Citation: Xu, L.; Shi, T. F.; An, L. J.; Lu, Y. Y.; Wang, L. N. Effect of interfacial adsorption on the stability of thin polymer films in a solvent-induced process. Chinese J. Polym. Sci. 2021, 39, 501–511 doi: 10.1007/s10118-020-2493-8 shu

Effect of Interfacial Adsorption on the Stability of Thin Polymer Films in a Solvent-induced Process

Figures(8) / Tables(1)

  • The stability of ultrathin polymer films plays a crucial role in their technological applications. Here, we systematically investigated the influence of interfacial adsorption in physical aging and the stability of thin polymer films in the solvent-induced process. We further identify the stability mechanism from the theory of thin film stability. Our results show that the aging temperature and film thickness can strongly influence the stability of thin PS films in acetone vapor. Physical aging can greatly improve the stability of thin polymer films when the aging temperature Taging1>Tg. A thinner PS film more quickly reaches a stable state via physical aging. At short aging time, the formation of the adsorbed layer can reduce the polar interaction; however, it slightly influences the stability of thin polymer films in the solvent-induced process. At later aging stage, the conformational rearrangement of the polymer chains induced by the interfacial effect at the aging temperature Taging1 plays an important role in stabilizing the thin polymer films. However, at Taging2<Tg, the process of physical aging slightly influences the stability of the thin polymer films. The formation of the adsorbed layer at Taging2 can reduce the short-range polar interaction of the thin film system and cannot suppress the instability of thin polymer films in the solvent-induced process. These results provide further insight into the stable mechanism of thin polymer films in the solvent-induced process.
  • 加载中
    1. [1]

      Ko, J.; Kim, Y. K.; Kang, J. S.; Berger, R.; Yoon, H. S.; Char, K. H. Enhanced vertical charge transport of homo- and blended semiconducting polymers by nanoconfinement. Adv. Mater. 2020, 32, 1908087. doi: 10.1002/adma.201908087

    2. [2]

      Lim, M. S.; Nam, M. W.; Choi, S. Y.; Jeon, Y. M.; Son, Y. H.; Lee, S. M.; Choi, K. C. Two-dimensionally stretchable organic light-emitting diode with elastic pillar arrays for stress relief. Nano Lett. 2020, 20, 1526−1535. doi: 10.1021/acs.nanolett.9b03657

    3. [3]

      Fang, D.; Yao, K. Q.; Ding, Y. C.; Li, P.; Hou, H. Q. High dielectric polyimide composite film filled with a heat-resistant organic salt. Compos. Commun. 2019, 14, 29−33. doi: 10.1016/j.coco.2019.05.008

    4. [4]

      Zhou, B.; Li, Y. H.; Zhang, D. B.; Zheng, G, Q. Dai, Mi, L, W.; Liu, C. T.; Shen, C. Y. Interfacial adhesion enhanced flexible polycarbonate/carbon nanotubes transparent conductive film for vapor sensing. Compos. Commun. 2019, 15, 80−86. doi: 10.1016/j.coco.2019.06.012

    5. [5]

      Zuo, G. Z.; Linares, M.; Upreti, T.; Kemerink, M. General rule for the energy of water-induced traps in organic semiconductors. Nat. Mater. 2019, 18, 588−593. doi: 10.1038/s41563-019-0347-y

    6. [6]

      Jia, X.; Fuentes-Hernandez, C.; Wang, C. Y.; Park, Y.; Kippelen, B. Stable organic thin-film transistors. Sci. Adv. 2018, 4, eaao1705. doi: 10.1126/sciadv.aao1705

    7. [7]

      Blagodatski, A.; Kryuchkov, M.; Sergeev, A.; Klimov, A. A.; Shcherbakov, M. R.; Enin, G. A.; Katanaev, V. L. Under- and over-water halves of gyrinidae beetle eyes harbor different corneal nanocoatings providing adaptation to the water and air environments. Sci. Rep. 2015, 4, 6004. doi: 10.1038/srep06004

    8. [8]

      Xia, T.; Qin, Y. P.; Huang, T. Phase separation, wetting and dewetting in PS/PVME blend thin films: dependence on film thickness and composition ratio. Chinese J. Polym. Sci. 2018, 36, 1084−1092. doi: 10.1007/s10118-018-2121-z

