Mode | Average long period/thickness (nm) | |
Shish-kebab | Kebab | |
Continuous | 22.17 | 8.49 |
Stepped | 19.68 | 8.10 |

Citation: Wei-Chen Zhou, Zu-Chen Du, Hao Yang, Jun-Jie Li, Ying Zhang, Xue-Qin Gao and Qiang Fu. Effect of Different Shear Modes on Morphology and Mechanical Properties of Polypropylene Pipes Produced by Rotational Shear[J]. Chinese J. Polym. Sci, 2020, 38(12): 1392-1402. doi: 10.1007/s10118-020-2477-8

Effect of Different Shear Modes on Morphology and Mechanical Properties of Polypropylene Pipes Produced by Rotational Shear
-
关键词:
- iPP pipe /
- Shish-kebab /
- Rotational Shear /
- Shear mode
English
-
-
[1]
Deng, C.; Jin, B.; Zhao, Z.; Shen, K.; Zhang, J. The influence of hoop shear field on the structure and performances of glass fiber reinforced three-layer polypropylene random copolymer pipe. J. Appl. Polym. Sci. 2019, 136.
Deng, C.; Jin, B.; Zhao, Z.; Shen, K.; Zhang, J.. The influence of hoop shear field on the structure and performances of glass fiber reinforced three-layer polypropylene random copolymer pipe[J]. J. Appl. Polym. Sci.J. Appl. Polym. Sci., 2019, 136(): -. -
[2]
Huan, Q.; Zhu, S.; Ma, Y.; Zhang, J.; Zhang, S.; Feng, X.; Han, K.; Yu, M. Markedly improving mechanical properties for isotactic polypropylene with large-size spherulites by pressure-induced flow processing. Polymer 2013, 54, 1177−1183.
Huan, Q.; Zhu, S.; Ma, Y.; Zhang, J.; Zhang, S.; Feng, X.; Han, K.; Yu, M.. Markedly improving mechanical properties for isotactic polypropylene with large-size spherulites by pressure-induced flow processing[J]. PolymerPolymer, 2013, 54(): 1177-1183. doi: 10.1016/j.polymer.2012.12.055 -
[3]
Mi, D.; Xia, C.; Jin, M.; Wang, F.; Shen, K.; Zhang, J. Quantification of the effect of shish-kebab structure on the mechanical properties of polypropylene samples by controlling shear layer thickness. Macromolecules 2016, 49, 4571−4578.
Mi, D.; Xia, C.; Jin, M.; Wang, F.; Shen, K.; Zhang, J.. Quantification of the effect of shish-kebab structure on the mechanical properties of polypropylene samples by controlling shear layer thickness[J]. MacromoleculesMacromolecules, 2016, 49(): 4571-4578. doi: 10.1021/acs.macromol.6b00822 -
[4]
Li, X.; Pi, L.; Nie, M.; Wang, Q. Joint effects of rotational extrusion and TiO2 on performance and antimicrobial properties of extruded polypropylene copolymer pipes. J. Appl. Polym. Sci. 2015, 132.
Li, X.; Pi, L.; Nie, M.; Wang, Q.. Joint effects of rotational extrusion and TiO2 on performance and antimicrobial properties of extruded polypropylene copolymer pipes[J]. J. Appl. Polym. Sci.J. Appl. Polym. Sci., 2015, 132(): -. -
[5]
Yang, H.; Luo, X.; Shen, K.; Yuan, Y.; Fu, Q.; Gao, X.; Jiang, L. The role of mandrel rotation speed on morphology and mechanical properties of polyethylene pipes produced by rotational shear. Polymer 2019, 184, 121915.
Yang, H.; Luo, X.; Shen, K.; Yuan, Y.; Fu, Q.; Gao, X.; Jiang, L.. The role of mandrel rotation speed on morphology and mechanical properties of polyethylene pipes produced by rotational shear[J]. PolymerPolymer, 2019, 184(): 121915-. -
[6]
Du, Z. C.; Yang, H.; Luo, X. H.; Xie, Z. X.; Gao, X. Q. The role of mold temperature on morphology and mechanical properties of PE pipe produced by rotational shear. Chinese. J. Polym. Sci. 2020, 38, 653−664.
Du, Z. C.; Yang, H.; Luo, X. H.; Xie, Z. X.; Gao, X. Q.. The role of mold temperature on morphology and mechanical properties of PE pipe produced by rotational shear[J]. Chinese. J. Polym. Sci.Chinese. J. Polym. Sci., 2020, 38(): 653-664. doi: 10.1007/s10118-020-2363-4 -
[7]
Han, R.; Nie, M.; Wang, Q. Control over β-form hybrid shish-kebab crystals in polypropylene pipe via coupled effect of self-assembly β nucleating agent and rotation extrusion. J. Taiwan. Inst. Chem. E 2015, 52, 158−164.
