macromol.6b01576

    29. [29]

      Tarachiwin, L.; Sakdapipanich, J.; Ute, K.; Kitayama, T.; Tanaka, Y. Structural characterization of α-terminal group of natural rubber. 2. Decomposition of branch-points by phospholipase and chemical treatments. Biomacromolecules 2005, 6, 1858−1863. doi: 10.1021/bm058004p

    30. [30]

      Mozhdehi, D.; Ayala, S.; Cromwell, O. R.; Guan, Z. Self-healing multiphase polymersvia dynamic metal-ligand interactions. J. Am. Chem. Soc. 2014, 136, 16128−16131. doi: 10.1021/ja5097094

    31. [31]

      Gros, A.; Tosaka, M.; Huneau, B.; Verron, E.; Poompradub, S.; Senoo, K. Dominating factor of strain-induced crystallization in natural rubber. Polymer 2015, 76, 230−236. doi: 10.1016/j.polymer.2015.08.058

    32. [32]

      Dupres, S.; Long, D.; Albouy, P.A.; Sotta, P. Local deformation in carbon black-filled polyisoprene rubbers studied by NMR and X-ray diffraction. Macromolecules 2009, 42, 12634−12644.

    33. [33]

      Chenal, J. M.; Gauthier, C.; Chazeau, L.; Guy, L.; Bomal, Y. Parameters governing strain induced crystallization in filled natural rubber. Polymer 2007, 48, 6893−6901. doi: 10.1016/j.polymer.2007.09.023

    34. [34]

      Toki, S.; Sics, I.; Hsiao, B.; Tosaka, M.; Poompradub, S.; Ikeda, Y.; Kohjiya, S. Probing the nature of strain-induced crystallization in polyisoprene rubber by combined thermomechanical and in situ X-ray diffraction techniques. Macromolecules 2005, 38, 7064−7073. doi: 10.1021/ma050465f

    35. [35]

      Beurrot-Borgarino, S.; Huneau, B.; Verron, E.; Rublon, P. Strain-induced crystallization of carbon black-filled natural rubber during fatigue measured by in situ synchrotron X-ray diffraction. Int. J. Fatigue 2013, 47, 1−7. doi: 10.1016/j.ijfatigue.2012.07.001

    36. [36]

      Tosaka, M.; Murakami, S.; Poompradub, S.; Kohjiya, S.; Ikeda, Y.; Toki, S.; Sics, I.; Hsiao, B. S. Orientation and crystallization of natural rubber network as revealed by WAXD using synchrotron radiation. Macromolecules 2004, 37, 3299−3309. doi: 10.1021/ma0355608

    37. [37]

      Toki, S.; Hsiao, B. Nature of strain-induced structures in natural and synthetic rubbers under stretching. Macromolecules 2003, 36, 5915−5917. doi: 10.1021/ma034729e

    38. [38]

      Che, J.; Toki, S.; Valentin, J. L.; Brasero, J.; Nimpaiboon, A.; Rong, L.; Hsiao, B. S. Chain dynamics and strain-induced crystallization of pre- and postvulcanized natural rubber latex using proton multiple quantum NMR and uniaxial deformation by in situ synchrotron X-ray diffraction. Macromolecules 2012, 45, 6491−6503. doi: 10.1021/ma3006894

    39. [39]

      Liu, H.; Huang, G.; Zeng, J.; Xu, L.; Fu, X.; Wu, S.; Zheng, J.; Wu, J. Observing nucleation transition in stretched natural rubber through self-seeding. J. Phys. Chem. B 2015, 119, 11887−11892. doi: 10.1021/acs.jpcb.5b05113

    40. [40]

      Ikeda, Y.; Yasuda, Y.; Hijikata, K.; Tosaka, M.; Kohjiya, S. Comparative study on strain-induced crystallization behavior of peroxide cross-linked and sulfur cross-linked natural rubber. Macromolecules 2008, 41, 5876−5884. doi: 10.1021/ma800144u