    9. [9]

      Zhou, Y.; Bai, P.; Huo, M.; Chen, Y. J.; Li, H.; Kang, H. M.; Liu, H. Z.; Guo, Y. L. Slow down dewetting in polymer films by isocyanate-treated graphite oxide. Chinese J. Polym. Sci. 2018, 36, 1070−1076. doi: 10.1007/s10118-018-2147-2

    10. [10]

      Su, C.; Ma, S. M.; Liu, G. X.; Yang, S. G. Dewetting behavior of hydrogen bonded polymer complex film under hydrothermal condition. Chinese J. Polym. Sci. 2018, 36, 1036−1042. doi: 10.1007/s10118-018-2109-8

    11. [11]

      Lee, S. J.; Lee, W. S.; Yamada, N. L.; Tanaka, K.; Kim, J. H.; Lee, H.; Ryu, D. Y. Instability of polystyrene film and thermal behaviors mediated by unfavorable silicon oxide interlayer. Macromolecules 2019, 52, 7524−7530. doi: 10.1021/acs.macromol.9b01284

    12. [12]

      Che, J.; Jawaid, A.; Grabowski, C. A.; Yi, Y. J.; Louis, G. C.; Ramakrishnan, S.; Vaia, R. A. Stability of polymer grafted nanoparticle monolayers: impact of architecture and polymer-substrate interaction on dewetting. ACS Macro Lett. 2016, 5, 1369−1374. doi: 10.1021/acsmacrolett.6b00772

    13. [13]

      McGraw, J. D.; Chan, T. S.; Maurer, S.; Salez, T.; Benzaquen, M.; Raphaël, E.; Brinkmann, M.; Jacobs, K. Slip-mediated dewetting of polymer microdroplets. Proc. Natl. Acad. Sci. 2016, 113, 1168−1173. doi: 10.1073/pnas.1513565113

    14. [14]

      Xu, L.; Sharma, A.; Joo, S. W. Substrate heterogeneity induced instability and slip in polymer thin films: dewetting on silanized surfaces with variable grafting density. Macromolecules 2010, 43, 7759−7762. doi: 10.1021/ma1010028

    15. [15]

      de Silva, J. P.; Geoghegan, M.; Higgins, A. M.; Krausch, G.; David, M. O.; Reiter, G. Switching layer stability in a polymer bilayer by thickness variation. Phys. Rev. Lett. 2007, 98, 267802. doi: 10.1103/PhysRevLett.98.267802

    16. [16]

      Seemann, R.; Herminghaus, S.; Jacobs, K. Gaining control of pattern formation of dewetting liquid films. J. Phys.: Condens. Matter 2001, 13, 4925−4938. doi: 10.1088/0953-8984/13/21/319

    17. [17]

      Lee, S. H.; Yoo, P. J.; Kwon, S. J.; Lee, H. H. Solvent-driven dewetting and rim instability. J. Chem. Phys. 2004, 121, 4346−4351. doi: 10.1063/1.1770475

    18. [18]

      Unni, A. B.; Vignaud, G.; Bal, J. K.; Delorme, N.; Beuvier, T.; Thomas, S.; Grohens, Y.; Gibaud, A. Solvent assisted rinsing: stability/instability of ultrathin polymer residual layer. Macromolecules 2016, 49, 1807−1815. doi: 10.1021/acs.macromol.5b02435

    19. [19]

      Al-Khayat, O.; Hong, J. K.; Geraghty, K.; Note, C. The good, the bad, and the slippery: a tale of three solvents in polymer film dewetting. Macromolecules 2016, 49, 6590−6598. doi: 10.1021/acs.macromol.6b01579

    20. [20]

      Verma, A.; Sharma, A. Enhanced self-organized dewetting of ultrathin polymer films under water-organic solutions: fabrication of sub-micrometer spherical lens arrays. Adv. Mater. 2010, 22, 5306−5309. doi: 10.1002/adma.201002768

    21. [21]

      Xu, L.; Sharma, A.; Joo, S. W. Dewetting of stable thin polymer films induced by a poor solvent: role of polar interactions. Macromolecules 2012, 45, 6628−6633. doi: 10.1021/ma301227m