Han, R.; Nie, M.; Wang, Q.. Control over β-form hybrid shish-kebab crystals in polypropylene pipe via coupled effect of self-assembly β nucleating agent and rotation extrusion[J]. J. Taiwan. Inst. Chem. EJ. Taiwan. Inst. Chem. E, 2015, 52(): 158-164. doi: 10.1016/j.jtice.2015.02.002 -
[8]
Min, N.; Bai, S.; Wang, Q. Effect of the inner wall cooling rate on the structure and properties of a polyethylene pipe extruded at a high rotation speed. J. Appl. Polym. Sci. 2011, 119, 1659−1666.
Min, N.; Bai, S.; Wang, Q.. Effect of the inner wall cooling rate on the structure and properties of a polyethylene pipe extruded at a high rotation speed[J]. J. Appl. Polym. Sci.J. Appl. Polym. Sci., 2011, 119(): 1659-1666. doi: 10.1002/app.32840 -
[9]
Tang, H. I.; Hiltner, A.; Baer, E. Biaxial orientation of polypropylene by hydrostatic solid state extrusion. Part III: mechanical properties and deformation mechanisms. Polym. Eng. Sci. 1987, 27, 876−886.
Tang, H. I.; Hiltner, A.; Baer, E.. Biaxial orientation of polypropylene by hydrostatic solid state extrusion. Part III: mechanical properties and deformation mechanisms[J]. Polym. Eng. Sci.Polym. Eng. Sci., 1987, 27(): 876-886. doi: 10.1002/pen.760271203 -
[10]
Litvinov, V. M.; Soliman, M. The effect of storage of poly(propylene) pipes under hydrostatic pressure and elevated temperatures on the morphology, molecular mobility and failure behaviour. Polymer 2005, 46, 3077−3089.
Litvinov, V. M.; Soliman, M.. The effect of storage of poly(propylene) pipes under hydrostatic pressure and elevated temperatures on the morphology, molecular mobility and failure behaviour[J]. PolymerPolymer, 2005, 46(): 3077-3089. doi: 10.1016/j.polymer.2005.01.074 -
[11]
Chan, C. K.; Whitehouse, C.; Gao, P.; Chai, C. K. Flow induced chain alignment and disentanglement as the viscosity reduction mechanism within TLCP/HDPE blends. Polymer 2001, 42, 7847−7856.
Chan, C. K.; Whitehouse, C.; Gao, P.; Chai, C. K.. Flow induced chain alignment and disentanglement as the viscosity reduction mechanism within TLCP/HDPE blends[J]. PolymerPolymer, 2001, 42(): 7847-7856. doi: 10.1016/S0032-3861(01)00265-8 -
[12]
Nie, M.; Han, R.; Wang, Q. Formation and alignment of hybrid shish-kebab morphology with rich beta crystals in an isotactic polypropylene pipe. Ind. Eng. Chem. Res. 2014, 53, 4142−4146.
Nie, M.; Han, R.; Wang, Q.. Formation and alignment of hybrid shish-kebab morphology with rich beta crystals in an isotactic polypropylene pipe[J]. Ind. Eng. Chem. Res.Ind. Eng. Chem. Res., 2014, 53(): 4142-4146. doi: 10.1021/ie403944k -
[13]
Pi, L.; Nie, M.; Wang, Q. Crystalline composition and morphology in isotactic polypropylene pipe under combining effects of rotation extrusion and fibril β-nucleating agent. J. Vinyl. Addit. Techn. 2019, 25, E195−E202.
Pi, L.; Nie, M.; Wang, Q.. Crystalline composition and morphology in isotactic polypropylene pipe under combining effects of rotation extrusion and fibril β-nucleating agent[J]. J. Vinyl. Addit. Techn.J. Vinyl. Addit. Techn., 2019, 25(): E195-E202. doi: 10.1002/vnl.21686 -
[14]
Luo, G.; Li, W.; Liang, W.; Liu, G.; Ma, Y.; Niu, Y.; Li, G. Coupling effects of glass fiber treatment and matrix modification on the interfacial microstructures and the enhanced mechanical properties of glass fiber/polypropylene composites. Compos. Part B-Eng. 2017, 111, 190−199.
Luo, G.; Li, W.; Liang, W.; Liu, G.; Ma, Y.; Niu, Y.; Li, G.. Coupling effects of glass fiber treatment and matrix modification on the interfacial microstructures and the enhanced mechanical properties of glass fiber/polypropylene composites[J]. Compos. Part B-Eng.Compos. Part B-Eng., 2017, 111(): 190-199. doi: 10.1016/j.compositesb.2016.12.016 -
[15]
Kimata, S.; Sakurai, T.; Nozue, Y.; Kasahara, T.; Yamaguchi, N.; Karino, T.; Shibayama, M.; Kornfield, J. A. Molecular basis of the shish-kebab morphology in polymer crystallization. Science 2007, 316, 1014−1017.
