Citation: Zhang, Z. G.; Bai, Y.; Li, Y. Benzotriazole based 2D-conjugated polymer donors for high performance polymer solar cells. Chinese J. Polym. Sci. 2021, 39, 1–13 doi: 10.1007/s10118-020-2496-5 shu

Benzotriazole Based 2D-conjugated Polymer Donors for High Performance Polymer Solar Cells

Figures(6) / Tables(3)

  • To design high efficiency polymer solar cells (PSCs), it is of great importance to develop suitable polymer donors that work well with the low bandgap acceptors, providing complementary absorption, forming interpenetrating networks in the active layers and minimizing energy loss. Recently, we developed a series of two-dimension-conjugated polymers based on bithienylbenzodithiophene-alt-benzotriazole backbone bearing different conjugated side chains, generally called J-series polymers. They are medium energy bandgap (Eg) polymers (Eg of ca. 1.80 eV) with strong absorptions in the range of 400−650 nm, and exhibit ordered crystalline structures, high hole mobilities, and more interestingly, tunable energy levels depending on the structure variations. In this feature article, we highlight our recent efforts on the design and synthesis of those J-series polymer donors, including an introduction on the polymer design strategy and emphasis on the crucial function of differential conjugated side chain. Finally, the future opportunities and challenges of the J-series polymers in PSCs are discussed.
  • 加载中
    1. [1]

      Li, Y. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Acc. Chem. Res. 2012, 45, 723−733. doi: 10.1021/ar2002446

    2. [2]

      Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 1995, 270, 1789−1791. doi: 10.1126/science.270.5243.1789

    3. [3]

      Yao, J.; Qiu, B.; Zhang, Z. G.; Xue, L.; Wang, R.; Zhang, C.; Chen, S.; Zhou, Q.; Sun, C.; Yang, C.; Xiao, M.; Meng, L.; Li, Y. Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells. Nat. Commun. 2020, 11, 2726. doi: 10.1038/s41467-020-16509-w

    4. [4]

      Cui, Y.; Yao, H.; Hong, L.; Zhang, T.; Tang, Y.; Lin, B.; Xian, K.; Gao, B.; An, C.; Bi, P.; Ma, W.; Hou, J. 17% Efficiency organic photovoltaic cell with superior processability. Natl. Sci. Rev. 2020, 7, 1239−1246. doi: 10.1093/nsr/nwz200

    5. [5]

      Ma, R.; Liu, T.; Luo, Z.; Guo, Q.; Xiao, Y.; Chen, Y.; Li, X.; Luo, S.; Lu, X.; Zhang, M.; Li, Y.; Yan, H. Improving open-circuit voltage by a chlorinated polymer donor endows binary organic solar cells efficiencies over 17%. Sci. China Chem. 2020, 63, 325−330. doi: 10.1007/s11426-019-9669-3

    6. [6]

      Cui, Y.; Yao, H.; Zhang, J.; Xian, K.; Zhang, T.; Hong, L.; Wang, Y.; Xu, Y.; Ma, K.; An, C.; He, C.; Wei, Z.; Gao, F.; Hou, J. Single-junction organic photovoltaic cells with approaching 18% efficiency. Adv. Mater. 2020, 32, 1908205. doi: 10.1002/adma.201908205

    7. [7]

      Lee, C.; Lee, S.; Kim, G. U.; Lee, W.; Kim, B. J. Recent advances, design guidelines, and prospects of all-polymer solar cells. Chem. Rev. 2019, 119, 8028−8086. doi: 10.1021/acs.chemrev.9b00044

    8. [8]

      Zhang, Z. G.; Yang, Y.; Yao, J.; Xue, L.; Chen, S.; Li, X.; Morrison, W.; Yang, C.; Li, Y. Constructing a strongly absorbing low-bandgap polymer acceptor for high-performance all-polymer solar cells. Angew. Chem. Int. Ed. 2017, 56, 13503−13507. doi: 10.1002/anie.201707678

    9. [9]

      Lin, Y.; Wang, J.; Zhang, Z. G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv. Mater. 2015, 27, 1170−1174. doi: 10.1002/adma.201404317

    10. [10]

      Jia, B.; Zhan, X. Fused-ring electron acceptors in China. Sci. China Chem. 2020, 63, 1179−1181. doi: 10.1007/s11426-020-9790-9

    11. [11]

      Wei, Q.; Liu, W.; Leclerc, M.; Yuan, J.; Chen, H.; Zou, Y. A-DA'D-A non-fullerene acceptors for high performance organic solar cells. Sci. China Chem. 2020, 63, 1352−1366. doi: 10.1007/s11426-020-9799-4

    12. [12]

      Wan, X.; Li, C.; Zhang, M.; Chen, Y. Acceptor-donor-acceptor type molecules for high performance organic photovoltaics—chemistry and mechanism. Chem. Soc. Rev. 2020, 49, 2828−2842. doi: 10.1039/D0CS00084A

    13. [13]

      Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H. L.; Lau, T. K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y.; Zou, Y. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 2019, 3, 1140−1151. doi: 10.1016/j.joule.2019.01.004

    14. [14]

      Li, S.; Li, C. Z.; Shi, M.; Chen, H. New phase for organic solar cell research: emergence of Y-series electron acceptors and their perspectives. ACS Energy Lett. 2020, 5, 1554−1567. doi: 10.1021/acsenergylett.0c00537