    22. [22]

      Xu, L.; Zhang, H. H.; Wang, L. N.; Lu, Y. Y.; An, L. J.; Shi, T. F. Fabrication of complex polymer nanostructures from thin polymer blend films. Polymer 2019, 171, 115−120. doi: 10.1016/j.polymer.2019.03.009

    23. [23]

      Zhang, S. S.; Zhu, Y.; Shi, T. F.; Zhao, H.; You, J. C.; Li, Y. J. Selective solvent annealing induced phase separation and dewetting in PMMA/SAN blend ultrathin films. J. Polym. Sci., Part B: Polym. Phys. 2014, 52, 1243−1251. doi: 10.1002/polb.23541

    24. [24]

      Yang, Q. C.; Zhu, Y.; You, J. C.; Li, Y. J. Stability and structure evolution in PMMA/SAN bilayer films upon solvent annealing. Colloid. Polym. Sci. 2017, 295, 181−188. doi: 10.1007/s00396-016-3994-4

    25. [25]

      You, J. C.; Zhang, S. S.; Huang, G.; Shi, T. F.; Li, Y. J. Solvent annealing induced phase separation and dewetting in PMMA/SAN blend film: film thickness and solvent dependence. J. Chem. Phys. 2013, 138, 244907. doi: 10.1063/1.4811471

    26. [26]

      Zhang, S. S.; Shi, T. F.; You, J. C.; Li, Y. J. Solvent annealing induced phase separation and dewetting in PMMA/SAN blend films: composition dependence. Polym. Chem. 2013, 4, 3943−3948. doi: 10.1039/c3py00290j

    27. [27]

      Zhang, H. H.; Lai, Y. Q.; Xu, L.; Shi, T. F. Influence of film structure on the dewetting kinetics of thin polymer films in the solvent annealing process. Phys. Chem. Chem. Phys. 2016, 18, 16310−16316. doi: 10.1039/C6CP02447E

    28. [28]

      Jiang, N. S.; Shang, J.; Di, X. Y.; Endoh, M. K.; Koga, T. Formation mechanism of high-density, flattened polymer nanolayers adsorbed on planar solids. Macromolecules 2014, 47, 2682−2689. doi: 10.1021/ma5003485

    29. [29]

      Gin, P.; Jiang, N. S.; Liang, C.; Taniguchi, T.; Akgun, B.; Satija, S. K.; Endoh, M. K.; Koga, T. Revealed architectures of adsorbed aolymer ahains at aolid-aolymer melt interfaces. Phys. Rev. Lett. 2012, 109, 265501. doi: 10.1103/PhysRevLett.109.265501

    30. [30]

      Bal, J. K.; Beuvier, T.; Unni, A. B.; Panduro, E. A. C.; Vignaud, G.; Delorme, N.; Chebil, M. S.; Grohens, Y.; Gibaud, A. Stability of polymer ultrathin films (< 7 nm) made by a top-down approach. ACS Nano 2015, 9, 8184−8193. doi: 10.1021/acsnano.5b02381

    31. [31]

      Wang, L. N.; Xu, L.; Liu, B. Y.; Shi, T. F.; Jiang, S. C.; An, L. J. The influence of polymer architectures on the dewetting behavior of thin polymer film: from linear chains to ring chains. Soft Matter 2017, 13, 3091−3098. doi: 10.1039/C7SM00379J

    32. [32]

      Ilton, M.; Salez, T.; Fowler, P. D.; Rivetti, M.; Aly, M.; Benzaquen, M.; McGraw, J. D.; Raphaël, E.; Dalnoki-Veress, K.; Bäumchen, O. Adsorption-induced slip inhibition for polymer melts on ideal substrates. Nat. Commun. 2018, 9, 1172. doi: 10.1038/s41467-018-03610-4

    33. [33]

      Xia, W.; Keten, S. Coupled Effects of substrate adhesion and intermolecular forces on polymer thin film glass-transition behavior. Langmuir 2013, 29, 12730−12736. doi: 10.1021/la402800j

    34. [34]

      Hong, Y.; Li, Y.; Wang, F.; Zuo, B.; Wang, X.; Zhang, L.; Kawaguchi, D.; Tanaka, K. Enhanced thermal stability of polystyrene by interfacial noncovalent interactions. Macromolecules 2018, 51, 5620−5627. doi: 10.1021/acs.macromol.8b01012