Kimata, S.; Sakurai, T.; Nozue, Y.; Kasahara, T.; Yamaguchi, N.; Karino, T.; Shibayama, M.; Kornfield, J. A.. Molecular basis of the shish-kebab morphology in polymer crystallization[J]. ScienceScience, 2007, 316(): 1014-1017. doi: 10.1126/science.1140132 -
[16]
Somani, R. H.; Yang, L.; Zhu, L.; Hsiao, B. S. Flow-induced shish-kebab precursor structures in entangled polymer melts. Polymer 2005, 46, 8587−8623.
Somani, R. H.; Yang, L.; Zhu, L.; Hsiao, B. S.. Flow-induced shish-kebab precursor structures in entangled polymer melts[J]. PolymerPolymer, 2005, 46(): 8587-8623. doi: 10.1016/j.polymer.2005.06.034 -
[17]
Hsiao, B. S.; Yang, L.; Somani, R. H.; Avila-Orta, C. A.; Zhu, L. Unexpected shish-kebab structure in a sheared polyethylene melt. Phys. Rev. Lett. 2005, 94, 117802.
Hsiao, B. S.; Yang, L.; Somani, R. H.; Avila-Orta, C. A.; Zhu, L.. Unexpected shish-kebab structure in a sheared polyethylene melt[J]. Phys. Rev. Lett.Phys. Rev. Lett., 2005, 94(): 117802-. -
[18]
Yang, J.; Wang, C.; Wang, K.; Zhang, Q.; Chen, F.; Du, R.; Fu, Q. Direct formation of nanohybrid shish-kebab in the injection molded car of polyethylene/multiwalled carbon nanotubes composite. Macromolecules 2009, 42, 7016−7023.
Yang, J.; Wang, C.; Wang, K.; Zhang, Q.; Chen, F.; Du, R.; Fu, Q.. Direct formation of nanohybrid shish-kebab in the injection molded car of polyethylene/multiwalled carbon nanotubes composite[J]. MacromoleculesMacromolecules, 2009, 42(): 7016-7023. doi: 10.1021/ma901266u -
[19]
Hu, W.; Frenkel, D.; Mathot, V. B. F. Simulation of shish-kebab crystallite induced by a single prealigned macromolecule. Macromolecules 2002, 35, 7172−7174.
Hu, W.; Frenkel, D.; Mathot, V. B. F.. Simulation of shish-kebab crystallite induced by a single prealigned macromolecule[J]. MacromoleculesMacromolecules, 2002, 35(): 7172-7174. doi: 10.1021/ma0255581 -
[20]
Kawaguchi, K. Mechanical properties and transparency of injection-molded polyacetal with branched and linear structure: influence of crystalline morphology. J. Appl. Polym. Sci. 2006, 100, 3382−3392.
Kawaguchi, K.. Mechanical properties and transparency of injection-molded polyacetal with branched and linear structure: influence of crystalline morphology[J]. J. Appl. Polym. Sci.J. Appl. Polym. Sci., 2006, 100(): 3382-3392. doi: 10.1002/app.23777 -
[21]
Lei, J.; Jiang, C.; Shen, K. Biaxially self-reinforced high-density polyethylene prepared by dynamic packing injection molding. I. Processing parameters and mechanical properties. J. Appl. Polym. Sci. 2004, 93, 1584−1590.
Lei, J.; Jiang, C.; Shen, K.. Biaxially self-reinforced high-density polyethylene prepared by dynamic packing injection molding. I. Processing parameters and mechanical properties[J]. J. Appl. Polym. Sci.J. Appl. Polym. Sci., 2004, 93(): 1584-1590. doi: 10.1002/app.20640 -
[22]
Na, B.; Zhang, Q.; Fu, Q.; Zhang, G.; Shen, K. Super polyolefin blends achieved via dynamic packing injection molding: the morphology and mechanical properties of HDPE/EVA blends. Polymer 2002, 43, 7367−7376.
Na, B.; Zhang, Q.; Fu, Q.; Zhang, G.; Shen, K.. Super polyolefin blends achieved via dynamic packing injection molding: the morphology and mechanical properties of HDPE/EVA blends[J]. PolymerPolymer, 2002, 43(): 7367-7376. doi: 10.1016/S0032-3861(02)00637-7 -
[23]
Chen, Y. H.; Zhong, G. J.; Wang, Y.; Li, Z. M.; Li, L. Unusual tuning of mechanical properties of isotactic polypropylene using counteraction of shear flow and β-nucleating agent on β-form nucleation. Macromolecules 2009, 42, 4343−4348.
