Citation: Seidi, F.; Zhao, W. F.; Xiao, H. N.; Jin, Y. C.; Saeb, M. R.; Zhao, C. S. Advanced surfaces by anchoring thin hydrogel layers of functional polymers. Chinese J. Polym. Sci. 2021, 39, 14–34 doi: 10.1007/s10118-020-2474-y shu

Advanced Surfaces by Anchoring Thin Hydrogel Layers of Functional Polymers

Figures(11)

  • Surface design and engineering is a critical tool to improve the interaction of materials with their surroundings. Immobilization of soft hydrogels is one of the attractive strategies to achieve surface modification. The goal of this review is to provide a comprehensive overview of the different strategies used for surface tethering of hydrogel layers via crosslinking immobilization of pre-fabricated functional polymers. In this strategy, crosslinkable polymers are first prepared via various polymerization techniques or post-functionalization of polymers. Afterwards, the crosslinkable polymers are attached or tethered on the surfaces of substrates using a variety of approaches including photo-crosslinking, click reactions, reversible linkages, etc. For each case, the principles of hydrogel tethering have been explained in detail with representative examples. Moreover, the potential applications of the as-modified substrates in specific cases have also been addressed and overviewed.
  • 加载中
    1. [1]

      Blaszykowski, C.; Sheikh, S.; Thompson, M. Surface chemistry to minimize fouling from blood-based fluids. Chem. Soc. Rev. 2012, 41, 5599−5612. doi: 10.1039/c2cs35170f

    2. [2]

      Landolt, D. Corrosion and surface chemistry of metals. EPFL press, 2007.

    3. [3]

      Ching, H. A.; Choudhury, D.; Nine, M. J.; Abu Osman, N. A. Effects of surface coating on reducing friction and wear of orthopaedic implants. Sci. Technol. Adv. Mater. 2014, 15, 014402−014402. doi: 10.1088/1468-6996/15/1/014402

    4. [4]

      Howarter, J. A.; Youngblood, J. P. Self-cleaning and next generation anti-fog surfaces and coatings. Macromol. Rapid Commun. 2008, 29, 455−466. doi: 10.1002/marc.200700733

    5. [5]

      Lee, S. C.; Kwon, I. K.; Park, K. Hydrogels for delivery of bioactive agents: a historical perspective. Adv. Drug Deliver. Rev. 2013, 65, 17−20. doi: 10.1016/j.addr.2012.07.015

    6. [6]

      Ahmed, E. M. Hydrogel: preparation, characterization, and applications: a review. J. Adv. Res. 2015, 6, 105−121. doi: 10.1016/j.jare.2013.07.006

    7. [7]

      Yuk, H.; Lu, B.; Zhao, X. Hydrogel bioelectronics. Chem. Soc. Rev. 2019, 48, 1642−1667. doi: 10.1039/C8CS00595H

    8. [8]

      Hoffman, A. S. Hydrogels for biomedical applications. Adv. Drug Deliver. Rev. 2012, 64, 18−23. doi: 10.1016/j.addr.2012.09.010

    9. [9]

      Toomey, R.; Freidank, D.; Rühe, J. Swelling behavior of thin, surface-attached polymer networks. Macromolecules 2004, 37, 882−887. doi: 10.1021/ma034737v

    10. [10]

      Pandiyarajan, C. K.; Prucker, O.; Zieger, B.; Rühe, J. Influence of the molecular structure of surface-attached poly(N-alkyl acrylamide) coatings on the interaction of surfaces with proteins, cells and blood platelets. Macromol. Biosci. 2013, 13, 873−884. doi: 10.1002/mabi.201200445

    11. [11]

      Pandiyarajan, C. K.; Prucker, O.; Rühe, J. Humidity driven swelling of the surface-attached poly(N-alkylacrylamide) hydrogels. Macromolecules 2016, 49, 8254−8264. doi: 10.1021/acs.macromol.6b01379

    12. [12]

      Li, K.; Pandiyarajan, C. K.; Prucker, O.; Rühe, J. On the lubrication mechanism of surfaces covered with surface-attached hydrogels. Macromol. Chem. Phys. 2016, 217, 526−536. doi: 10.1002/macp.201500243

    13. [13]

