请关注微信公众平台

Effect of Different Shear Modes on Morphology and Mechanical Properties of Polypropylene Pipes Produced by Rotational Shear

Wei-Chen Zhou Zu-Chen Du Hao Yang Jun-Jie Li Ying Zhang Xue-Qin Gao Qiang Fu

引用本文: . doi: 10.1007/s10118-020-2477-8 shu
Citation:  Wei-Chen Zhou, Zu-Chen Du, Hao Yang, Jun-Jie Li, Ying Zhang, Xue-Qin Gao and Qiang Fu. Effect of Different Shear Modes on Morphology and Mechanical Properties of Polypropylene Pipes Produced by Rotational Shear[J]. Chinese J. Polym. Sci, 2020, 38(12): 1392-1402. doi: 10.1007/s10118-020-2477-8 shu

Effect of Different Shear Modes on Morphology and Mechanical Properties of Polypropylene Pipes Produced by Rotational Shear

摘要: Oriented “shish-kebab” structures could be obtained by shearing to enhance the mechanical properties of polymer samples markedly. However, the effect of shear mode on mechanical properties is still uncertain. The study of stepped hoop shear field on the isotactic polypropylene (iPP) pipe was developed through applying a self-designed rotational shear system (RSS). The effect of stepped shear field on the microstructure and comprehensive properties of iPP pipe was investigated by the comparison with continuous shear. It could be found that the loosely-assembled shish-kebabs with the larger size were formed in the continuous shear pipes, but the smaller and tightly-stacked ones existed in the pipes with stepped shear. Surprisingly, due to differential morphologies under different shear modes, better comprehensive mechanical properties were obtained in the pipes with stepped shear.

English

    1. [1]

      Deng, C.; Jin, B.; Zhao, Z.; Shen, K.; Zhang, J. The influence of hoop shear field on the structure and performances of glass fiber reinforced three-layer polypropylene random copolymer pipe. J. Appl. Polym. Sci. 2019, 136.
      Deng, C.; Jin, B.; Zhao, Z.; Shen, K.; Zhang, J..  The influence of hoop shear field on the structure and performances of glass fiber reinforced three-layer polypropylene random copolymer pipe[J]. J. Appl. Polym. Sci., 2019, 136(): -.

    2. [2]

      Huan, Q.; Zhu, S.; Ma, Y.; Zhang, J.; Zhang, S.; Feng, X.; Han, K.; Yu, M. Markedly improving mechanical properties for isotactic polypropylene with large-size spherulites by pressure-induced flow processing. Polymer 2013, 54, 1177−1183.
      Huan, Q.; Zhu, S.; Ma, Y.; Zhang, J.; Zhang, S.; Feng, X.; Han, K.; Yu, M..  Markedly improving mechanical properties for isotactic polypropylene with large-size spherulites by pressure-induced flow processing[J]. Polymer, 2013, 54(): 1177-1183. doi: 10.1016/j.polymer.2012.12.055

    3. [3]

      Mi, D.; Xia, C.; Jin, M.; Wang, F.; Shen, K.; Zhang, J. Quantification of the effect of shish-kebab structure on the mechanical properties of polypropylene samples by controlling shear layer thickness. Macromolecules 2016, 49, 4571−4578.
      Mi, D.; Xia, C.; Jin, M.; Wang, F.; Shen, K.; Zhang, J..  Quantification of the effect of shish-kebab structure on the mechanical properties of polypropylene samples by controlling shear layer thickness[J]. Macromolecules, 2016, 49(): 4571-4578. doi: 10.1021/acs.macromol.6b00822

    4. [4]

      Li, X.; Pi, L.; Nie, M.; Wang, Q. Joint effects of rotational extrusion and TiO2 on performance and antimicrobial properties of extruded polypropylene copolymer pipes. J. Appl. Polym. Sci. 2015, 132.
      Li, X.; Pi, L.; Nie, M.; Wang, Q..  Joint effects of rotational extrusion and TiO2 on performance and antimicrobial properties of extruded polypropylene copolymer pipes[J]. J. Appl. Polym. Sci., 2015, 132(): -.

    5. [5]

      Yang, H.; Luo, X.; Shen, K.; Yuan, Y.; Fu, Q.; Gao, X.; Jiang, L. The role of mandrel rotation speed on morphology and mechanical properties of polyethylene pipes produced by rotational shear. Polymer 2019, 184, 121915.
      Yang, H.; Luo, X.; Shen, K.; Yuan, Y.; Fu, Q.; Gao, X.; Jiang, L..  The role of mandrel rotation speed on morphology and mechanical properties of polyethylene pipes produced by rotational shear[J]. Polymer, 2019, 184(): 121915-.

    6. [6]

      Du, Z. C.; Yang, H.; Luo, X. H.; Xie, Z. X.; Gao, X. Q. The role of mold temperature on morphology and mechanical properties of PE pipe produced by rotational shear. Chinese. J. Polym. Sci. 2020, 38, 653−664.
      Du, Z. C.; Yang, H.; Luo, X. H.; Xie, Z. X.; Gao, X. Q..  The role of mold temperature on morphology and mechanical properties of PE pipe produced by rotational shear[J]. Chinese. J. Polym. Sci., 2020, 38(): 653-664. doi: 10.1007/s10118-020-2363-4

    7. [7]

      Han, R.; Nie, M.; Wang, Q. Control over β-form hybrid shish-kebab crystals in polypropylene pipe via coupled effect of self-assembly β nucleating agent and rotation extrusion. J. Taiwan. Inst. Chem. E 2015, 52, 158−164.
      Han, R.; Nie, M.; Wang, Q..  Control over β-form hybrid shish-kebab crystals in polypropylene pipe via coupled effect of self-assembly β nucleating agent and rotation extrusion[J]. J. Taiwan. Inst. Chem. E, 2015, 52(): 158-164. doi: 10.1016/j.jtice.2015.02.002