Chen, Y. H.; Zhong, G. J.; Wang, Y.; Li, Z. M.; Li, L.. Unusual tuning of mechanical properties of isotactic polypropylene using counteraction of shear flow and β-nucleating agent on β-form nucleation[J]. MacromoleculesMacromolecules, 2009, 42(): 4343-4348. doi: 10.1021/ma900411f -
[24]
Nie, M.; Wang, Q.; Bai, S. B. Morphology and property of polyethylene pipe extruded at the low mandrel rotation. Polym. Eng. Sci. 2010, 50, 1743−1750.
Nie, M.; Wang, Q.; Bai, S. B.. Morphology and property of polyethylene pipe extruded at the low mandrel rotation[J]. Polym. Eng. Sci.Polym. Eng. Sci., 2010, 50(): 1743-1750. doi: 10.1002/pen.21700 -
[25]
Long, J.; Shen, K.; Ji, J.; Guan, Q. A mandrel-rotating die to produce high-hoop-strength HDPE pipe by self-reinforcement. J. Appl. Polym. Sci. 1998, 69, 323−328.
Long, J.; Shen, K.; Ji, J.; Guan, Q.. A mandrel-rotating die to produce high-hoop-strength HDPE pipe by self-reinforcement[J]. J. Appl. Polym. Sci.J. Appl. Polym. Sci., 1998, 69(): 323-328. doi: 10.1002/(SICI)1097-4628(19980711)69:2<323::AID-APP13>3.0.CO;2-X -
[26]
Nie, M.; Li, X.; Hu, X.; Wang, Q. Effect of die temperature on morphology and performance of polyethylene pipe prepared via mandrel rotation extrusion. J. Macromol. Sci. B 2014, 53, 1442−1452.
Nie, M.; Li, X.; Hu, X.; Wang, Q.. Effect of die temperature on morphology and performance of polyethylene pipe prepared via mandrel rotation extrusion[J]. J. Macromol. Sci. BJ. Macromol. Sci. B, 2014, 53(): 1442-1452. doi: 10.1080/00222348.2014.928161 -
[27]
Han, R.; Nie, M.; Bai, S. B.; Wang, Q. Control over crystalline form in polypropylene pipe via mandrel rotation extrusion. Polym. Bull. 2013, 70, 2083−2096.
Han, R.; Nie, M.; Bai, S. B.; Wang, Q.. Control over crystalline form in polypropylene pipe via mandrel rotation extrusion[J]. Polym. Bull.Polym. Bull., 2013, 70(): 2083-2096. doi: 10.1007/s00289-013-0963-7 -
[28]
Nie, M.; Bai, S.; Wang, Q. High-density polyethylene pipe with high resistance to slow crack growth prepared via rotation extrusion. Polym. Bull. 2010, 65, 609−621.
Nie, M.; Bai, S.; Wang, Q.. High-density polyethylene pipe with high resistance to slow crack growth prepared via rotation extrusion[J]. Polym. Bull.Polym. Bull., 2010, 65(): 609-621. doi: 10.1007/s00289-010-0270-5 -
[29]
Xie, Z.; Gao, N.; Du, Z.; Yang, H.; Shen, K.; Fu, Q.; Gao, X. Role of melt plasticizing temperature in morphology and properties of PE100 pipes prepared by a rotational shear system. ACS Omega 2020, 5, 12660−12671.
Xie, Z.; Gao, N.; Du, Z.; Yang, H.; Shen, K.; Fu, Q.; Gao, X.. Role of melt plasticizing temperature in morphology and properties of PE100 pipes prepared by a rotational shear system[J]. ACS OmegaACS Omega, 2020, 5(): 12660-12671. doi: 10.1021/acsomega.9b04138 -
[30]
Kitade, S.; Kurihara, H.; Asuka, K.; Katsuno, S.; Akiba, I.; Sakurai, K. Oriented crystallization of long chain branched polypropylene induced by step-shear deformation in pre-crystallization regime. Polymer 2017, 116, 395−402.
Kitade, S.; Kurihara, H.; Asuka, K.; Katsuno, S.; Akiba, I.; Sakurai, K.. Oriented crystallization of long chain branched polypropylene induced by step-shear deformation in pre-crystallization regime[J]. PolymerPolymer, 2017, 116(): 395-402. doi: 10.1016/j.polymer.2017.02.005 -
[31]
Venerus, D. C.; Schieber, J. D.; Iddir, H.; Guzman, J. D.; Broerman, A. W. Relaxation of anisotropic thermal diffusivity in a polymer melt following step shear strain. Phys. Rev. Lett. 1999, 82, 366−369.