    41. [41]

      Suzuki, T.; Osaka, N.; Endo, H.; Shibayama, M.; Ikeda, Y.; Asai, H.; Higashitani, N.; Kokubo, Y.; Kohjiya, S. Nonuniformity in cross-linked natural rubber as revealed by contrast-variation small-angle neutron scattering. Macromolecules 2010, 43, 1556−1563. doi: 10.1021/ma9019416

    42. [42]

      Weng, G.; Huang, G.; Qu, L.; Nie, Y.; Wu, J. Large-scale orientation in a vulcanized stretched natural rubber network: proved by in situ synchrotron X-ray diffraction characterization. J. Phys. Chem. B 2010, 114, 7179−7188. doi: 10.1021/jp100920g

  • 加载中
    1. [1]

      Han LiuGuang-Su HuangLai-Yun WeiJian ZengXuan FuCheng HuangJin-Rong Wu . Inhomogeneous Natural Network Promoting Strain-induced Crystallization: A Mesoscale Model of Natural Rubber. Chinese J. Polym. Sci, 2019, 37(11): 1142-1151. doi: 10.1007/s10118-019-2267-3

    2. [2]

      Tetsuji KawazuraOraphin ChaikumpollertSeiichi Kawahara . MORPHOLOGY DEPENDENCE OF CRYSTALLIZATION OF NATURAL RUBBER IN BLENDS. Chinese J. Polym. Sci, 2013, 31(10): 1424-1431. doi: 10.1007/s10118-013-1314-8

    3. [3]

      Zhi-xian DongMing-xian LiuDe-min JiaYan-hao Zhou . SYNTHESIS OF NATURAL RUBBER-g-MALEIC ANHYDRIDE AND ITS USE AS A COMPATIBILIZER IN NATURAL RUBBER/SHORT NYLON FIBER COMPOSITES. Chinese J. Polym. Sci, 2013, 31(8): 1127-1138. doi: 10.1007/s10118-013-1310-z

    4. [4]

      Shu-yan YangZhi-xin JiaLan LiuWei-wen FuDe-min JiaYuan-fang Luo . Insight into Vulcanization Mechanism of Novel Binary Accelerators for Natural Rubber. Chinese J. Polym. Sci, 2014, 32(8): 1077-1085. doi: 10.1007/s10118-014-1486-x

    5. [5]

      Ju GuWan-juan ChenLu LinYuan-fang LuoDe-min Jia . EFFECT OF NANOCRYSTALLINE CELLULOSE ON THE CURING CHARACTERISTICS AND AGING RESISTANCE PROPERTIES OF CARBON BLACK REINFORCED NATURAL RUBBER. Chinese J. Polym. Sci, 2013, 31(10): 1382-1393. doi: 10.1007/s10118-013-1340-6

    6. [6]

      Dan-hui WangQi DongYu-xi Jia . Mathematical Modelling and Numerical Simulation of the Non-isothermal In-mold Vulcanization of Natural Rubber. Chinese J. Polym. Sci, 2015, 33(3): 395-403. doi: 10.1007/s10118-015-1594-2

    7. [7]

      Guang-jun CuiShi-wei WangPeng-gangYin Lin Guo . Study of Viscoelastic Properties of White Carbon Black Reinforced Synthetic Polyisoprene. Chinese J. Polym. Sci, 2016, 34(4): 457-465. doi: 10.1007/s10118-016-1765-9

    8. [8]

      Yan-Ling MoYu-Xin TianYu-Hang LiuFeng ChenQiang Fu . Preparation and Properties of Ultrathin Flexible Expanded Graphite Film via Adding Natural Rubber. Chinese J. Polym. Sci, 2019, 37(8): 806-814. doi: 10.1007/s10118-019-2264-6

    9. [9]

      Sheng WangZheng-Hai TangJing HuangBao-Chun Guo . Effects of Binding Energy of Bioinspired Sacrificial Bond on Mechanical Performance of cis-1,4-Polyisoprene with Dual-crosslink. Chinese J. Polym. Sci, 2018, 36(9): 1055-1062. doi: 10.1007/s10118-018-2131-x