    35. [35]

      Chandran, S.; Baschnagel, J.; Cangialosi, D.; Fukao, K.; Glynos, E.; Janssen, L. M. C.; Müller, M.; Muthukumar, M.; Steiner, U.; Xu, J.; Napolitano, S.; Reiter, G. Processing pathways decide polymer properties at the molecular level. Macromolecules 2019, 52, 7146−7156. doi: 10.1021/acs.macromol.9b01195

    36. [36]

      Perez-de-Eulate, N. G.; Sferrazza, M.; Cangialosi, D.; Napolitano, S. Irreversible adsorption erases the free surface effect on the Tg of supported films of poly(4-tert-butylstyrene). ACS Macro Lett. 2017, 6, 354−358. doi: 10.1021/acsmacrolett.7b00129

    37. [37]

      Rodríguez-Tinoco, C.; Simavilla, D. N.; Priestley, R. D.; Wübbenhorst, M.; Napolitano, S. Density of obstacles affects diffusion in adsorbed polymer layers. ACS Macro Lett. 2020, 9, 318−322. doi: 10.1021/acsmacrolett.9b00999

    38. [38]

      Huang, X. R.; Roth, C. B. Optimizing the grafting density of tethered chains to alter the local glass transition temperature of polystyrene near silica substrates: the advantage of mushrooms over brushes. ACS Macro Lett. 2018, 7, 269−274. doi: 10.1021/acsmacrolett.8b00019

    39. [39]

      Zuo, B.; Wang, F. L.; Hao, Z. W.; He, H. L.; He, H. L.; Zhang, S. S.; Priestley, R. D.; Wang, X. P. Influence of the interfacial effect on polymer thin-film dynamics scaled by the distance of chain mobility suppression by the substrate. Macromolecules 2019, 52, 3753−3762. doi: 10.1021/acs.macromol.9b00226

    40. [40]

      He, Q. M.; Narayanan, S.; Wu, D. T.; Foster, M. D. Confinement effects with molten thin cyclic polystyrene films. ACS Macro Lett. 2016, 5, 999−1003. doi: 10.1021/acsmacrolett.6b00497

    41. [41]

      Zhang, F.; He, Q. M.; Zhou, Y.; Narayanan, S.; Wang, C.; Vogt, B. D.; Foster, M. D. Anomalous confinement slows surface fluctuations of star polymer melt films. ACS Macro Lett. 2018, 7, 834−839. doi: 10.1021/acsmacrolett.8b00278

    42. [42]

      Zuo, B.; Zhou, H.; Davis, M. J. B.; Wang, X. P.; Priestley, R. D. Effect of local chain conformation in adsorbed nanolayers on confined polymer molecular mobility. Phys. Rev. Lett. 2019, 122, 217801. doi: 10.1103/PhysRevLett.122.217801

    43. [43]

      Panagopoulou, A.; Napolitano, S. Irreversible adsorption governs the equilibration of thin polymer films. Phys. Rev. Lett. 2017, 119, 097801. doi: 10.1103/PhysRevLett.119.097801

    44. [44]

      Asada, M.; Jiang, N. S.; Sendogdular, L.; Sokolov, J.; Endoh, M. K.; Koga, T.; Fukuto, M.; Yang, L.; Akgun, B.; Dimitriou, M.; Satija, S. Melt crystallization/dewetting of ultrathin PEO films via carbon dioxide annealing: the effects of polymer adsorbed layers. Soft Matter 2014, 10, 6392−6403. doi: 10.1039/C4SM00683F

    45. [45]

      Wang, L. N.; Zhang, H. H.; Xu, L.; Liu, B. Y.; Shi, T. F.; Jiang, S. C.; An. L. J. Dewetting kinetics of thin polymer films with different architectures: effect of polymer adsorption. Chinese J. Polym. Sci. 2018, 36, 984−990. doi: 10.1007/s10118-018-2111-1

    46. [46]

      Li, X.; Lu, X. L. Evolution of irreversibly adsorbed layer promotes dewetting of polystyrene film on sapphire. Macromolecules 2018, 51, 6653−6660. doi: 10.1021/acs.macromol.8b01141