Venerus, D. C.; Schieber, J. D.; Iddir, H.; Guzman, J. D.; Broerman, A. W.. Relaxation of anisotropic thermal diffusivity in a polymer melt following step shear strain[J]. Phys. Rev. Lett.Phys. Rev. Lett., 1999, 82(): 366-369. doi: 10.1103/PhysRevLett.82.366 -
[32]
Li, Y.; Wen, X.; Nie, M.; Wang, Q. Controllable reinforcement of stiffness and toughness of polypropylene via thermally induced self-assembly of β-nucleating agent. J. Appl. Polym. Sci. 2014, 131, 40605.
Li, Y.; Wen, X.; Nie, M.; Wang, Q.. Controllable reinforcement of stiffness and toughness of polypropylene via thermally induced self-assembly of β-nucleating agent[J]. J. Appl. Polym. Sci.J. Appl. Polym. Sci., 2014, 131(): 40605-. -
[33]
Han, R.; Nie, M.; Wang, Q.; Yan, S. Self-assembly β nucleating agent induced polymorphic transition from α-form shish kebab to β-form highly ordered lamella under intense shear field. Ind. Eng. Chem. Res. 2017, 56, 2764−2772.
Han, R.; Nie, M.; Wang, Q.; Yan, S.. Self-assembly β nucleating agent induced polymorphic transition from α-form shish kebab to β-form highly ordered lamella under intense shear field[J]. Ind. Eng. Chem. Res.Ind. Eng. Chem. Res., 2017, 56(): 2764-2772. doi: 10.1021/acs.iecr.6b04908 -
[34]
Jones, A. T.; Aizlewood, J. M.; Beckett, D. Crystalline forms of isotactic polypropylene. Macromol. Chem. Phys. 1964, 75, 134−158.
Jones, A. T.; Aizlewood, J. M.; Beckett, D.. Crystalline forms of isotactic polypropylene[J]. Macromol. Chem. Phys.Macromol. Chem. Phys., 1964, 75(): 134-158. doi: 10.1002/macp.1964.020750113 -
[35]
Qiang, Z.; Shangguan, Y.; Tong, L.; Peng, M. Effect of vibration on crystal morphology and structure of isotactic polypropylene in nonisothermal crystallization. J. Appl. Polym. Sci. 2004, 94, 2187−2195.
Qiang, Z.; Shangguan, Y.; Tong, L.; Peng, M.. Effect of vibration on crystal morphology and structure of isotactic polypropylene in nonisothermal crystallization[J]. J. Appl. Polym. Sci.J. Appl. Polym. Sci., 2004, 94(): 2187-2195. doi: 10.1002/app.21166 -
[36]
Chen, H. B.; Karger-Kocsis, J.; Wu, J. S.; Varga, J. Fracture toughness of α- and β-phase polypropylene homopolymers and random- and block-copolymers. Polymer 2002, 43, 6505−6514.
Chen, H. B.; Karger-Kocsis, J.; Wu, J. S.; Varga, J.. Fracture toughness of α- and β-phase polypropylene homopolymers and random- and block-copolymers[J]. PolymerPolymer, 2002, 43(): 6505-6514. doi: 10.1016/S0032-3861(02)00590-6 -
[37]
Policianová, O.; Hodan, J.; Brus, J.; Kotek, J. Origin of toughness in β-polypropylene: the effect of molecular mobility in the amorphous phase. Polymer 2015, 60, 107−114.
Policianová, O.; Hodan, J.; Brus, J.; Kotek, J.. Origin of toughness in β-polypropylene: the effect of molecular mobility in the amorphous phase[J]. PolymerPolymer, 2015, 60(): 107-114. doi: 10.1016/j.polymer.2015.01.047 -
[38]
Ferro, D. R.; Meille, S. V.; Brückner, S. Energy calculations for isotactic polypropylene: a contribution to clarify the β crystalline structure. Macromolecules 1998, 31, 6926−6934.
Ferro, D. R.; Meille, S. V.; Brückner, S.. Energy calculations for isotactic polypropylene: a contribution to clarify the β crystalline structure[J]. MacromoleculesMacromolecules, 1998, 31(): 6926-6934. doi: 10.1021/ma9804592 -
[39]
Vleeshouwers, S. Simultaneous in-situ WAXS/SAXS and DSC study of the recrystallization and melting behaviour of the α and β form of iPP. Polymer 1997, 38, 3213−3221.