    8. [8]

      Min, N.; Bai, S.; Wang, Q. Effect of the inner wall cooling rate on the structure and properties of a polyethylene pipe extruded at a high rotation speed. J. Appl. Polym. Sci. 2011, 119, 1659−1666.
      Min, N.; Bai, S.; Wang, Q..  Effect of the inner wall cooling rate on the structure and properties of a polyethylene pipe extruded at a high rotation speed[J]. J. Appl. Polym. Sci., 2011, 119(): 1659-1666. doi: 10.1002/app.32840

    9. [9]

      Tang, H. I.; Hiltner, A.; Baer, E. Biaxial orientation of polypropylene by hydrostatic solid state extrusion. Part III: mechanical properties and deformation mechanisms. Polym. Eng. Sci. 1987, 27, 876−886.
      Tang, H. I.; Hiltner, A.; Baer, E..  Biaxial orientation of polypropylene by hydrostatic solid state extrusion. Part III: mechanical properties and deformation mechanisms[J]. Polym. Eng. Sci., 1987, 27(): 876-886. doi: 10.1002/pen.760271203

    10. [10]

      Litvinov, V. M.; Soliman, M. The effect of storage of poly(propylene) pipes under hydrostatic pressure and elevated temperatures on the morphology, molecular mobility and failure behaviour. Polymer 2005, 46, 3077−3089.
      Litvinov, V. M.; Soliman, M..  The effect of storage of poly(propylene) pipes under hydrostatic pressure and elevated temperatures on the morphology, molecular mobility and failure behaviour[J]. Polymer, 2005, 46(): 3077-3089. doi: 10.1016/j.polymer.2005.01.074

    11. [11]

      Chan, C. K.; Whitehouse, C.; Gao, P.; Chai, C. K. Flow induced chain alignment and disentanglement as the viscosity reduction mechanism within TLCP/HDPE blends. Polymer 2001, 42, 7847−7856.
      Chan, C. K.; Whitehouse, C.; Gao, P.; Chai, C. K..  Flow induced chain alignment and disentanglement as the viscosity reduction mechanism within TLCP/HDPE blends[J]. Polymer, 2001, 42(): 7847-7856. doi: 10.1016/S0032-3861(01)00265-8

    12. [12]

      Nie, M.; Han, R.; Wang, Q. Formation and alignment of hybrid shish-kebab morphology with rich beta crystals in an isotactic polypropylene pipe. Ind. Eng. Chem. Res. 2014, 53, 4142−4146.
      Nie, M.; Han, R.; Wang, Q..  Formation and alignment of hybrid shish-kebab morphology with rich beta crystals in an isotactic polypropylene pipe[J]. Ind. Eng. Chem. Res., 2014, 53(): 4142-4146. doi: 10.1021/ie403944k

    13. [13]

      Pi, L.; Nie, M.; Wang, Q. Crystalline composition and morphology in isotactic polypropylene pipe under combining effects of rotation extrusion and fibril β-nucleating agent. J. Vinyl. Addit. Techn. 2019, 25, E195−E202.
      Pi, L.; Nie, M.; Wang, Q..  Crystalline composition and morphology in isotactic polypropylene pipe under combining effects of rotation extrusion and fibril β-nucleating agent[J]. J. Vinyl. Addit. Techn., 2019, 25(): E195-E202. doi: 10.1002/vnl.21686

    14. [14]

      Luo, G.; Li, W.; Liang, W.; Liu, G.; Ma, Y.; Niu, Y.; Li, G. Coupling effects of glass fiber treatment and matrix modification on the interfacial microstructures and the enhanced mechanical properties of glass fiber/polypropylene composites. Compos. Part B-Eng. 2017, 111, 190−199.
      Luo, G.; Li, W.; Liang, W.; Liu, G.; Ma, Y.; Niu, Y.; Li, G..  Coupling effects of glass fiber treatment and matrix modification on the interfacial microstructures and the enhanced mechanical properties of glass fiber/polypropylene composites[J]. Compos. Part B-Eng., 2017, 111(): 190-199. doi: 10.1016/j.compositesb.2016.12.016

    15. [15]

      Kimata, S.; Sakurai, T.; Nozue, Y.; Kasahara, T.; Yamaguchi, N.; Karino, T.; Shibayama, M.; Kornfield, J. A. Molecular basis of the shish-kebab morphology in polymer crystallization. Science 2007, 316, 1014−1017.
      Kimata, S.; Sakurai, T.; Nozue, Y.; Kasahara, T.; Yamaguchi, N.; Karino, T.; Shibayama, M.; Kornfield, J. A..  Molecular basis of the shish-kebab morphology in polymer crystallization[J]. Science, 2007, 316(): 1014-1017. doi: 10.1126/science.1140132

    16. [16]

      Somani, R. H.; Yang, L.; Zhu, L.; Hsiao, B. S. Flow-induced shish-kebab precursor structures in entangled polymer melts. Polymer 2005, 46, 8587−8623.
      Somani, R. H.; Yang, L.; Zhu, L.; Hsiao, B. S..  Flow-induced shish-kebab precursor structures in entangled polymer melts[J]. Polymer, 2005, 46(): 8587-8623. doi: 10.1016/j.polymer.2005.06.034

    17. [17]

      Hsiao, B. S.; Yang, L.; Somani, R. H.; Avila-Orta, C. A.; Zhu, L. Unexpected shish-kebab structure in a sheared polyethylene melt. Phys. Rev. Lett. 2005, 94, 117802.
      Hsiao, B. S.; Yang, L.; Somani, R. H.; Avila-Orta, C. A.; Zhu, L..  Unexpected shish-kebab structure in a sheared polyethylene melt[J]. Phys. Rev. Lett., 2005, 94(): 117802-.