    47. [47]

      Simavilla, D. N.; Huang, W. D.; Housmans, C.; Sferrazza, M.; Napolitano, S. Taming the strength of interfacial interactions via nanoconfinement. ACS Cent. Sci. 2018, 4, 755−759. doi: 10.1021/acscentsci.8b00240

    48. [48]

      Glynos, E.; Frieberg, B.; Green, P. F. Wetting of a multiarm star-shaped molecule. Phys. Rev. Lett. 2011, 107, 118303. doi: 10.1103/PhysRevLett.107.118303

    49. [49]

      Napolitano, S.; Rotella, C.; Wübbenhorst, M. Can thickness and interfacial interactions univocally determine the behavior of polymers confined at the nanoscale? ACS Macro Lett. 2012, 1, 1189−1193. doi: 10.1021/mz300432d

    50. [50]

      Hall, D. B.; Hooker, J. C.; Torkelson, J. M. Ultrathin polymer films near the glass transition: effect on the distribution of α-relaxation times as measured by second harmonic generation. Macromolecules 1997, 30, 667−669. doi: 10.1021/ma961345y

    51. [51]

      Napolitano, S.; Wübbenhorst, M. The lifetime of the deviations from bulk behaviour in polymers confined at the nanoscale. Nat. Commun. 2011, 2, 260. doi: 10.1038/ncomms1259

    52. [52]

      Jiang, N.; Sendogdular, L.; Di, X.; Sen, M.; Gin, P.; Endoh, M. K.; Koga, T.; Akgun, B.; Dimitriou, M.; Satija, S. Effect of CO2 on a mobility gradient of polymer chains near an impenetrable solid. Macromolecules 2015, 48, 1795−1803. doi: 10.1021/ma502591x

    53. [53]

      Jiang, N.; Wang, J.; Di, X.; Cheung, J.; Zeng, W.; Endoh, M. K.; Koga, T.; Satija, S. K. Nanoscale adsorbed structures as a robust approach for tailoring polymer film stability. Soft Matter 2016, 12, 1801−1809. doi: 10.1039/C5SM02435H

    54. [54]

      Krutyeva, M.; Wischnewski, A.; Monkenbusch, M.; Willner, L.; Maiz, J.; Mijangos, C.; Arbe, A.; Colmenero, J.; Radulescu, A.; Holderer, O.; Ohl, M.; Richter, D. Effect of nanoconfinement on polymer dynamics: surface layers and interphases. Phys. Rev. Lett. 2013, 110, 108303. doi: 10.1103/PhysRevLett.110.108303

  • 加载中
    1. [1]

      Li-Na WangHuan-Huan ZhangLin XuBin-Yuan LiuTong-Fei ShiShi-Chun JiangLi-Jia An . Dewetting Kinetics of Thin Polymer Films with Different Architectures: Effect of Polymer Adsorption. Chinese J. Polym. Sci, 2018, 36(8): 984-990. doi: 10.1007/s10118-018-2111-1

    2. [2]

      Cong-de QiaoShi-chun JiangXiang-ling JiLi-jia An . IN SITU OBSERVATION OF MELTING AND CRYSTALLIZATION BEHAVIORS OF POLY(-CAPROLACTONE) ULTRA-THIN FILMS BY AFM TECHNIQUE. Chinese J. Polym. Sci, 2013, 31(9): 1321-1328. doi: 10.1007/s10118-013-1333-5

    3. [3]

      Yong ZhouPei BaiMiao HuoYu-Jie ChenHua LiHong-Mei KangHe-Zhou LiuYun-Long Guo . Slow Down Dewetting in Polymer Films by Isocyanate-treated Graphite Oxide. Chinese J. Polym. Sci, 2018, 36(9): 1070-1076. doi: 10.1007/s10118-018-2147-2

    4. [4]

      Wei-cai WangKai ShiYan-xiong PanChao PengZi-liang ZhaoWei LiuYong-gang LiuXiang-ling Ji . Fabrication of Polymersomes with Controllable Morphologies through Dewetting w/o/w Double Emulsion Droplets. Chinese J. Polym. Sci, 2016, 34(4): 475-482. doi: 10.1007/s10118-016-1769-5