Vleeshouwers, S.. Simultaneous in-situ WAXS/SAXS and DSC study of the recrystallization and melting behaviour of the α and β form of iPP[J]. PolymerPolymer, 1997, 38(): 3213-3221. doi: 10.1016/S0032-3861(96)00894-4 -
[40]
Li, H.; Sun, X.; Yan, S.; Schultz, J. M. Initial stage of iPP β to α growth transition induced by stepwise crystallization. Macromolecules 2008, 41, 5062−5064.
Li, H.; Sun, X.; Yan, S.; Schultz, J. M.. Initial stage of iPP β to α growth transition induced by stepwise crystallization[J]. MacromoleculesMacromolecules, 2008, 41(): 5062-5064. doi: 10.1021/ma702725g -
[41]
Wang, J.; Ren, Z.; Sun, X.; Li, H.; Yan, S. The βα growth transition of isotactic polypropylene during stepwise crystallization at elevated temperature. Colloid. Polym. Sci. 2015, 293, 2823−2830.
Wang, J.; Ren, Z.; Sun, X.; Li, H.; Yan, S.. The βα growth transition of isotactic polypropylene during stepwise crystallization at elevated temperature[J]. Colloid. Polym. Sci.Colloid. Polym. Sci., 2015, 293(): 2823-2830. doi: 10.1007/s00396-015-3599-3 -
[42]
Varga, J. β-Modification of polypropylene and its two-component systems. J. Therm. Anal. 1989, 35, 1891−1912.
Varga, J.. β-Modification of polypropylene and its two-component systems[J]. J. Therm. Anal.J. Therm. Anal., 1989, 35(): 1891-1912. doi: 10.1007/BF01911675 -
[43]
Doufas, A. K.; Dairanieh, I. S.; McHugh, A. J. A continuum model for flow-induced crystallization of polymer melts. J. Rheol. Macromolecul. 1999, 43, 85−109.
Doufas, A. K.; Dairanieh, I. S.; McHugh, A. J.. A continuum model for flow-induced crystallization of polymer melts[J]. J. Rheol. Macromolecul.J. Rheol. Macromolecul., 1999, 43(): 85-109. doi: 10.1122/1.550978 -
[44]
Coppola, S.; Grizzuti, N.; Maffettone, P. L. Microrheological modeling of flow-induced crystallization. Macromolecules 2001, 34, 5030−5036.
Coppola, S.; Grizzuti, N.; Maffettone, P. L.. Microrheological modeling of flow-induced crystallization[J]. MacromoleculesMacromolecules, 2001, 34(): 5030-5036. doi: 10.1021/ma010275e -
[45]
Yan, T.; Zhao, B.; Cong, Y.; Fang, Y.; Cheng, S.; Li, L.; Pan, G.; Wang, Z.; Li, X.; Bian, F. Critical strain for shish-kebab formation. Macromolecules 2010, 43, 602−605.
Yan, T.; Zhao, B.; Cong, Y.; Fang, Y.; Cheng, S.; Li, L.; Pan, G.; Wang, Z.; Li, X.; Bian, F.. Critical strain for shish-kebab formation[J]. MacromoleculesMacromolecules, 2010, 43(): 602-605. doi: 10.1021/ma9020642 -
[46]
Ju, J.; Wang, Z.; Su, F.; Ji, Y.; Yang, H.; Chang, J.; Ali, S.; Li, X.; Li, L. Extensional flow-induced dynamic phase transitions in isotactic polypropylene. Macromol. Rapid Commun. 2016, 37, 1441−1445.
Ju, J.; Wang, Z.; Su, F.; Ji, Y.; Yang, H.; Chang, J.; Ali, S.; Li, X.; Li, L.. Extensional flow-induced dynamic phase transitions in isotactic polypropylene[J]. Macromol. Rapid Commun.Macromol. Rapid Commun., 2016, 37(): 1441-1445. doi: 10.1002/marc.201600185 -
[47]
Heeley, E. L.; Fernyhough, C. M.; Graham, R. S.; Olmsted, P. D.; Inkson, N. J.; Embery, J.; Groves, D. J.; McLeish, T. C. B.; Morgovan, A. C.; Meneau, F.; Bras, W.; Ryan, A. J. Shear-induced crystallization in blends of model linear and long-chain branched hydrogenated polybutadienes. Macromolecules 2006, 39, 5058−5071.
Heeley, E. L.; Fernyhough, C. M.; Graham, R. S.; Olmsted, P. D.; Inkson, N. J.; Embery, J.; Groves, D. J.; McLeish, T. C. B.; Morgovan, A. C.; Meneau, F.; Bras, W.; Ryan, A. J.. Shear-induced crystallization in blends of model linear and long-chain branched hydrogenated polybutadienes[J]. MacromoleculesMacromolecules, 2006, 39(): 5058-5071. doi: 10.1021/ma0606307 -
[48]
Zhang, C.; Liu, G.; Zhao, Y.; Wang, K.; Dong, X.; Li, Z.; Wang, L.; Wang, D. Exploring the polymorphic behavior of a β-nucleated propylene-ethylene random copolymer under shear flow. Polym. Crystallizat. 2020, 3, e10105.