    18. [18]

      Yang, J.; Wang, C.; Wang, K.; Zhang, Q.; Chen, F.; Du, R.; Fu, Q. Direct formation of nanohybrid shish-kebab in the injection molded car of polyethylene/multiwalled carbon nanotubes composite. Macromolecules 2009, 42, 7016−7023.
      Yang, J.; Wang, C.; Wang, K.; Zhang, Q.; Chen, F.; Du, R.; Fu, Q..  Direct formation of nanohybrid shish-kebab in the injection molded car of polyethylene/multiwalled carbon nanotubes composite[J]. Macromolecules, 2009, 42(): 7016-7023. doi: 10.1021/ma901266u

    19. [19]

      Hu, W.; Frenkel, D.; Mathot, V. B. F. Simulation of shish-kebab crystallite induced by a single prealigned macromolecule. Macromolecules 2002, 35, 7172−7174.
      Hu, W.; Frenkel, D.; Mathot, V. B. F..  Simulation of shish-kebab crystallite induced by a single prealigned macromolecule[J]. Macromolecules, 2002, 35(): 7172-7174. doi: 10.1021/ma0255581

    20. [20]

      Kawaguchi, K. Mechanical properties and transparency of injection-molded polyacetal with branched and linear structure: influence of crystalline morphology. J. Appl. Polym. Sci. 2006, 100, 3382−3392.
      Kawaguchi, K..  Mechanical properties and transparency of injection-molded polyacetal with branched and linear structure: influence of crystalline morphology[J]. J. Appl. Polym. Sci., 2006, 100(): 3382-3392. doi: 10.1002/app.23777

    21. [21]

      Lei, J.; Jiang, C.; Shen, K. Biaxially self-reinforced high-density polyethylene prepared by dynamic packing injection molding. I. Processing parameters and mechanical properties. J. Appl. Polym. Sci. 2004, 93, 1584−1590.
      Lei, J.; Jiang, C.; Shen, K..  Biaxially self-reinforced high-density polyethylene prepared by dynamic packing injection molding. I. Processing parameters and mechanical properties[J]. J. Appl. Polym. Sci., 2004, 93(): 1584-1590. doi: 10.1002/app.20640

    22. [22]

      Na, B.; Zhang, Q.; Fu, Q.; Zhang, G.; Shen, K. Super polyolefin blends achieved via dynamic packing injection molding: the morphology and mechanical properties of HDPE/EVA blends. Polymer 2002, 43, 7367−7376.
      Na, B.; Zhang, Q.; Fu, Q.; Zhang, G.; Shen, K..  Super polyolefin blends achieved via dynamic packing injection molding: the morphology and mechanical properties of HDPE/EVA blends[J]. Polymer, 2002, 43(): 7367-7376. doi: 10.1016/S0032-3861(02)00637-7

    23. [23]

      Chen, Y. H.; Zhong, G. J.; Wang, Y.; Li, Z. M.; Li, L. Unusual tuning of mechanical properties of isotactic polypropylene using counteraction of shear flow and β-nucleating agent on β-form nucleation. Macromolecules 2009, 42, 4343−4348.
      Chen, Y. H.; Zhong, G. J.; Wang, Y.; Li, Z. M.; Li, L..  Unusual tuning of mechanical properties of isotactic polypropylene using counteraction of shear flow and β-nucleating agent on β-form nucleation[J]. Macromolecules, 2009, 42(): 4343-4348. doi: 10.1021/ma900411f

    24. [24]

      Nie, M.; Wang, Q.; Bai, S. B. Morphology and property of polyethylene pipe extruded at the low mandrel rotation. Polym. Eng. Sci. 2010, 50, 1743−1750.
      Nie, M.; Wang, Q.; Bai, S. B..  Morphology and property of polyethylene pipe extruded at the low mandrel rotation[J]. Polym. Eng. Sci., 2010, 50(): 1743-1750. doi: 10.1002/pen.21700

    25. [25]

      Long, J.; Shen, K.; Ji, J.; Guan, Q. A mandrel-rotating die to produce high-hoop-strength HDPE pipe by self-reinforcement. J. Appl. Polym. Sci. 1998, 69, 323−328.
      Long, J.; Shen, K.; Ji, J.; Guan, Q..  A mandrel-rotating die to produce high-hoop-strength HDPE pipe by self-reinforcement[J]. J. Appl. Polym. Sci., 1998, 69(): 323-328. doi: 10.1002/(SICI)1097-4628(19980711)69:2<323::AID-APP13>3.0.CO;2-X

    26. [26]

      Nie, M.; Li, X.; Hu, X.; Wang, Q. Effect of die temperature on morphology and performance of polyethylene pipe prepared via mandrel rotation extrusion. J. Macromol. Sci. B 2014, 53, 1442−1452.
      Nie, M.; Li, X.; Hu, X.; Wang, Q..  Effect of die temperature on morphology and performance of polyethylene pipe prepared via mandrel rotation extrusion[J]. J. Macromol. Sci. B, 2014, 53(): 1442-1452. doi: 10.1080/00222348.2014.928161

    27. [27]

      Han, R.; Nie, M.; Bai, S. B.; Wang, Q. Control over crystalline form in polypropylene pipe via mandrel rotation extrusion. Polym. Bull. 2013, 70, 2083−2096.
      Han, R.; Nie, M.; Bai, S. B.; Wang, Q..  Control over crystalline form in polypropylene pipe via mandrel rotation extrusion[J]. Polym. Bull., 2013, 70(): 2083-2096. doi: 10.1007/s00289-013-0963-7

    28. [28]

      Nie, M.; Bai, S.; Wang, Q. High-density polyethylene pipe with high resistance to slow crack growth prepared via rotation extrusion. Polym. Bull. 2010, 65, 609−621.
      Nie, M.; Bai, S.; Wang, Q..  High-density polyethylene pipe with high resistance to slow crack growth prepared via rotation extrusion[J]. Polym. Bull., 2010, 65(): 609-621. doi: 10.1007/s00289-010-0270-5