      Steinbach, T.; Wurm, F. R. Poly(phosphoester)s: a new platform for degradable polymers. Angew. Chem. Int. Ed. 2015, 54, 6098−6108. doi: 10.1002/anie.201500147

    14. [14]

      Becker, G.; Deng, Z.; Zober, M.; Wagner, M.; Lienkamp, K.; Wurm, F. R. Surface-attached poly(phosphoester)-hydrogels with benzophenone groups. Polym. Chem. 2018, 9, 315−326. doi: 10.1039/C7PY01777D

    15. [15]

      Rendl, M.; Bönisch, A.; Mader, A.; Schuh, K.; Prucker, O.; Brandstetter, T.; Rühe, J. Simple one-step process for immobilization of biomolecules on polymer substrates based on surface-attached polymer networks. Langmuir 2011, 27, 6116−6123. doi: 10.1021/la1050833

    16. [16]

      Moschallski, M.; Evers, A.; Brandstetter, T.; Rühe, J. Sensitivity of microarray based immunoassays using surface-attached hydrogels. Anal. Chim. Acta 2013, 781, 72−79. doi: 10.1016/j.aca.2013.04.013

    17. [17]

      Buller, J.; Laschewsky, A.; Wischerhoff, E. Photoreactive oligoethylene glycol polymers–versatile compounds for surface modification by thin hydrogel films. Soft Matter 2013, 9, 929−937. doi: 10.1039/C2SM26879E

    18. [18]

      Christensen, S. K.; Chiappelli, M. C.; Hayward, R. C. Gelation of copolymers with pendent benzophenone photo-cross-linkers. Macromolecules 2012, 45, 5237−5246. doi: 10.1021/ma300784d

    19. [19]

      Kommeren, S.; Dongmo, J.; Bastiaansen, C. W. M. Switchable surface structured hydrogel coatings. Soft Matter 2017, 13, 2239−2245. doi: 10.1039/C7SM00195A

    20. [20]

      Yoshikawa, C.; Delalat, B.; Huang, F.; Braun, S.; Nishijima, N.; Voelcker, N. H.; Kingshott, P.; Thissen, H. Photo-crosslinked coatings based on 2-hydroxypropyl acrylamide for the prevention of biofouling. J. Mater. Chem. B 2019, 7, 3520−3527. doi: 10.1039/C9TB00044E

    21. [21]

      Pidhatika, B.; Zhao, N.; Zinggeler, M.; Rühe, J. Surface-attached dual-functional hydrogel for controlled cell adhesion based on poly(N,N-dimethylacrylamide). J. Polym. Res. 2019, 26, 69. doi: 10.1007/s10965-019-1728-2

    22. [22]

      Kirmse, W. Carbene chemistry. Editor, Elsevier, 2013, Vol. 1.

    23. [23]

      Navarro, R.; Pérez Perrino, M.; Prucker, O.; Rühe, J. Preparation of surface-attached polymer layers by thermal or photochemical activation of α-diazoester moieties. Langmuir 2013, 29, 10932−10939. doi: 10.1021/la402323k

    24. [24]

      Ye, T.; McKervey, M. A. Organic synthesis with alpha-diazo carbonyl compounds. Chem. Rev. 1994, 94, 1091−1160. doi: 10.1021/cr00028a010

    25. [25]

      Osterwinter, G. J.; Navarro-Crespo, R.; Prucker, O.; Henze, M.; Rühe, J. Surface-attached polymer networks through carbene intermediates generated from α-diazo esters. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 3276−3285. doi: 10.1002/pola.28702

    26. [26]

      Jørgensen, J. K.; Ommundsen, E.; Stori, A.; Redford, K. Synthesis, characterisation and decomposition of 1,3-benzene disulfonyl azide; a cross-linking agent for polyolefins. Polymer 2005, 46, 12073−12080. doi: 10.1016/j.polymer.2005.10.077

    27. [27]

      El-Sayed, R. A. Review on the chemistry of sulfonohydrazides and sulfonoazides. Phosphorus, Sulfur Silicon Relat. Elem. 2004, 179, 237−266. doi: 10.1080/10426500490274673

    28. [28]

      Dequirez, G.; Pons, V.; Dauban, P. Nitrene Chemistry in organic synthesis: still in its infancy? Angew. Chem. Int. Ed. 2012, 51, 7384−7395. doi: 10.1002/anie.201201945