    15. [15]

      Min, J.; Zhang, Z. G.; Zhang, S.; Li, Y. Conjugated side-chain-isolated D-A copolymers based on benzo[1,2-b:4,5-b′]dithiophene-alt-dithienylbenzotriazole: synthesis and photovoltaic properties. Chem. Mater. 2012, 24, 3247−3254. doi: 10.1021/cm3017006

    16. [16]

      Zhang, Z. G.; Li, Y. Side-chain engineering of high-efficiency conjugated polymer photovoltaic materials. Sci. China Chem. 2015, 58, 192−209. doi: 10.1007/s11426-014-5260-2

    17. [17]

      Hu, Z.; Zhang, F.; An, Q.; Zhang, M.; Ma, X.; Wang, J.; Zhang, J.; Wang, J. Ternary nonfullerene polymer solar cells with a power conversion efficiency of 11.6% by inheriting the advantages of binary cells. ACS Energy Lett. 2018, 3, 555−561. doi: 10.1021/acsenergylett.8b00100

    18. [18]

      Li, Y.; Zhong, L.; Gautam, B.; Bin, H. J.; Lin, J. D.; Wu, F. P.; Zhang, Z.; Jiang, Z. Q.; Zhang, Z. G.; Gundogdu, K.; Li, Y.; Liao, L. S. A near-infrared non-fullerene electron acceptor for high performance polymer solar cells. Energy Environ. Sci. 2017, 10, 1610−1620. doi: 10.1039/C7EE00844A

    19. [19]

      Liu, X.; Li, X.; Zheng, N.; Gu, C.; Wang, L.; Fang, J.; Yang, C. Insight into the efficiency and stability of all-polymer solar cells based on two 2D-conjugated polymer donors: achieving high fill factor of 78%. ACS Appl. Mater. Interfaces 2019, 11, 43433−43440. doi: 10.1021/acsami.9b15672

    20. [20]

      Sun, R.; Guo, J.; Sun, C.; Wang, T.; Luo, Z.; Zhang, Z.; Jiao, X.; Tang, W.; Yang, C.; Li, Y.; Min, J. A universal layer-by-layer solution-processing approach for efficient non-fullerene organic solar cells. Energy Environ. Sci. 2019, 12, 384−395. doi: 10.1039/C8EE02560F

    21. [21]

      Luo, Z.; Bin, H.; Liu, T.; Zhang, Z. G.; Yang, Y.; Zhong, C.; Qiu, B.; Li, G.; Gao, W.; Xie, D.; Wu, K.; Sun, Y.; Liu, F.; Li, Y.; Yang, C. Fine-tuning of molecular packing and energy level through methyl substitution enabling excellent small molecule acceptors for nonfullerene polymer solar cells with efficiency up to 12.54%. Adv. Mater. 2018, 30, 1706124. doi: 10.1002/adma.201706124

    22. [22]

      Liu, W.; Zhang, J.; Zhou, Z.; Zhang, D.; Zhang, Y.; Xu, S.; Zhu, X. Design of a new fused-ring electron acceptor with excellent compatibility to wide-bandgap polymer donors for high-performance organic photovoltaics. Adv. Mater. 2018, 30, 1800403. doi: 10.1002/adma.201800403

    23. [23]

      Bin, H.; Gao, L.; Zhang, Z. G.; Yang, Y.; Zhang, Y.; Zhang, C.; Chen, S.; Xue, L.; Yang, C.; Xiao, M.; Li, Y. 11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor. Nat. Commun. 2016, 7, 13651. doi: 10.1038/ncomms13651

    24. [24]

      Zhang, Z. G.; Wang, J. Structures and properties of conjugated donor-acceptor copolymers for solar cell applications. J. Mater. Chem. 2012, 22, 4178−4187. doi: 10.1039/c2jm14951f

    25. [25]

      Min, J.; Zhang, Z. G.; Zhang, S.; Zhang, M.; Zhang, J.; Li, Y. Synthesis and photovoltaic properties of D-A copolymers based on dithienosilole and benzotriazole. Macromolecules 2011, 44, 7632−7638. doi: 10.1021/ma201673m

    26. [26]

      Zhang, L.; He, C.; Chen, J.; Yuan, P.; Huang, L.; Zhang, C.; Cai, W.; Liu, Z.; Cao, Y. Bulk-heterojunction solar cells with benzotriazole-based copolymers as electron donors: largely improved photovoltaic parameters by using PFN/Al bilayer cathode. Macromolecules 2010, 43, 9771−9778. doi: 10.1021/ma102080c

    27. [27]

      Song, J.; Bo, Z. Planar copolymers for high-efficiency polymer solar cells. Sci. China Chem. 2019, 62, 9−13. doi: 10.1007/s11426-018-9363-8

    28. [28]

      Li, K.; Li, Z.; Feng, K.; Xu, X.; Wang, L.; Peng, Q. Development of large band-gap conjugated copolymers for efficient regular single and tandem organic solar cells. J. Am. Chem. Soc. 2013, 135, 13549−13557. doi: 10.1021/ja406220a

    29. [29]