    10. [10]

      Mo-Kun ChenRong ZhangMao-Zhu TangGuang-Su HuangYun-Xiang Xu . The Effect of Branching Structure on the Properties of Entangled or Non-covalently Crosslinked Polyisoprene. Chinese J. Polym. Sci, 2021, 39(1): 113-121. doi: 10.1007/s10118-020-2480-0

    11. [11]

      Miao-miao ZhangLi-yun ZhaHuan-huan GaoYi-jing NieWen-bing Hu . How Polydispersity of Network Polymers Influences Strain-induced Crystal Nucleation in a Rubber. Chinese J. Polym. Sci, 2014, 32(9): 1218-1223. doi: 10.1007/s10118-014-1495-9

    12. [12]

      Jian HuLi-Li HanTong-Ping ZhangYong-Xin DuanJian-Ming Zhang . Study on Phase Transformation Behavior of Strain-induced PLLA Mesophase by Polarized Infrared Spectroscopy. Chinese J. Polym. Sci, 2019, 37(3): 253-257. doi: 10.1007/s10118-019-2184-5

    13. [13]

      M. E. HaqueaK. MakuuchiaF. YoshiiaH. Mitomo . ROLE OF SYNTHETIC ANTIOXIDANTS ON THE AGING PROPERTY OF ELECTRON BEAM IRRADIATED NATURAL RUBBER. Chinese J. Polym. Sci, 2005, 23(4): 363-366.

    14. [14]

      Toshio NishiHideyuki NukagaSo FujinamiKen Nakajima . NANOMECHANICAL MAPPING OF CARBON BLACK REINFORCED NATURAL RUBBER BY ATOMIC FORCE MICROSCOPY. Chinese J. Polym. Sci, 2007, 25(1): 35-41.

    15. [15]

      NWANORH K.O.ENYIEGBULAM M.E . ENHANCEMENT OF RESISTANCE TO OXIDATIVE DEGRADATION OF NATURAL RUBBER THROUGH LATEX DEGRADATION. Chinese J. Polym. Sci, 1998, 16(2): 170-175.

    16. [16]

      N.C. DafaderM.E. HaqueF. Akhtar . STUDY ON THE PROPERTIES OF BLEND OF NATURAL RUBBER LATEX/METHYL METHACRYLATE GRAFTED RUBBER LATEX BY GAMMA RADIATION. Chinese J. Polym. Sci, 2007, 25(5): 519-523.

    17. [17]

      Long-mei WuShuang-quan LiaoSheng-jun ZhangXiao-ying BaiXue Hou . Enhancement of Mechanical Properties of Natural Rubber with Maleic Anhydride Grafted Liquid Polybutadiene Functionalized Graphene Oxide. Chinese J. Polym. Sci, 2015, 33(7): 1058-1068. doi: 10.1007/s10118-015-1652-9

    18. [18]

      Yi-hu SongLing-bin ZengQiang Zheng . Understanding the Reinforcement and Dissipation of Natural Rubber Compounds Filled with Hybrid Filler Composed of Carbon Black and Silica. Chinese J. Polym. Sci, 2017, 35(11): 1436-1446. doi: 10.1007/s10118-017-1987-5

    19. [19]

      Feng-Yi HouYi-Hu SongQiang Zheng . Influence of Liquid Isoprene Rubber on Strain Softening of Carbon Black Filled Isoprene Rubber Nanocomposites. Chinese J. Polym. Sci, 2021, 39(): 1-9. doi: 10.1007/s10118-021-2550-y

    20. [20]

      . DAMAGE OF SILICONE RUBBER INDUCED BY PROTON IRRADIATION. Chinese J. Polym. Sci, 2003, 21(5): 563-567.

Article Metrics
  • PDF Downloads(1)
  • Abstract views(449)
  • HTML views(274)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return