    29. [29]

      Wentrup, C. Carbenes and nitrenes: recent developments in fundamental chemistry. Angew. Chem. Int. Ed. 2018, 57, 11508−11521. doi: 10.1002/anie.201804863

    30. [30]

      Schuh, K.; Prucker, O.; Rühe, J. Tailor-made polymer multilayers. Adv. Funct. Mater. 2013, 23, 6019−6023. doi: 10.1002/adfm.201300846

    31. [31]

      Raghuraman, G. K.; Schuh, K.; Prucker, O.; Rühe, J. Attachment of polymer films to solid surfaces via thermal activation of self-assembled monolayers containing sulphonyl azide group. Langmuir 2010, 26, 769−774. doi: 10.1021/la9018019

    32. [32]

      Liu, L.; Engelhard, M. H.; Yan, M. Surface and interface control on photochemically initiated immobilization. J. Am. Chem. Soc. 2006, 128, 14067−14072. doi: 10.1021/ja062802l

    33. [33]

      Liu, L.; Yan, M. A general approach to the covalent immobilization of single polymers. Angew. Chem. Int. Ed. 2006, 45, 6207−6210. doi: 10.1002/anie.200602097

    34. [34]

      Yan, M.; Ren, J. Covalent immobilization of polypropylene thin films. J. Mater. Chem. 2005, 15, 523−527. doi: 10.1039/b410972d

    35. [35]

      Wang, X.; Ramström, O.; Yan, M. A photochemically initiated chemistry for coupling underivatized carbohydrates to gold nanoparticles. J. Mater. Chem. 2009, 19, 8944−8949. doi: 10.1039/b917900c

    36. [36]

      Wang, H.; Li, L.; Tong, Q.; Yan, M. Evaluation of photochemically immobilized poly(2-ethyl-2-oxazoline) thin films as protein-resistant surfaces. ACS Appl. Mater. Interfaces 2011, 3, 3463−3471. doi: 10.1021/am200690s

    37. [37]

      Poe, R.; Schnapp, K.; Young, M. J. T.; Grayzar, J.; Platz, M. S. Chemistry and kinetics of singlet pentafluorophenylnitrene. J. Am. Chem. Soc. 1992, 114, 5054−5067. doi: 10.1021/ja00039a016

    38. [38]

      Gritsan, N. P.; Gudmundsdóttir, A. D.; Tigelaar, D.; Zhu, Z.; Karney, W. L.; Hadad, C. M.; Platz, M. S. A laser flash photolysis and quantum chemical study of the fluorinated derivatives of singlet phenylnitrene. J. Am. Chem. Soc. 2001, 123, 1951−1962. doi: 10.1021/ja9944305

    39. [39]

      Schuh, K.; Prucker, O.; Rühe, J. Surface attached polymer networks through thermally induced cross-linking of sulfonyl azide group containing polymers. Macromolecules 2008, 41, 9284−9289. doi: 10.1021/ma801387e

    40. [40]

      Bartlett, M. A.; Yan, M. Fabrication of polymer thin films and arrays with spatial and topographical controls. Adv. Mater. 2001, 13, 1449−1451. doi: 10.1002/1521-4095(200110)13:19<1449::AID-ADMA1449>3.0.CO;2-M

    41. [41]

      Hasuda, H.; Kwon, O. H.; Kang, I. K.; Ito, Y. Synthesis of photoreactive pullulan for surface modification. Biomaterials 2005, 26, 2401−2406. doi: 10.1016/j.biomaterials.2004.07.065

    42. [42]

      Bhat, V. T.; James, N. R.; Jayakrishnan, A. A photochemical method for immobilization of azidated dextran onto aminated poly(ethylene terephthalate) surfaces. Polym. Int. 2008, 57, 124−132. doi: 10.1002/pi.2332

    43. [43]

      Coll Ferrer, M. C.; Yang, S.; Eckmann, D. M.; Composto, R. J. Creating biomimetic polymeric surfaces by photochemical attachment and patterning of dextran. Langmuir 2010, 26, 14126−14134. doi: 10.1021/la102315j

    44. [44]