      Bin, H.; Zhang, Z. G.; Gao, L.; Chen, S.; Zhong, L.; Xue, L.; Yang, C.; Li, Y. Non-fullerene polymer solar cells based on alkylthio and fluorine substituted 2D-conjugated polymers reach 9.5% efficiency. J. Am. Chem. Soc. 2016, 138, 4657−4664. doi: 10.1021/jacs.6b01744

    30. [30]

      Price, S. C.; Stuart, A. C.; Yang, L.; Zhou, H.; You, W. Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells. J. Am. Chem. Soc. 2011, 133, 4625−4631. doi: 10.1021/ja1112595

    31. [31]

      Zhang, Z.; Peng, B.; Liu, B.; Pan, C.; Li, Y.; He, Y.; Zhou, K.; Zou, Y. Copolymers from benzodithiophene and benzotriazole: synthesis and photovoltaic applications. Polym. Chem. 2010, 1, 1441−1447. doi: 10.1039/c0py00136h

    32. [32]

      Zhang, Q.; Kelly, M. A.; Bauer, N.; You, W. The curious case of fluorination of conjugated polymers for solar cells. Acc. Chem. Res. 2017, 50, 2401−2409. doi: 10.1021/acs.accounts.7b00326

    33. [33]

      Gao, L.; Zhang, Z. G.; Xue, L.; Min, J.; Zhang, J.; Wei, Z.; Li, Y. All-polymer solar cells based on absorption-complementary polymer donor and acceptor with high power conversion efficiency of 8.27%. Adv. Mater. 2016, 28, 1884−1890. doi: 10.1002/adma.201504629

    34. [34]

      Gao, L.; Zhang, Z. G.; Bin, H.; Xue, L.; Yang, Y.; Wang, C.; Liu, F.; Russell, T. P.; Li, Y. High-efficiency nonfullerene polymer solar cells with medium bandgap polymer donor and narrow bandgap organic semiconductor acceptor. Adv. Mater. 2016, 28, 8288−8295. doi: 10.1002/adma.201601595

    35. [35]

      Yang, Y.; Zhang, Z. G.; Bin, H.; Chen, S.; Gao, L.; Xue, L.; Yang, C.; Li, Y. Side-chain isomerization on an n-type organic semiconductor itic acceptor makes 11.77% high efficiency polymer solar cells. J. Am. Chem. Soc. 2016, 138, 15011−15018. doi: 10.1021/jacs.6b09110

    36. [36]

      Bin, H.; Yang, Y.; Peng, Z.; Ye, L.; Yao, J.; Zhong, L.; Sun, C.; Gao, L.; Huang, H.; Li, X.; Qiu, B.; Xue, L.; Zhang, Z. G.; Ade, H.; Li, Y. Effect of alkylsilyl side-chain structure on photovoltaic properties of conjugated polymer donors. Adv. Energy Mater. 2018, 8, 1702324. doi: 10.1002/aenm.201702324

    37. [37]

      Su, W.; Li, G.; Fan, Q.; Zhu, Q.; Guo, X.; Chen, J.; Wu, J.; Ma, W.; Zhang, M.; Li, Y. Nonhalogen solvent-processed polymer solar cells based on chlorine and trialkylsilyl substituted conjugated polymers achieve 12.8% efficiency. J. Mater. Chem. A 2019, 7, 2351−2359. doi: 10.1039/C8TA10662B

    38. [38]

      Tang, A.; Song, W.; Xiao, B.; Guo, J.; Min, J.; Ge, Z.; Zhang, J.; Wei, Z.; Zhou, E. Benzotriazole-based acceptor and donors, coupled with chlorination, achieve a high Voc of 1.24 V and an efficiency of 10.5% in fullerene-free organic solar cells. Chem. Mater. 2019, 31, 3941−3947. doi: 10.1021/acs.chemmater.8b05316

    39. [39]

      Tang, A.; Xiao, B.; Chen, F.; Zhang, J.; Wei, Z.; Zhou, E. The introduction of fluorine and sulfur atoms into benzotriazole-based p-type polymers to match with a benzotriazole-containing n-type small molecule: “the same-acceptor-strategy” to realize high open-circuit voltage. Adv. Energy Mater. 2018, 8, 1801582. doi: 10.1002/aenm.201801582

    40. [40]

      Fan, Q.; Su, W.; Meng, X.; Guo, X.; Li, G.; Ma, W.; Zhang, M.; Li, Y. High-performance non-fullerene polymer solar cells based on fluorine substituted wide bandgap copolymers without extra treatments. Solar RRL 2017, 1700020. doi: 10.1002/solr.201700020

    41. [41]

      Xue, L.; Yang, Y.; Xu, J.; Zhang, C.; Bin, H.; Zhang, Z. G.; Qiu, B.; Li, X.; Sun, C.; Gao, L.; Yao, J.; Chen, X.; Yang, Y.; Xiao, M.; Li, Y. Side chain engineering on medium bandgap copolymers to suppress triplet formation for high-efficiency polymer solar cells. Adv. Mater. 2017, 40, 1703344. doi: 10.1002/adma.201703344

    42. [42]

      Chao, P.; Liu, L.; Zhou, J.; Qu, J.; Mo, D.; Meng, H.; Xie, Z.; He, F.; Ma, Y. Multichloro-substitution strategy: facing low photon energy loss in nonfullerene solar cells. ACS Appl. Energy Mater. 2018, 1, 6549−6559. doi: 10.1021/acsaem.8b01447