    5. [5]

      Chao SuSong-Mei MaGeng-Xin LiuShu-Guang Yang . Dewetting Behavior of Hydrogen Bonded Polymer Complex Film under Hydrothermal Condition. Chinese J. Polym. Sci, 2018, 36(9): 1036-1042. doi: 10.1007/s10118-018-2109-8

    6. [6]

      Tian XiaYa-Ping QinTing Huang . Phase Separation, Wetting and Dewetting in PS/PVME Blend Thin Films: Dependence on Film Thickness and Composition Ratio. Chinese J. Polym. Sci, 2018, 36(9): 1084-1092. doi: 10.1007/s10118-018-2121-z

    7. [7]

      Yi-ren TangTing LiHai-mu YeJun XuBao-hua Guo . The Effect of Polymer-Substrate Interaction on the Nucleation Property: Comparing Study of Graphene and Hexagonal Boron Nitride Nanosheets. Chinese J. Polym. Sci, 2016, 34(8): 1021-1031. doi: 10.1007/s10118-016-1816-2

    8. [8]

      Dong-dong PengRan-xing Nancy LiChi-hang LamOphelia K. C. Tsui . TWO-LAYER MODEL DESCRIPTION OF POLYMER THIN FILM DYNAMICS. Chinese J. Polym. Sci, 2013, 31(1): 12-20. doi: 10.1007/s10118-013-1207-x

    9. [9]

      LIU MingzhuCHENG RongshiWU Jingjia . PREPARATION AND SWELLING PROPERTIES OF SUPER-ABSORBENT POLYMER. Chinese J. Polym. Sci, 1996, 14(1): 48-56.

    10. [10]

      An-Qi XiaoXiao-Lin LyuHong-Bing PanZhe-Hao TangWei ZhangZhi-Hao ShenXing-He Fan . Homeotropic Alignment and Selective Adsorption of Nanoporous Polymer Film Polymerized from Hydrogen-bonded Liquid Crystal

      . Chinese J. Polym. Sci, 2020, 38(11): 1185-1191. doi: 10.1007/s10118-020-2431-9

    11. [11]


    12. [12]


    13. [13]

      Jun-chao LiuYuan-yuan ShangDa-jie ZhangZheng XieRui-xiang HuJing-xia Wang . Single-material Solvent-sensitive Fluorescent Actuator from Carbon Dots Inverse Opals Based on Gradient Dewetting. Chinese J. Polym. Sci, 2017, 35(9): 1043-1050. doi: 10.1007/s10118-017-1981-y

    14. [14]

      Yue FanDe-Hui WangJin-Long YangJia-Ning SongXiao-Mei LiCheng-Lin ZhangDong-Sheng WangLong-Quan ChenJia-Xi CuiXu Deng . Top-down Approach for Fabrication of Polymer Microspheres by Interfacial Engineering. Chinese J. Polym. Sci, 2020, 38(12): 1286-1293. doi: 10.1007/s10118-020-2453-3

    15. [15]

      Hao-Xuan LiThomas P. RussellDong Wang . Nanomechanical and Chemical Mapping of the Structure and Interfacial Properties in Immiscible Ternary Polymer Systems. Chinese J. Polym. Sci, 2021, 40(): 1-8. doi: 10.1007/s10118-021-2567-2

    16. [16]


    17. [17]


    18. [18]


    19. [19]

      Yan-Long LuoTian-Tian LiBin LiXian-Ling ChenZhen-Yang LuoYang-Yang GaoLi-Qun Zhang . Effect of the Nanoparticle Functionalization on the Cavitation and Crazing Process in the Polymer Nanocomposites. Chinese J. Polym. Sci, 2021, 39(2): 249-257. doi: 10.1007/s10118-020-2488-5

    20. [20]

      LU XuehongCHENG XingSUN Yishi . STUDY ON THE SWELLING BEHAVIOUR OF COPOLYMER HYDROGEL. Chinese J. Polym. Sci, 1986, 4(2): 134-141.

Article Metrics
  • PDF Downloads(1)
  • Abstract views(498)
  • HTML views(229)
  • Cited By(0)

通讯作者: 陈斌,
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索


DownLoad:  Full-Size Img  PowerPoint