Zhang, C.; Liu, G.; Zhao, Y.; Wang, K.; Dong, X.; Li, Z.; Wang, L.; Wang, D.. Exploring the polymorphic behavior of a β-nucleated propylene-ethylene random copolymer under shear flow[J]. Polym. Crystallizat.Polym. Crystallizat., 2020, 3(): e10105-. -
[49]
Huo, H.; Jiang, S.; An, L.; Feng, J. Influence of shear on crystallization behavior of the β phase in isotactic polypropylene with β-nucleating agent. Macromolecules 2004, 37, 2478−2483.
Huo, H.; Jiang, S.; An, L.; Feng, J.. Influence of shear on crystallization behavior of the β phase in isotactic polypropylene with β-nucleating agent[J]. MacromoleculesMacromolecules, 2004, 37(): 2478-2483. doi: 10.1021/ma0358531 -
[50]
Chen, Y. H.; Mao, Y. M.; Li, Z. M.; Hsiao, B. S. Competitive growth of α- and β-crystals in β-nucleated isotactic polypropylene under shear flow. Macromolecules 2010, 43, 6760−6771.
Chen, Y. H.; Mao, Y. M.; Li, Z. M.; Hsiao, B. S.. Competitive growth of α- and β-crystals in β-nucleated isotactic polypropylene under shear flow[J]. MacromoleculesMacromolecules, 2010, 43(): 6760-6771. doi: 10.1021/ma101006e -
[51]
Xia, C.; Du, H.; Wang, F.; La, R.; Mi, D.; Li, X.; Zhang, J. A novel crystal morphology of isotactic polypropylene induced by pressure vibration field: α banded spherulite. Mater. Lett. 2015, 153, 66−69.
Xia, C.; Du, H.; Wang, F.; La, R.; Mi, D.; Li, X.; Zhang, J.. A novel crystal morphology of isotactic polypropylene induced by pressure vibration field: α banded spherulite[J]. Mater. Lett.Mater. Lett., 2015, 153(): 66-69. doi: 10.1016/j.matlet.2015.04.005 -
[52]
Shi, Y.; Dou, Q. The relationship between structure and properties of β-phase isotactic polypropylene. Adv. Mat. Res. 2011, 233-235, 2129−2137.
Shi, Y.; Dou, Q.. The relationship between structure and properties of β-phase isotactic polypropylene[J]. Adv. Mat. Res.Adv. Mat. Res., 2011, 233-235(): 2129-2137. -
[53]
Keum, J. K.; Zuo, F.; Hsiao, B. S. Formation and stability of shear-induced shish-kebab structure in highly entangled melts of UHMWPE/HDPE blends. Macromolecules 2008, 41, 4766−4776.
Keum, J. K.; Zuo, F.; Hsiao, B. S.. Formation and stability of shear-induced shish-kebab structure in highly entangled melts of UHMWPE/HDPE blends[J]. MacromoleculesMacromolecules, 2008, 41(): 4766-4776. doi: 10.1021/ma800063e -
[54]
Alexander, L. X-ray diffraction methods in polymer science. J. Mater. Sci. 1971, 6, 93−93.
Alexander, L.. X-ray diffraction methods in polymer science[J]. J. Mater. Sci.J. Mater. Sci., 1971, 6(): 93-93. doi: 10.1007/BF00550300 -
[55]
Tang, Y.; Jiang, Z.; Men, Y.; An, L.; Enderle, H. F.; Lilge, D.; Roth, S. V.; Gehrke, R.; Rieger, J. Uniaxial deformation of overstretched polyethylene: in-situ synchrotron small angle X-ray scattering study. Polymer 2007, 48, 5125−5132.
Tang, Y.; Jiang, Z.; Men, Y.; An, L.; Enderle, H. F.; Lilge, D.; Roth, S. V.; Gehrke, R.; Rieger, J.. Uniaxial deformation of overstretched polyethylene: in-situ synchrotron small angle X-ray scattering study[J]. PolymerPolymer, 2007, 48(): 5125-5132. doi: 10.1016/j.polymer.2007.06.056 -
[56]
Men, Y.; Rieger, J.; Lindner, P.; Enderle, H. F.; Lilge, D.; Kristen, M. O.; Mihan, S.; Jiang, S. Structural changes and chain radius of gyration in cold-drawn polyethylene after annealing: small- and wide-angle X-ray scattering and small-angle neutron scattering studies. J. Phys. Chem. B 2005, 109, 16650−16657.