    43. [43]

      Yan, T.; Bin, H.; Yang, Y.; Xue, L.; Zhang, Z. G.; Li, Y. Effect of furan π-bridge on the photovoltaic performance of D-A copolymers based on bi(alkylthio-thienyl)benzodithiophene and fluorobenzotriazole. Sci. China Chem. 2017, 60, 537−544. doi: 10.1007/s11426-017-9030-9

    44. [44]

      Yan, T.; Bin, H.; Sun, C.; Zhang, Z. G.; Li, Y. Synthesis and photovoltaic properties of 2D-conjugated polymers with alkylsilyl-substituted thieno[3,2-b]thiophene conjugated side chains. Org. Electron. 2018, 57, 255−262. doi: 10.1016/j.orgel.2018.03.028

    45. [45]

      Chen, Y.; Geng, Y.; Tang, A.; Wang, X.; Sun, Y.; Zhou, E. Changing the π-bridge from thiophene to thieno[3,2-b]thiophene for the D-π-A type polymer enables high performance fullerene-free organic solar cells. Chem. Commun. 2019, 55, 6708−6710. doi: 10.1039/C9CC02904D

    46. [46]

      Tang, A.; Zhang, Q.; Du, M.; Li, G.; Geng, Y.; Zhang, J.; Wei, Z.; Sun, X.; Zhou, E. Molecular Engineering of D-π-A copolymers based on 4,8-bis(4-chlorothiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene (BDT-T-CL) for high-performance fullerene-free organic solar cells. Macromolecules 2019, 52, 6227−6233. doi: 10.1021/acs.macromol.9b01233

    47. [47]

      Wang, T.; Sun, R.; Xu, S.; Guo, J.; Wang, W.; Guo, J.; Jiao, X.; Wang, J.; Jia, S.; Zhu, X.; Li, Y.; Min, J. A wide-bandgap D-A copolymer donor based on a chlorine substituted acceptor unit for high performance polymer solar cells. J. Mater. Chem. A 2019, 7, 14070−14078. doi: 10.1039/C9TA03272J

    48. [48]

      Bin, H.; Zhong, L.; Yang, Y.; Gao, L.; Huang, H.; Sun, C.; Li, X.; Xue, L.; Zhang, Z. G.; Zhang, Z.; Li, Y. Medium bandgap polymer donor based on bi(trialkylsilylthienyl-benzo[1,2-b:4,5-b′]-difuran) for high performance nonfullerene polymer solar cells. Adv. Energy Mater. 2017, 7, 1700746. doi: 10.1002/aenm.201700746

    49. [49]

      Zhong, L.; Bin, H.; Angunawela, I.; Jia, Z.; Qiu, B.; Sun, C.; Li, X.; Zhang, Z.; Ade, H.; Li, Y. Effect of replacing thiophene by selenophene on the photovoltaic performance of wide bandgap copolymer donors. Macromolecules 2019, 52, 4776−4784. doi: 10.1021/acs.macromol.9b00484

    50. [50]

      Zhang, Y.; Yao, H.; Zhang, S.; Qin, Y.; Zhang, J.; Yang, L.; Li, W.; Wei, Z.; Gao, F.; Hou, J. Fluorination vs. chlorination: a case study on high performance organic photovoltaic materials. Sci. China Chem. 2018, 61, 1328−1337. doi: 10.1007/s11426-018-9260-2

    51. [51]

      Chao, P.; Johner, N.; Zhong, X.; Meng, H.; He, F. Chlorination strategy on polymer donors toward efficient solar conversions. J. Energy Chem. 2019, 39, 208−216. doi: 10.1016/j.jechem.2019.04.002

    52. [52]

      Qiu, B.; Chen, S.; Li, H.; Luo, Z.; Yao, J.; Sun, C.; Li, X.; Xue, L.; Zhang, Z. G.; Yang, C.; Li, Y. A simple approach to prepare chlorinated polymer donors with low-lying homo level for high performance polymer solar cells. Chem. Mater. 2019, 31, 6558−6567. doi: 10.1021/acs.chemmater.8b05352

    53. [53]

      Wang, X.; Dou, K.; Shahid, B.; Liu, Z.; Li, Y.; Sun, M.; Zheng, N.; Bao, X.; Yang, R. Terpolymer strategy toward high-efficiency polymer solar cells: integrating symmetric benzodithiophene and asymmetrical thieno[2,3-f]benzofuran segments. Chem. Mater. 2019, 31, 6163−6173. doi: 10.1021/acs.chemmater.9b01957

    54. [54]

      Wang, X.; Han, J.; Jiang, H.; Liu, Z.; Li, Y.; Yang, C.; Yu, D.; Bao, X.; Yang, R. Regulation of molecular packing and blend morphology by finely tuning molecular conformation for high-performance nonfullerene polymer solar cells. ACS Appl. Mater. Interfaces 2019, 11, 44501−44512. doi: 10.1021/acsami.9b14981

    55. [55]

      Liu, D.; Zhang, K.; Zhong, Y.; Gu, C.; Li, Y.; Yang, R. An effective strategy for controlling the morphology of high-performance non-fullerene polymer solar cells without post-treatment: employing bare rigid aryl rings as lever arms in new asymmetric benzodithiophene. J. Mater. Chem. A 2018, 6, 18125−18132. doi: 10.1039/C8TA07134A