    29. [29]

      Xie, Z.; Gao, N.; Du, Z.; Yang, H.; Shen, K.; Fu, Q.; Gao, X. Role of melt plasticizing temperature in morphology and properties of PE100 pipes prepared by a rotational shear system. ACS Omega 2020, 5, 12660−12671.
      Xie, Z.; Gao, N.; Du, Z.; Yang, H.; Shen, K.; Fu, Q.; Gao, X..  Role of melt plasticizing temperature in morphology and properties of PE100 pipes prepared by a rotational shear system[J]. ACS Omega, 2020, 5(): 12660-12671. doi: 10.1021/acsomega.9b04138

    30. [30]

      Kitade, S.; Kurihara, H.; Asuka, K.; Katsuno, S.; Akiba, I.; Sakurai, K. Oriented crystallization of long chain branched polypropylene induced by step-shear deformation in pre-crystallization regime. Polymer 2017, 116, 395−402.
      Kitade, S.; Kurihara, H.; Asuka, K.; Katsuno, S.; Akiba, I.; Sakurai, K..  Oriented crystallization of long chain branched polypropylene induced by step-shear deformation in pre-crystallization regime[J]. Polymer, 2017, 116(): 395-402. doi: 10.1016/j.polymer.2017.02.005

    31. [31]

      Venerus, D. C.; Schieber, J. D.; Iddir, H.; Guzman, J. D.; Broerman, A. W. Relaxation of anisotropic thermal diffusivity in a polymer melt following step shear strain. Phys. Rev. Lett. 1999, 82, 366−369.
      Venerus, D. C.; Schieber, J. D.; Iddir, H.; Guzman, J. D.; Broerman, A. W..  Relaxation of anisotropic thermal diffusivity in a polymer melt following step shear strain[J]. Phys. Rev. Lett., 1999, 82(): 366-369. doi: 10.1103/PhysRevLett.82.366

    32. [32]

      Li, Y.; Wen, X.; Nie, M.; Wang, Q. Controllable reinforcement of stiffness and toughness of polypropylene via thermally induced self-assembly of β-nucleating agent. J. Appl. Polym. Sci. 2014, 131, 40605.
      Li, Y.; Wen, X.; Nie, M.; Wang, Q..  Controllable reinforcement of stiffness and toughness of polypropylene via thermally induced self-assembly of β-nucleating agent[J]. J. Appl. Polym. Sci., 2014, 131(): 40605-.

    33. [33]

      Han, R.; Nie, M.; Wang, Q.; Yan, S. Self-assembly β nucleating agent induced polymorphic transition from α-form shish kebab to β-form highly ordered lamella under intense shear field. Ind. Eng. Chem. Res. 2017, 56, 2764−2772.
      Han, R.; Nie, M.; Wang, Q.; Yan, S..  Self-assembly β nucleating agent induced polymorphic transition from α-form shish kebab to β-form highly ordered lamella under intense shear field[J]. Ind. Eng. Chem. Res., 2017, 56(): 2764-2772. doi: 10.1021/acs.iecr.6b04908

    34. [34]

      Jones, A. T.; Aizlewood, J. M.; Beckett, D. Crystalline forms of isotactic polypropylene. Macromol. Chem. Phys. 1964, 75, 134−158.
      Jones, A. T.; Aizlewood, J. M.; Beckett, D..  Crystalline forms of isotactic polypropylene[J]. Macromol. Chem. Phys., 1964, 75(): 134-158. doi: 10.1002/macp.1964.020750113

    35. [35]

      Qiang, Z.; Shangguan, Y.; Tong, L.; Peng, M. Effect of vibration on crystal morphology and structure of isotactic polypropylene in nonisothermal crystallization. J. Appl. Polym. Sci. 2004, 94, 2187−2195.
      Qiang, Z.; Shangguan, Y.; Tong, L.; Peng, M..  Effect of vibration on crystal morphology and structure of isotactic polypropylene in nonisothermal crystallization[J]. J. Appl. Polym. Sci., 2004, 94(): 2187-2195. doi: 10.1002/app.21166

    36. [36]

      Chen, H. B.; Karger-Kocsis, J.; Wu, J. S.; Varga, J. Fracture toughness of α- and β-phase polypropylene homopolymers and random- and block-copolymers. Polymer 2002, 43, 6505−6514.
      Chen, H. B.; Karger-Kocsis, J.; Wu, J. S.; Varga, J..  Fracture toughness of α- and β-phase polypropylene homopolymers and random- and block-copolymers[J]. Polymer, 2002, 43(): 6505-6514. doi: 10.1016/S0032-3861(02)00590-6

    37. [37]

      Policianová, O.; Hodan, J.; Brus, J.; Kotek, J. Origin of toughness in β-polypropylene: the effect of molecular mobility in the amorphous phase. Polymer 2015, 60, 107−114.
      Policianová, O.; Hodan, J.; Brus, J.; Kotek, J..  Origin of toughness in β-polypropylene: the effect of molecular mobility in the amorphous phase[J]. Polymer, 2015, 60(): 107-114. doi: 10.1016/j.polymer.2015.01.047

    38. [38]

      Ferro, D. R.; Meille, S. V.; Brückner, S. Energy calculations for isotactic polypropylene: a contribution to clarify the β crystalline structure. Macromolecules 1998, 31, 6926−6934.
      Ferro, D. R.; Meille, S. V.; Brückner, S..  Energy calculations for isotactic polypropylene: a contribution to clarify the β crystalline structure[J]. Macromolecules, 1998, 31(): 6926-6934. doi: 10.1021/ma9804592

    39. [39]