      Seidi, F.; Jenjob, R.; Phakkeeree, T.; Crespy, D. Saccharides, oligosaccharides, and polysaccharides nanoparticles for biomedical applications. J. Control. Release 2018, 284, 188−212. doi: 10.1016/j.jconrel.2018.06.026

    45. [45]

      Xu, L.; Ma, P.; Yuan, B.; Chen, Q.; Lin, S.; Chen, X.; Hua, Z.; Shen, J. Anti-biofouling contact lenses bearing surface-immobilized layers of zwitterionic polymer by one-step modification. RSC Adv. 2014, 4, 15030−15035. doi: 10.1039/c3ra47119e

    46. [46]

      Colak, S.; Tew, G. N. Dual-functional ROMP-based betaines: effect of hydrophilicity and backbone structure on nonfouling properties. Langmuir 2012, 28, 666−675. doi: 10.1021/la203683u

    47. [47]

      Sola, L.; Chiari, M. Modulation of electroosmotic flow in capillary electrophoresis using functional polymer coatings. J. Chromatogr. A 2012, 1270, 324−329. doi: 10.1016/j.chroma.2012.10.039

    48. [48]

      Ohlander, A.; Zilio, C.; Hammerle, T.; Zelenin, S.; Klink, G.; Chiari, M.; Bock, K.; Russom, A. Genotyping of single nucleotide polymorphisms by melting curve analysis using thin film semi-transparent heaters integrated in a lab-on-foil system. Lab Chip 2013, 13, 2075−2082. doi: 10.1039/c3lc50171j

    49. [49]

      Petti, D.; Torti, A.; Damin, F.; Sola, L.; Rusnati, M.; Albisetti, E.; Bugatti, A.; Bertacco, R.; Chiari, M. Functionalization of gold surfaces with copoly(DMA-NAS-MAPS) by dip coating: surface characterization and hybridization tests. Sens. Actuators B Chem. 2014, 190, 234−242. doi: 10.1016/j.snb.2013.08.077

    50. [50]

      Jon, S.; Seong, J.; Khademhosseini, A.; Tran, T. N. T.; Laibinis, P. E.; Langer, R. Construction of nonbiofouling surfaces by polymeric self-assembled monolayers. Langmuir 2003, 19, 9989−9993. doi: 10.1021/la034839e

    51. [51]

      Dong, H.; Ye, P.; Zhong, M.; Pietrasik, J.; Drumright, R.; Matyjaszewski, K. Superhydrophilic surfaces via polymer-SiO2 nanocomposites. Langmuir 2010, 26, 15567−15573. doi: 10.1021/la102145s

    52. [52]

      Slugovc, C. The ring opening metathesis polymerisation toolbox. Macromol. Rapid Commun. 2004, 25, 1283−1297. doi: 10.1002/marc.200400150

    53. [53]

      Cretich, M.; Sedini, V.; Damin, F.; Pelliccia, M.; Sola, L.; Chiari, M. Coating of nitrocellulose for colorimetric DNA microarrays. Anal. Biochem. 2010, 397, 84−88. doi: 10.1016/j.ab.2009.09.050

    54. [54]

      Terada, Y.; Hashimoto, W.; Endo, T.; Seto, H.; Murakami, T.; Hisamoto, H.; Hoshino, Y.; Miura, Y. Signal amplified two-dimensional photonic crystal biosensor immobilized with glyco-nanoparticles. J. Mater. Chem. B 2014, 2, 3324−3332. doi: 10.1039/C4TB00028E

    55. [55]

      Hoyle, C. E.; Bowman, C. N. Thiol-ene click chemistry. Angew. Chem. Int. Ed. 2010, 49, 1540−1573. doi: 10.1002/anie.200903924

    56. [56]

      Sinha, A. K.; Equbal, D. Thiol-ene reaction: synthetic aspects and mechanistic studies of an anti-markovnikov-selective hydrothiolation of olefins. Asian J. Org. Chem. 2019, 8, 32−47. doi: 10.1002/ajoc.201800639

    57. [57]

      Kharkar, P. M.; Rehmann, M. S.; Skeens, K. M.; Maverakis, E.; Kloxin, A. M. Thiol-ene click hydrogels for therapeutic delivery. ACS Biomater. Sci. Eng. 2016, 2, 165−179. doi: 10.1021/acsbiomaterials.5b00420