    56. [56]

      Chao, P.; Liu, L.; Qu, J.; He, Q.; Gan, S.; Meng, H.; Chen, W.; He, F. Overcoming the trade-off between Voc and Jsc: asymmetric chloro-substituted two-dimensional benzo[1,2-b:4,5-b′]dithiophene-based polymer solar cells. Dyes Pigments 2019, 162, 746−754. doi: 10.1016/j.dyepig.2018.10.071

    57. [57]

      Wen, S.; Chen, W.; Huang, G.; Shen, W.; Liu, H.; Duan, L.; Zhang, J.; Yang, R. 2D expanded conjugated polymers with non-fullerene acceptors for efficient polymer solar cells. J. Mater. Chem. C 2018, 6, 1753−1758. doi: 10.1039/C7TC04750A

    58. [58]

      Zhang, Y.; Wang, Y.; Ma, R.; Luo, Z.; Liu, T.; Kang, S. H.; Yan, H.; Yuan, Z.; Yang, C.; Chen, Y. Wide band-gap two-dimension conjugated polymer donors with different amounts of chlorine substitution on alkoxyphenyl conjugated side chains for non-fullerene polymer solar cells. Chinese J. Polym. Sci. 2020, 38, 797−805. doi: 10.1007/s10118-020-2435-5

    59. [59]

      Liao, Z.; Xie, Y.; Chen, L.; Tan, Y.; Huang, S.; An, Y.; Ryu, H. S.; Meng, X.; Liao, X.; Huang, B.; Xie, Q.; Woo, H. Y.; Sun, Y.; Chen, Y. Fluorobenzotriazole (FTAZ)-based polymer donor enables organic solar cells exceeding 12% efficiency. Adv. Funct. Mater. 2019, 29, 1808828. doi: 10.1002/adfm.201808828

    60. [60]

      Gao, Y.; Shen, Z.; Tan, F.; Yue, G.; Liu, R.; Wang, Z.; Qu, S.; Wang, Z.; Zhang, W. Novel benzo[1,2-b:4,5-b']difuran-based copolymer enables efficient polymer solar cells with small energy loss and high Voc. Nano Energy 2020, 76, 104964. doi: 10.1016/j.nanoen.2020.104964

    61. [61]

      Chen, W.; Huang, G.; Li, X.; Wang, H.; Li, Y.; Jiang, H.; Zheng, N.; Yang, R. Side-chain-promoted benzodithiophene-based conjugated polymers toward striking enhancement of photovoltaic properties for polymer solar cells. ACS Appl. Mater. Interfaces 2018, 10, 42747−42755. doi: 10.1021/acsami.8b16554

    62. [62]

      Chen, W.; Huang, G.; Li, X.; Li, Y.; Wang, H.; Jiang, H.; Zhao, Z.; Yu, D.; Wang, E.; Yang, R. Revealing the position effect of an alkylthio side chain in phenyl-substituted benzodithiophene-based donor polymers on the photovoltaic performance of non-fullerene organic solar cells. ACS Appl. Mater. Interfaces 2019, 11, 33173−33178. doi: 10.1021/acsami.9b07112

    63. [63]

      Tang, Z.; Xu, X.; Li, R.; Yu, L.; Meng, L.; Wang, Y.; Li, Y.; Peng, Q. Asymmetric siloxane functional side chains enable high-performance donor copolymers for photovoltaic applications. ACS Appl. Mater. Interfaces 2020, 12, 17760−17768. doi: 10.1021/acsami.9b20204

    64. [64]

      Cui, W.; Li, F.; Zhu, T.; Li, Y.; Yu, L.; Yang, R.; Sun, M. 1 V high open-circuit voltage fluorinated alkoxybiphenyl side-chained benzodithiophene based photovoltaic polymers. Synth. Met. 2019, 257, 116182. doi: 10.1016/j.synthmet.2019.116182

    65. [65]

      Li, X.; Huang, G.; Zheng, N.; Li, Y.; Kang, X.; Qiao, S.; Jiang, H.; Chen, W.; Yang, R. High-efficiency polymer solar cells over 13.9% with a high Voc beyond 1.0 V by synergistic effect of fluorine and sulfur. Solar RRL 2019, 3, 1900005. doi: 10.1002/solr.201900005

    66. [66]

      Mori, D.; Benten, H.; Okada, I.; Ohkita, H.; Ito, S. Highly efficient charge-carrier generation and collection in polymer/polymer blend solar cells with a power conversion efficiency of 5.7%. Energy Environ. Sci. 2014, 7, 2939−2943. doi: 10.1039/C4EE01326C

    67. [67]

      Liu, X.; Rand, B. P.; Forrest, S. R. Engineering charge-transfer states for efficient, low-energy-loss organic photovoltaics. Trends Chem. 2019, 1, 815−829. doi: 10.1016/j.trechm.2019.08.001

    68. [68]

      Hou, J.; Inganäs, O.; Friend, R. H.; Gao, F. Organic solar cells based on non-fullerene acceptors. Nat. Mater. 2018, 17, 119. doi: 10.1038/nmat5063

    69. [69]