      Vleeshouwers, S. Simultaneous in-situ WAXS/SAXS and DSC study of the recrystallization and melting behaviour of the α and β form of iPP. Polymer 1997, 38, 3213−3221.
      Vleeshouwers, S..  Simultaneous in-situ WAXS/SAXS and DSC study of the recrystallization and melting behaviour of the α and β form of iPP[J]. Polymer, 1997, 38(): 3213-3221. doi: 10.1016/S0032-3861(96)00894-4

    40. [40]

      Li, H.; Sun, X.; Yan, S.; Schultz, J. M. Initial stage of iPP β to α growth transition induced by stepwise crystallization. Macromolecules 2008, 41, 5062−5064.
      Li, H.; Sun, X.; Yan, S.; Schultz, J. M..  Initial stage of iPP β to α growth transition induced by stepwise crystallization[J]. Macromolecules, 2008, 41(): 5062-5064. doi: 10.1021/ma702725g

    41. [41]

      Wang, J.; Ren, Z.; Sun, X.; Li, H.; Yan, S. The βα growth transition of isotactic polypropylene during stepwise crystallization at elevated temperature. Colloid. Polym. Sci. 2015, 293, 2823−2830.
      Wang, J.; Ren, Z.; Sun, X.; Li, H.; Yan, S..  The βα growth transition of isotactic polypropylene during stepwise crystallization at elevated temperature[J]. Colloid. Polym. Sci., 2015, 293(): 2823-2830. doi: 10.1007/s00396-015-3599-3

    42. [42]

      Varga, J. β-Modification of polypropylene and its two-component systems. J. Therm. Anal. 1989, 35, 1891−1912.
      Varga, J..  β-Modification of polypropylene and its two-component systems[J]. J. Therm. Anal., 1989, 35(): 1891-1912. doi: 10.1007/BF01911675

    43. [43]

      Doufas, A. K.; Dairanieh, I. S.; McHugh, A. J. A continuum model for flow-induced crystallization of polymer melts. J. Rheol. Macromolecul. 1999, 43, 85−109.
      Doufas, A. K.; Dairanieh, I. S.; McHugh, A. J..  A continuum model for flow-induced crystallization of polymer melts[J]. J. Rheol. Macromolecul., 1999, 43(): 85-109. doi: 10.1122/1.550978

    44. [44]

      Coppola, S.; Grizzuti, N.; Maffettone, P. L. Microrheological modeling of flow-induced crystallization. Macromolecules 2001, 34, 5030−5036.
      Coppola, S.; Grizzuti, N.; Maffettone, P. L..  Microrheological modeling of flow-induced crystallization[J]. Macromolecules, 2001, 34(): 5030-5036. doi: 10.1021/ma010275e

    45. [45]

      Yan, T.; Zhao, B.; Cong, Y.; Fang, Y.; Cheng, S.; Li, L.; Pan, G.; Wang, Z.; Li, X.; Bian, F. Critical strain for shish-kebab formation. Macromolecules 2010, 43, 602−605.
      Yan, T.; Zhao, B.; Cong, Y.; Fang, Y.; Cheng, S.; Li, L.; Pan, G.; Wang, Z.; Li, X.; Bian, F..  Critical strain for shish-kebab formation[J]. Macromolecules, 2010, 43(): 602-605. doi: 10.1021/ma9020642

    46. [46]

      Ju, J.; Wang, Z.; Su, F.; Ji, Y.; Yang, H.; Chang, J.; Ali, S.; Li, X.; Li, L. Extensional flow-induced dynamic phase transitions in isotactic polypropylene. Macromol. Rapid Commun. 2016, 37, 1441−1445.
      Ju, J.; Wang, Z.; Su, F.; Ji, Y.; Yang, H.; Chang, J.; Ali, S.; Li, X.; Li, L..  Extensional flow-induced dynamic phase transitions in isotactic polypropylene[J]. Macromol. Rapid Commun., 2016, 37(): 1441-1445. doi: 10.1002/marc.201600185

    47. [47]

      Heeley, E. L.; Fernyhough, C. M.; Graham, R. S.; Olmsted, P. D.; Inkson, N. J.; Embery, J.; Groves, D. J.; McLeish, T. C. B.; Morgovan, A. C.; Meneau, F.; Bras, W.; Ryan, A. J. Shear-induced crystallization in blends of model linear and long-chain branched hydrogenated polybutadienes. Macromolecules 2006, 39, 5058−5071.
      Heeley, E. L.; Fernyhough, C. M.; Graham, R. S.; Olmsted, P. D.; Inkson, N. J.; Embery, J.; Groves, D. J.; McLeish, T. C. B.; Morgovan, A. C.; Meneau, F.; Bras, W.; Ryan, A. J..  Shear-induced crystallization in blends of model linear and long-chain branched hydrogenated polybutadienes[J]. Macromolecules, 2006, 39(): 5058-5071. doi: 10.1021/ma0606307

    48. [48]

      Zhang, C.; Liu, G.; Zhao, Y.; Wang, K.; Dong, X.; Li, Z.; Wang, L.; Wang, D. Exploring the polymorphic behavior of a β-nucleated propylene-ethylene random copolymer under shear flow. Polym. Crystallizat. 2020, 3, e10105.
      Zhang, C.; Liu, G.; Zhao, Y.; Wang, K.; Dong, X.; Li, Z.; Wang, L.; Wang, D..  Exploring the polymorphic behavior of a β-nucleated propylene-ethylene random copolymer under shear flow[J]. Polym. Crystallizat., 2020, 3(): e10105-.