Men, Y.; Rieger, J.; Lindner, P.; Enderle, H. F.; Lilge, D.; Kristen, M. O.; Mihan, S.; Jiang, S.. Structural changes and chain radius of gyration in cold-drawn polyethylene after annealing: small- and wide-angle X-ray scattering and small-angle neutron scattering studies[J]. J. Phys. Chem. BJ. Phys. Chem. B, 2005, 109(): 16650-16657. doi: 10.1021/jp052723g -
[57]
Jiang, Z.; Tang, Y.; Men, Y.; Enderle, H. F.; Lilge, D.; Roth, S. V.; Gehrke, R.; Rieger, J. Structural evolution of tensile-deformed high-density polyethylene during annealing: scanning synchrotron small-angle X-ray scattering study. Macromolecules 2007, 40, 7263−7269.
Jiang, Z.; Tang, Y.; Men, Y.; Enderle, H. F.; Lilge, D.; Roth, S. V.; Gehrke, R.; Rieger, J.. Structural evolution of tensile-deformed high-density polyethylene during annealing: scanning synchrotron small-angle X-ray scattering study[J]. MacromoleculesMacromolecules, 2007, 40(): 7263-7269. doi: 10.1021/ma0627572 -
[58]
Wang, Z.; An, M.; Xu, H.; Lv, Y.; Tian, F.; Gu, Q. Structural evolution from shish-kebab to fibrillar crystals during hot-stretching process of gel spinning ultra-high molecular weight polyethylene fibers obtained from low concentration solution. Polymer 2017, 120, 244−254.
Wang, Z.; An, M.; Xu, H.; Lv, Y.; Tian, F.; Gu, Q.. Structural evolution from shish-kebab to fibrillar crystals during hot-stretching process of gel spinning ultra-high molecular weight polyethylene fibers obtained from low concentration solution[J]. PolymerPolymer, 2017, 120(): 244-254. doi: 10.1016/j.polymer.2017.05.062 -
[59]
Alexander, L. E. X-ray diffraction methods in polymer science. John Wiley & Sons Inc: New York, 1979.
-
[60]
Huang, Y. F.; Xu, J. Z.; Li, J. S.; He, B. X.; Xu, L.; Li, Z. M. Mechanical properties and biocompatibility of melt processed, self-reinforced ultrahigh molecular weight polyethylene. Biomaterials 2014, 35, 6687−6697.
Huang, Y. F.; Xu, J. Z.; Li, J. S.; He, B. X.; Xu, L.; Li, Z. M.. Mechanical properties and biocompatibility of melt processed, self-reinforced ultrahigh molecular weight polyethylene[J]. BiomaterialsBiomaterials, 2014, 35(): 6687-6697. doi: 10.1016/j.biomaterials.2014.04.077 -
[61]
Kalay, G.; Kalay, C. R. Interlocking shish-kebab morphology in polybutene-1. J. Polym. Sci., Part B: Polym. Phys. 2002, 40, 1828−1834.
Kalay, G.; Kalay, C. R.. Interlocking shish-kebab morphology in polybutene-1[J]. J. Polym. Sci., Part B: Polym. Phys.J. Polym. Sci., Part B: Polym. Phys., 2002, 40(): 1828-1834. doi: 10.1002/polb.10246 -
[62]
Fu, J.; Ghali, B. W.; Lozynsky, A. J.; Oral, E.; Muratoglu, O. K. Ultra high molecular weight polyethylene with improved plasticity and toughness by high temperature melting. Polymer 2010, 51, 2721−2731.
Fu, J.; Ghali, B. W.; Lozynsky, A. J.; Oral, E.; Muratoglu, O. K.. Ultra high molecular weight polyethylene with improved plasticity and toughness by high temperature melting[J]. PolymerPolymer, 2010, 51(): 2721-2731. doi: 10.1016/j.polymer.2010.04.003
-
[1]
-
Figure 1. Schematic diagram of RSS[6]: 1-motor, 2-mold, 3-mandrel, 4-coupling, 5-heater, 6-electric box, 7-cooling control, and 8-extruder.
Table 1. Average long period of shish-kebab and average thickness of kebabs in samples with two shear modes.
Mode Melting peak temperature (°C) Melting enthalpy (J/g) Inner Core Outer Inner Core Outer Continuous 164.53 163.26 164.29 101.7 102 103 Stepped 165.77 165.38 165.48 102 103.5 101.1 Table 2. Comparison of DSC test results of iPP pipe.
Mode Crystallinity Inner Core Outer Continuous 57.46% 57.63% 58.19% Stepped 57.65% 58.54% 57.18% Table 3. Comparison of crystallinity of each layer of iPP pipe.
-