      Wang, T.; Kupgan, G.; Brédas, J. L. Organic photovoltaics: relating chemical structure, local morphology, and electronic properties. Trends Chem. 2020, 2, 535−554. doi: 10.1016/j.trechm.2020.03.006

    70. [70]

      Yu, L.; Li, Y.; Wang, Y.; Wang, X.; Cui, W.; Wen, S.; Zheng, N.; Sun, M.; Yang, R. Fuse the π-bridge to acceptor moiety of donor-π-acceptor conjugated polymer: enabling an all-round enhancement in photovoltaic parameters of nonfullerene organic solar cells. ACS Appl. Mater. Interfaces 2019, 11, 31087−31095. doi: 10.1021/acsami.9b09486

    71. [71]

      Lan, L.; Chen, Z.; Hu, Q.; Ying, L.; Zhu, R.; Liu, F.; Russell, T. P.; Huang, F.; Cao, Y. High-performance polymer solar cells based on a wide-bandgap polymer containing pyrrolo[3,4-f]benzotriazole-5,7-dione with a power conversion efficiency of 8.63%. Adv. Sci. 2016, 3, 1600032. doi: 10.1002/advs.201600032

    72. [72]

      Fan, B.; Zhang, D.; Li, M.; Zhong, W.; Zeng, Z.; Ying, L.; Huang, F.; Cao, Y. Achieving over 16% efficiency for single-junction organic solar cells. Sci. China Chem. 2019, 62, 746−752. doi: 10.1007/s11426-019-9457-5

    73. [73]

      Fan, B.; Du, X.; Liu, F.; Zhong, W.; Ying, L.; Xie, R.; Tang, X.; An, K.; Xin, J.; Li, N.; Ma, W.; Brabec, C. J.; Huang, F.; Cao, Y. Fine-tuning of the chemical structure of photoactive materials for highly efficient organic photovoltaics. Nat. Energy 2018, 3, 1051−1058. doi: 10.1038/s41560-018-0263-4

    74. [74]

      Li, Z. Y.; Zhong, W. K.; Ying, L.; Li, N.; Liu, F.; Huang, F.; Cao, Y. Achieving efficient thick film all-polymer solar cells using a green solvent additive. Chinese J. Polym. Sci. 2020, 38, 323−331. doi: 10.1007/s10118-020-2356-3

    75. [75]

      Zhu, L.; Zhong, W.; Qiu, C.; Lyu, B.; Zhou, Z.; Zhang, M.; Song, J.; Xu, J.; Wang, J.; Ali, J.; Feng, W.; Shi, Z.; Gu, X.; Ying, L.; Zhang, Y.; Liu, F. Aggregation-induced multilength scaled morphology enabling 11.76% efficiency in all-polymer solar cells using printing fabrication. Adv. Mater. 2019, 31, 1902899. doi: 10.1002/adma.201902899

    76. [76]

      Jiang, X.; Wang, J.; Wang, W.; Yang, Y.; Zhan, X.; Chen, X. Impact of an electron withdrawing group on the thiophene-fused benzotriazole unit on the photovoltaic performance of the derived polymer solar cells. Dyes Pigments 2019, 166, 381−389. doi: 10.1016/j.dyepig.2019.03.056

    77. [77]

      Dong, Y.; Hu, X.; Duan, C.; Liu, P.; Liu, S.; Lan, L.; Chen, D.; Ying, L.; Su, S.; Gong, X.; Huang, F.; Cao, Y. A series of new medium-bandgap conjugated polymers based on naphtho[1,2-c:5,6-c]bis(2-octyl-[1,2,3]triazole) for high-performance polymer solar cells. Adv. Mater. 2013, 25, 3683−3688. doi: 10.1002/adma.201301547

    78. [78]

      Feng, K.; Yuan, J.; Bi, Z.; Ma, W.; Xu, X.; Zhang, G.; Peng, Q. Low-energy-loss polymer solar cells with 14.52% efficiency enabled by wide-band-gap copolymers. iScience 2019, 12, 1−12. doi: 10.1016/j.isci.2018.12.027

    79. [79]

      Fu, H.; Wang, Z.; Sun, Y. Polymer donors for high-performance non-fullerene organic solar cells. Angew. Chem. Int. Ed. 2019, 58, 4442−4453. doi: 10.1002/anie.201806291

    80. [80]

      Zheng, B.; Huo, L.; Li, Y. Benzodithiophenedione-based polymers: recent advances in organic photovoltaics. NPG Asia Mater. 2020, 12, 3. doi: 10.1038/s41427-019-0163-5

    81. [81]

      An, C.; Zheng, Z.; Hou, J. Recent progress in wide bandgap conjugated polymer donors for high-performance nonfullerene organic photovoltaics. Chem. Commun. 2020, 56, 4750−4760. doi: 10.1039/D0CC01038C

    82. [82]

      Zheng, Z.; Yao, H.; Ye, L.; Xu, Y.; Zhang, S.; Hou, J. PBDB-T and its derivatives: a family of polymer donors enables over 17% efficiency in organic photovoltaics. Mater. Today 2020, 35, 115−130. doi: 10.1016/j.mattod.2019.10.023

    83. [83]

      Cui, C.; Li, Y. High-performance conjugated polymer donor materials for polymer solar cells with narrow-bandgap nonfullerene acceptors. Energy Environ. Sci. 2019, 12, 3225−3246. doi: 10.1039/C9EE02531F