    49. [49]

      Huo, H.; Jiang, S.; An, L.; Feng, J. Influence of shear on crystallization behavior of the β phase in isotactic polypropylene with β-nucleating agent. Macromolecules 2004, 37, 2478−2483.
      Huo, H.; Jiang, S.; An, L.; Feng, J..  Influence of shear on crystallization behavior of the β phase in isotactic polypropylene with β-nucleating agent[J]. Macromolecules, 2004, 37(): 2478-2483. doi: 10.1021/ma0358531

    50. [50]

      Chen, Y. H.; Mao, Y. M.; Li, Z. M.; Hsiao, B. S. Competitive growth of α- and β-crystals in β-nucleated isotactic polypropylene under shear flow. Macromolecules 2010, 43, 6760−6771.
      Chen, Y. H.; Mao, Y. M.; Li, Z. M.; Hsiao, B. S..  Competitive growth of α- and β-crystals in β-nucleated isotactic polypropylene under shear flow[J]. Macromolecules, 2010, 43(): 6760-6771. doi: 10.1021/ma101006e

    51. [51]

      Xia, C.; Du, H.; Wang, F.; La, R.; Mi, D.; Li, X.; Zhang, J. A novel crystal morphology of isotactic polypropylene induced by pressure vibration field: α banded spherulite. Mater. Lett. 2015, 153, 66−69.
      Xia, C.; Du, H.; Wang, F.; La, R.; Mi, D.; Li, X.; Zhang, J..  A novel crystal morphology of isotactic polypropylene induced by pressure vibration field: α banded spherulite[J]. Mater. Lett., 2015, 153(): 66-69. doi: 10.1016/j.matlet.2015.04.005

    52. [52]

      Shi, Y.; Dou, Q. The relationship between structure and properties of β-phase isotactic polypropylene. Adv. Mat. Res. 2011, 233-235, 2129−2137.
      Shi, Y.; Dou, Q..  The relationship between structure and properties of β-phase isotactic polypropylene[J]. Adv. Mat. Res., 2011, 233-235(): 2129-2137.

    53. [53]

      Keum, J. K.; Zuo, F.; Hsiao, B. S. Formation and stability of shear-induced shish-kebab structure in highly entangled melts of UHMWPE/HDPE blends. Macromolecules 2008, 41, 4766−4776.
      Keum, J. K.; Zuo, F.; Hsiao, B. S..  Formation and stability of shear-induced shish-kebab structure in highly entangled melts of UHMWPE/HDPE blends[J]. Macromolecules, 2008, 41(): 4766-4776. doi: 10.1021/ma800063e

    54. [54]

      Alexander, L. X-ray diffraction methods in polymer science. J. Mater. Sci. 1971, 6, 93−93.
      Alexander, L..  X-ray diffraction methods in polymer science[J]. J. Mater. Sci., 1971, 6(): 93-93. doi: 10.1007/BF00550300

    55. [55]

      Tang, Y.; Jiang, Z.; Men, Y.; An, L.; Enderle, H. F.; Lilge, D.; Roth, S. V.; Gehrke, R.; Rieger, J. Uniaxial deformation of overstretched polyethylene: in-situ synchrotron small angle X-ray scattering study. Polymer 2007, 48, 5125−5132.
      Tang, Y.; Jiang, Z.; Men, Y.; An, L.; Enderle, H. F.; Lilge, D.; Roth, S. V.; Gehrke, R.; Rieger, J..  Uniaxial deformation of overstretched polyethylene: in-situ synchrotron small angle X-ray scattering study[J]. Polymer, 2007, 48(): 5125-5132. doi: 10.1016/j.polymer.2007.06.056

    56. [56]

      Men, Y.; Rieger, J.; Lindner, P.; Enderle, H. F.; Lilge, D.; Kristen, M. O.; Mihan, S.; Jiang, S. Structural changes and chain radius of gyration in cold-drawn polyethylene after annealing: small- and wide-angle X-ray scattering and small-angle neutron scattering studies. J. Phys. Chem. B 2005, 109, 16650−16657.
      Men, Y.; Rieger, J.; Lindner, P.; Enderle, H. F.; Lilge, D.; Kristen, M. O.; Mihan, S.; Jiang, S..  Structural changes and chain radius of gyration in cold-drawn polyethylene after annealing: small- and wide-angle X-ray scattering and small-angle neutron scattering studies[J]. J. Phys. Chem. B, 2005, 109(): 16650-16657. doi: 10.1021/jp052723g

    57. [57]

      Jiang, Z.; Tang, Y.; Men, Y.; Enderle, H. F.; Lilge, D.; Roth, S. V.; Gehrke, R.; Rieger, J. Structural evolution of tensile-deformed high-density polyethylene during annealing: scanning synchrotron small-angle X-ray scattering study. Macromolecules 2007, 40, 7263−7269.
      Jiang, Z.; Tang, Y.; Men, Y.; Enderle, H. F.; Lilge, D.; Roth, S. V.; Gehrke, R.; Rieger, J..  Structural evolution of tensile-deformed high-density polyethylene during annealing: scanning synchrotron small-angle X-ray scattering study[J]. Macromolecules, 2007, 40(): 7263-7269. doi: 10.1021/ma0627572

    58. [58]

      Wang, Z.; An, M.; Xu, H.; Lv, Y.; Tian, F.; Gu, Q. Structural evolution from shish-kebab to fibrillar crystals during hot-stretching process of gel spinning ultra-high molecular weight polyethylene fibers obtained from low concentration solution. Polymer 2017, 120, 244−254.
      Wang, Z.; An, M.; Xu, H.; Lv, Y.; Tian, F.; Gu, Q..  Structural evolution from shish-kebab to fibrillar crystals during hot-stretching process of gel spinning ultra-high molecular weight polyethylene fibers obtained from low concentration solution[J]. Polymer, 2017, 120(): 244-254. doi: 10.1016/j.polymer.2017.05.062

    59. [59]

      Alexander, L. E. X-ray diffraction methods in polymer science. John Wiley & Sons Inc: New York, 1979.