    84. [84]

      Sun, C.; Pan, F.; Bin, H.; Zhang, J.; Xue, L.; Qiu, B.; Wei, Z.; Zhang, Z. G.; Li, Y. A low cost and high performance polymer donor material for polymer solar cells. Nat. Commun. 2018, 9, 743. doi: 10.1038/s41467-018-03207-x

    85. [85]

      Yuan, J.; Guo, W.; Xia, Y.; Ford, M. J.; Jin, F.; Liu, D.; Zhao, H.; Inganäs, O.; Bazan, G. C.; Ma, W. Comparing the device physics, dynamics and morphology of polymer solar cells employing conventional PCBM and non-fullerene polymer acceptor N2200. Nano Energy 2017, 35, 251−262. doi: 10.1016/j.nanoen.2017.03.050

    86. [86]

      Li, B.; Zhang, Q.; Dai, G.; Fan, H.; Yuan, X.; Xu, Y.; Cohen-Kleinstein, B.; Yuan, J.; Ma, W. Understanding the impact of side-chains on photovoltaic performance in efficient all-polymer solar cells. J. Mater. Chem. C 2019, 7, 12641−12649. doi: 10.1039/C9TC02141H

    87. [87]

      Jiang, K.; Wei, Q.; Lai, J. Y. L.; Peng, Z.; Kim, H. K.; Yuan, J.; Ye, L.; Ade, H.; Zou, Y.; Yan, H. Alkyl chain tuning of small molecule acceptors for efficient organic solar cells. Joule 2019, 3, 3020−3033. doi: 10.1016/j.joule.2019.09.010

    88. [88]

      Jia, T.; Zhang, J.; Zhong, W.; Liang, Y.; Zhang, K.; Dong, S.; Ying, L.; Liu, F.; Wang, X.; Huang, F.; Cao, Y. 14.4% Efficiency all-polymer solar cell with broad absorption and low energy loss enabled by a novel polymer acceptor. Nano Energy 2020, 72, 104718. doi: 10.1016/j.nanoen.2020.104718

    89. [89]

      Wu, Q.; Wang, W.; Wang, T.; Sun, R.; Guo, J.; Wu, Y.; Jiao, X.; Brabec, C. J.; Li, Y.; Min, J. High-performance all-polymer solar cells with only 0.47 eV energy loss. Sci. China Chem. 2020, 63, 1449−1460. doi: 10.1007/s11426-020-9785-7

    90. [90]

      Du, J.; Hu, K.; Meng, L.; Angunawela, I.; Zhang, J.; Qin, S.; Liebman-Pelaez, A.; Zhu, C.; Zhang, Z.; Ade, H.; Li, Y. High performance all-polymer solar cells with the polymer acceptor synthesized via a random ternary copolymerization strategy. Angew. Chem. Int. Ed. 2020, 59, 15181−15185. doi: 10.1002/anie.202005357

  • 加载中
    1. [1]

      Xun-fan LiaoJing WangShuang-ying ChenLie ChenYi-wang Chen . Diketopyrrolopyrrole-based Conjugated Polymers as Additives to Optimize Morphology for Polymer Solar Cells. Chinese J. Polym. Sci, 2016, 34(4): 491-504. doi: 10.1007/s10118-016-1761-0

    2. [2]

      Mukhamed L. KeshtovDmitry V. MarochkinYing-ying FuZhi-yuan XieYan-hou GengVitaly S. KochurovAlexei R. Khokhlov . Thienopyrazine or Dithiadiazatrindene Containing Low Band Gap Conjugated Polymers for Polymer Solar Cells. Chinese J. Polym. Sci, 2014, 32(7): 844-853. doi: 10.1007/s10118-014-1458-1

    3. [3]

      Zhen LuCui-hong LiChun DuXue GongZhi-shan Bo . 6,7-DIALKOXY-2,3-DIPHENYLQUINOXALINE BASED CONJUGATED POLYMERS FOR SOLAR CELLS WITH HIGH OPEN-CIRCUIT VOLTAGE. Chinese J. Polym. Sci, 2013, 31(6): 901-911. doi: 10.1007/s10118-013-1275-y

    4. [4]

      Quan-xiang YanZhuo-wei GuQi LiWei-fei FuXiao-qiang ChenWen-qing LiuHong-bin PanMang WangHong-zheng Chen . Water Soluble Amino Grafted Silicon Nanoparticles and Their Use in Polymer Solar Cells. Chinese J. Polym. Sci, 2014, 32(4): 395-401. doi: 10.1007/s10118-014-1415-z

    5. [5]

      Rui-ping QinYu-rong JiangHao-xing ZhangKai-xuan ZhangQun-ying ZhangFang-gao Chang . Fine-tuning of Polymer Photovoltaic Properties by the Length of Alkyl Side Chains. Chinese J. Polym. Sci, 2015, 33(3): 490-498. doi: 10.1007/s10118-015-1603-5

    6. [6]

      Kai ZhangXiao-yu LiuBo-wei XuYong CuiMing-liang SunJian-hui Hou . High-performance Fullerene-free Polymer Solar Cells with Solution-processed Conjugated Polymers as Anode Interfacial Layer. Chinese J. Polym. Sci, 2017, 35(2): 219-229. doi: 10.1007/s10118-017-1888-7