    60. [60]

      Huang, Y. F.; Xu, J. Z.; Li, J. S.; He, B. X.; Xu, L.; Li, Z. M. Mechanical properties and biocompatibility of melt processed, self-reinforced ultrahigh molecular weight polyethylene. Biomaterials 2014, 35, 6687−6697.
      Huang, Y. F.; Xu, J. Z.; Li, J. S.; He, B. X.; Xu, L.; Li, Z. M..  Mechanical properties and biocompatibility of melt processed, self-reinforced ultrahigh molecular weight polyethylene[J]. Biomaterials, 2014, 35(): 6687-6697. doi: 10.1016/j.biomaterials.2014.04.077

    61. [61]

      Kalay, G.; Kalay, C. R. Interlocking shish-kebab morphology in polybutene-1. J. Polym. Sci., Part B: Polym. Phys. 2002, 40, 1828−1834.
      Kalay, G.; Kalay, C. R..  Interlocking shish-kebab morphology in polybutene-1[J]. J. Polym. Sci., Part B: Polym. Phys., 2002, 40(): 1828-1834. doi: 10.1002/polb.10246

    62. [62]

      Fu, J.; Ghali, B. W.; Lozynsky, A. J.; Oral, E.; Muratoglu, O. K. Ultra high molecular weight polyethylene with improved plasticity and toughness by high temperature melting. Polymer 2010, 51, 2721−2731.
      Fu, J.; Ghali, B. W.; Lozynsky, A. J.; Oral, E.; Muratoglu, O. K..  Ultra high molecular weight polyethylene with improved plasticity and toughness by high temperature melting[J]. Polymer, 2010, 51(): 2721-2731. doi: 10.1016/j.polymer.2010.04.003

    1. [1]

      Zu-Chen DuHao YangXie-Huai LuoZe-Xiang XieQiang FuXue-Qin Gao . The Role of Mold Temperature on Morphology and Mechanical Properties of PE Pipe Produced by Rotational Shear. Chinese J. Polym. Sci, 2020, 38(6): 653-664. doi: 10.1007/s10118-020-2363-4

    2. [2]

      Zhong-bin XuLiang-yao SuPeng-fei WangMao Peng . Effect of Oscillatory Shear on the Mechanical Properties and Crystalline Morphology of Linear Low Density Polyethylene?. Chinese J. Polym. Sci, 2015, 33(8): 1114-1124. doi: 10.1007/s10118-015-1663-6

    3. [3]

      Zhi-hao ZhaoFei-fei WangMan ZhouKai-zhi ShenJie Zhang . Altering the Hierarchical Morphology Distribution of Injection Molded Polyethylene by the Introduction of Crosslink Network and Periodical Shear. Chinese J. Polym. Sci, 2016, 34(12): 1479-1489. doi: 10.1007/s10118-016-1865-6

    4. [4]

      Min-fang AnHao-jun XuYou LvLi ZhangQun GuFeng TianZong-bao Wang . The Influence of Chitin Nanocrystals on Structural Evolution of Ultra-high Molecular Weight Polyethylene/Chitin Nanocrystal Fibers in Hot-drawing Process. Chinese J. Polym. Sci, 2016, 34(11): 1373-1385. doi: 10.1007/s10118-016-1843-z

    5. [5]

      Da-Shan MiFeng-Yi HouMan ZhouJie Zhang . Distribution of α-, β-, and γ-Phases in a Multi-flow Injection-molded Hierarchical Structure. Chinese J. Polym. Sci, 2018, 36(6): 765-775. doi: 10.1007/s10118-018-2057-3

    6. [6]

      . SYNTHESIS AND CHARACTERIZATION OF NOVEL CHIRAL SMECTIC C(Sc*) PHASE SHISH-KEBAB TYPE LIQUID CRYSTALLINE BLOCK COPOLYMERS*. Chinese J. Polym. Sci, 1999, 17(6): 579-587.

    7. [7]

      Kun ZhaoJin-tao WangCheng-zi WangKai LiShi-jun ZhengKun WangTakaomi Kobayashi . LINEARLY POLARIZED WHITE FLUORESCENCE FROM SHISH-KEBAB TYPE LIQUID CRYSTALLINE POLY(P-PHENYLENEVINVLENE)S WITH (P-PHENYLENE)S AS KEBAB. Chinese J. Polym. Sci, 2012, 30(2): 209-216. doi: 10.1007/s10118-012-1110-x

    8. [8]

      Zhen-yu DengDong ZhangLin-xi Zhang . Dynamics of Attractive Vesicles in Shear Flow. Chinese J. Polym. Sci, 2016, 34(5): 623-636. doi: 10.1007/s10118-016-1785-5

    9. [9]

      Juan LiYi-jing NieYu MaWen-bing Hu . STRESS-INDUCED POLYMER DEFORMATION IN SHEAR FLOWS. Chinese J. Polym. Sci, 2013, 31(11): 1590-1598. doi: 10.1007/s10118-013-1354-0

    10. [10]

      Xiang-Xin KongWen-Duo ChenFeng-Chao CuiYun-Qi Li . Conformational and Dynamical Evolution of Block Copolymers in Shear Flow. Chinese J. Polym. Sci, 2020, 38(): 1-11. doi: 10.1007/s10118-021-2523-1

    11. [11]

      Jing-yi ChenZhong JinKe-da Yang . Three-dimensional Numerical Simulation of Viscoelastic Phase Separation under Shear: the Roles of Bulk and Shear Relaxation Moduli. Chinese J. Polym. Sci, 2015, 33(11): 1562-1573. doi: 10.1007/s10118-015-1711-2

    12. [12]

      Ruo-Bing YuChi-Xing ZhouWei Yu . STUDY ON INTERMITTENT SHEAR FLOW AND RELAXATION BEHAVIOR OF THERMOTROPIC LIQUID CRYSTALLINE POLYMER. Chinese J. Polym. Sci, 2005, 23(3): 285-291.

    13. [13]

      WANG XiayuDONG YanmingLI XianxingXIONG Qianzhen . MORPHOLOGICAL STUDIES ON THERMOTROPIC LIQUID CRYSTALLINE POLYESTER——MORPHOLOGY OF SHEAR ORIENTED FILMS. Chinese J. Polym. Sci, 1989, 7(2): 103-110.

    14. [14]

      YE MeilingHAN DongSHI Lianghe . A NEW TYPE LOW SHEAR RATE VISCOMETER FOR HIGH MOLECULAR WEIGHT POLYMER*. Chinese J. Polym. Sci, 1996, 14(4): 311-317.

    15. [15]

      Dong-Lei LiuFeng ZhouKun Fang . A Theoretical Study on Transitional Shear Flow Behavior of the Compressible and Isothermal Thermoplastic Polymer. Chinese J. Polym. Sci, 2019, 37(5): 518-526. doi: 10.1007/s10118-019-2214-3

    16. [16]

      Bao-jing LuoHong-fei LiWen-yang ZhangCheng-bo ZhouJing-qing LiCong-hua LuXue-hao HeShi-chun Jiang . Mechanistic Insights into the Shear Effects on Isotactic Polypropylene Crystallization Containing β-Nucleating Agent. Chinese J. Polym. Sci, 2017, 35(5): 672-680. doi: 10.1007/s10118-017-1912-y

    17. [17]

      Zeng-ge GuoXin LiJian LiBin ZhangBo-wen Cheng . Influence of Reverse Pressure on the Shear Viscosity of Hydrophilic Poly(ethylene terephthalate) Melt. Chinese J. Polym. Sci, 2014, 32(7): 923-930. doi: 10.1007/s10118-014-1482-1

    18. [18]

      Yan-Long LuoXiao-Hui DuanBin LiXian-Ling ChenYang-Yang GaoLi-Qun Zhang . Tuning the Electrically Conductive Network of Grafted Nanoparticles in Polymer Nanocomposites by the Shear Field. Chinese J. Polym. Sci, 2020, 38(12): 1426-1434. doi: 10.1007/s10118-020-2467-x

    19. [19]

      Shi-jun ZhengKazuo AkagiQun XuZi-fa LiShao-kui CaoQi-feng Zhou . SYNTHESIS AND PROPERITIES OF SHISH-KEBAB-TYPE LIQUID CRYSTALLINE POLY(p-PHENYLENE)S. Chinese J. Polym. Sci, 2006, 24(3): 265-271.

    20. [20]

      Ying-jie TanYu-rong LiangGuo-sheng HuYi-qing WangYong-lai LuLi-qun Zhang . STRUCTURE AND PROPERTIES OF ISOBUTYLENE-ISOPRENE RUBBER/SWOLLEN ORGANOCLAY NANOCOMPOSITES PREPARED BY SHEAR MIXING. Chinese J. Polym. Sci, 2011, 29(2): 225-231. doi: 10.1007/s10118-011-1029-7

  • Figure 1.  Schematic diagram of RSS[6]: 1-motor, 2-mold, 3-mandrel, 4-coupling, 5-heater, 6-electric box, 7-cooling control, and 8-extruder.

    Figure 2.  Schematic diagram of continuous and stepped shear modes.

    Figure 3.  Diagram of iPP pipe with rotational shear test sampling.

    Figure 4.  (a) Hoop mechanical properties and (b) axial mechanical properties of iPP pipes.

    Figure 5.  SEM images of axial tensile section under continuous and stepped shear.

    Figure 6.  Linear WAXD intensity profiles.

    Figure 7.  Scanning electron micrographs of three layers of the inner, core and outer layers under continuous and stepwise rotational shear (the arrow is the direction of melt flow and the clear shish-kebabs are marked with the dotted boxes).

    Figure 8.  2D-WAXD patterns of samples with rotational shear (the arrow is the direction of melt flow, and the diffractive rings of (110)α and (040)α are pointed out).

    Figure 9.  (a) Azimuth scanning map and orientation factor of samples with rotational shear (the azimuthal profile belongs to (040)α); (b) degree of orientation in each layer.

    Figure 10.  Small angle X-ray scattering pattern (the scattering vectors along and perpendicular to the fiber axis direction are defined as q1 and q2, respectively).

    Figure 11.  K(z) curve of pipes with different shear modes.

    Figure 12.  One-dimensional scattering intensity distribution curve of pipes under different shear modes.

    Figure 13.  Schematic diagram of shish-kebab structure under different shear modes.

    ModeAverage long period/thickness (nm)
    Shish-kebabKebab
    Continuous22.178.49
    Stepped19.688.10

    Table 1.  Average long period of shish-kebab and average thickness of kebabs in samples with two shear modes.

    下载: 导出CSV
    ModeMelting peak temperature (°C) Melting enthalpy (J/g)
    InnerCoreOuterInnerCoreOuter
    Continuous164.53163.26164.29101.7102103
    Stepped165.77165.38165.48102103.5101.1

    Table 2.  Comparison of DSC test results of iPP pipe.

    下载: 导出CSV
    ModeCrystallinity
    InnerCoreOuter
    Continuous57.46%57.63%58.19%
    Stepped57.65%58.54%57.18%

    Table 3.  Comparison of crystallinity of each layer of iPP pipe.

    下载: 导出CSV
  • 加载中
图(13)表(3)
计量
  • PDF下载量:  0
  • 文章访问数:  456
  • HTML全文浏览量:  151
  • 引证文献数: 0
文章相关
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
主管单位: 中国科学院
主办单位: 中国科学院化学研究所

京ICP备05032737 号-2

版权所有:
通讯地址:
工作邮箱:
办公电话: 020-37627489

本系统由北京仁和汇智信息技术有限公司开发 技术支持:info@rhhz.net