    7. [7]

      Meng-Han WangZhong-Yuan XueZhi-Wei WangWei-Hua NingYu ZhongYa-Nan LiuChun-Feng ZhangSven HuettnerYou-Tian Tao . Slight Structural Disorder in Bithiophene-based Random Terpolymers with Improved Power Conversion Efficiency for Polymer Solar Cells. Chinese J. Polym. Sci, 2018, 36(10): 1129-1138. doi: 10.1007/s10118-018-2128-5

    8. [8]

      Jia-min CaoLiu QianDan HeZuo XiaoLi-ming Ding . D-A Copolymers Based on a Pentacyclic Acceptor Unit and a 3, 3'-Difluoro-2, 2'-bithiophene for Solar Cells. Chinese J. Polym. Sci, 2017, 35(12): 1457-1462. doi: 10.1007/s10118-017-1996-4

    9. [9]

      Fan YangCheng LiGui-tao FengXu-dong JiangAn-dong ZhangWei-wei Li . Bisperylene Bisimide Based Conjugated Polymer as Electron Acceptor for Polymer-Polymer Solar Cellsh. Chinese J. Polym. Sci, 2017, 35(2): 239-248. doi: 10.1007/s10118-017-1870-4

    10. [10]

      Ansuman NayakP.S. Rama SreekanthSantosh Kumar SahuDuryodhan Sahu . Structural Tuning of Low Band Gap Intermolecular Push/Pull Side-chain Polymers for Organic Photovoltaic Applications. Chinese J. Polym. Sci, 2017, 35(9): 1073-1085. doi: 10.1007/s10118-017-1967-9

    11. [11]

      Tao JiaNan-nan ZhengWan-qing CaiJie ZhangLei YingFei HuangYong Cao . Microwave-assisted One-pot Three-component Polymerization of Alkynes, Aldehydes and Amines toward Amino-functionalized Optoelectronic Polymers. Chinese J. Polym. Sci, 2017, 35(2): 269-281. doi: 10.1007/s10118-017-1890-0

    12. [12]

      Xiao-peng XuGuang-jun ZhangYun-zhe ZhaoJiang LiuYing LiQiang Peng . Highly Efficient Random Terpolymers for Photovoltaic Applications with Enhanced Absorption and Molecular Aggregation. Chinese J. Polym. Sci, 2017, 35(2): 249-260. doi: 10.1007/s10118-017-1877-x

    13. [13]

      Mei-Jing LiBao-Bing FanWen-Kai ZhongZhao-Mi-Yi ZengJing-Kun XuLei Ying . Rational Design of Conjugated Polymers for d-Limonene Processed All-polymer Solar Cells with Small Energy Loss. Chinese J. Polym. Sci, 2020, 38(8): 791-796. doi: 10.1007/s10118-020-2429-3

    14. [14]

      Xiao-Cheng LiuQing-Wu YinZhi-Cheng HuZhen-Feng WangFei HuangYong Cao . Perylene Diimide Based Isomeric Conjugated Polymers as Efficient Electron Acceptors for All-polymer Solar Cells. Chinese J. Polym. Sci, 2019, 37(1): 18-27. doi: 10.1007/s10118-019-2188-1

    15. [15]

      Shui-xing DaiShi-ming ZhangQi-dan LingXiao-wei Zhan . Rylene Diimide and Dithienocyanovinylene Copolymers for Polymer Solar Cells. Chinese J. Polym. Sci, 2017, 35(2): 230-238. doi: 10.1007/s10118-017-1879-8

    16. [16]

      Dan TiKun GaoZhi-Pan ZhangLiang-Ti Qu . Conjugated Polymers as Hole Transporting Materials for Solar Cells. Chinese J. Polym. Sci, 2020, 38(5): 449-458. doi: 10.1007/s10118-020-2369-y

    17. [17]

      Chao WangFeng LiuQiao-Mei ChenCheng-Yi XiaoYong-Gang WuWei-Wei Li . Benzothiadiazole-based Conjugated Polymers for Organic Solar Cells. Chinese J. Polym. Sci, 2021, 39(5): 525-536. doi: 10.1007/s10118-021-2537-8

    18. [18]

      Yi-kun GuoYun-ke LiHan HanHe YanDahui Zhao . All-Polymer Solar Cells with Perylenediimide Polymer Acceptors. Chinese J. Polym. Sci, 2017, 35(2): 293-301. doi: 10.1007/s10118-017-1893-x

    19. [19]

      Xin-Lei ZhangLei WangLiang ChenXiao-Yu MaHang-Xun Xu . Ultrathin 2D Conjugated Polymer Nanosheets for Solar Fuel Generation. Chinese J. Polym. Sci, 2019, 37(2): 101-114. doi: 10.1007/s10118-019-2171-x

    20. [20]

      Amjad IslamZhi-yang LiuRui-xiang PengWei-gang JiangTao LeiWang LiLei ZhangRong-juan YangGuan QianZi-yi Ge . Furan-containing Conjugated Polymers for Organic Solar Cells. Chinese J. Polym. Sci, 2017, 35(2): 171-183. doi: 10.1007/s10118-017-1886-9

Article Metrics
  • PDF Downloads(0)
  • Abstract views(1273)
  • HTML views(191)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return