    58. [58]

      Sticker, D.; Geczy, R.; HÄfeli, U. O.; Kutter, J. P. Thiol-ene based polymers as versatile materials for microfluidic devices for life sciences applications. ACS Appl. Mater. Interfaces 2020, 12, 10080−10095. doi: 10.1021/acsami.9b22050

    59. [59]

      Li, M.; Bresson, B.; Cousin, F.; Fretigny, C.; Tran, Y. Submicrometric films of surface-attached polymer network with temperature-responsive properties. Langmuir 2015, 31, 11516−11524. doi: 10.1021/acs.langmuir.5b02948

    60. [60]

      Chollet, B.; Li, M.; Martwong, E.; Bresson, B.; Fretigny, C.; Tabeling, P.; Tran, Y. Multiscale surface-attached hydrogel thin films with tailored architecture. ACS Appl. Mater. Interfaces 2016, 8, 11729−11738. doi: 10.1021/acsami.6b00446

    61. [61]

      Chollet, B.; D’Eramo, L.; Martwong, E.; Li, M.; Macron, J.; Mai, T. Q.; Tabeling, P.; Tran, Y. Tailoring patterns of surface-attached multiresponsive polymer networks. ACS Appl. Mater. Interfaces 2016, 8, 24870−24879. doi: 10.1021/acsami.6b07189

    62. [62]

      Khire, V. S.; Yi, Y.; Clark, N. A.; Bowman, C. N. Formation and surface modification of nanopatterned thiol-ene substrates using step and flash imprint lithography. Adv. Mater. 2008, 20, 3308−3313. doi: 10.1002/adma.200800672

    63. [63]

      Resetco, C.; Hendriks, B.; Badi, N.; Du Prez, F. Thiol-ene chemistry for polymer coatings and surface modification–building in sustainability and performance. Mater. Horiz. 2017, 4, 1041−1053. doi: 10.1039/C7MH00488E

    64. [64]

      Seidi, F.; Zhao, W.; Xiao, H.; Jin, Y.; Zhao, C. Layer-by-layer assembly for surface tethering of thin-hydrogel films: design strategies and applications. Chem. Rec. 2020, 20, 1−26. doi: 10.1002/tcr.202080101

    65. [65]

      Du, H.; Wang, Y.; Yao, X.; Luo, Q.; Zhu, W.; Li, X.; Shen, Z. Injectable cationic hydrogels with high antibacterial activity and low toxicity. Polym. Chem. 2016, 7, 5620−5624. doi: 10.1039/C6PY01346E

    66. [66]

      Kurowska, M.; Eickenscheidt, A.; Guevara-Solarte, D. L.; Widyaya, V. T.; Marx, F.; Al-Ahmad, A.; Lienkamp, K. A Simultaneously antimicrobial, protein-repellent, and cell-compatible polyzwitterion network. Biomacromolecules 2017, 18, 1373−1386. doi: 10.1021/acs.biomac.7b00100

    67. [67]

      Kurowska, M.; Widyaya, T. V.; Al-Ahmad, A.; Lienkamp, K. Surface-attached poly(oxanorbornene) hydrogels with antimicrobial and protein-repellent moieties: the quest for simultaneous dual activity. Materials 2018, 11, 1411. doi: 10.3390/ma11081411

    68. [68]

      He, M.; Wang, Q.; Shi, Z.; Xie, Y.; Zhao, W.; Zhao, C. Inflammation-responsive self-regulated drug release from ultrathin hydrogel coating. Colloids Surf. B Biointerfaces 2017, 158, 518−526. doi: 10.1016/j.colsurfb.2017.07.035

    69. [69]

      Ye, Q.; Zhou, F.; Liu, W. Bioinspired catecholic chemistry for surface modification. Chem. Soc. Rev. 2011, 40, 4244−4258. doi: 10.1039/c1cs15026j

    70. [70]

      Faure, E.; Falentin-Daudré, C.; Jérôme, C.; Lyskawa, J.; Fournier, D.; Woisel, P.; Detrembleur, C. Catechols as versatile platforms in polymer chemistry. Prog. Polym. Sci. 2013, 38, 236−270. doi: 10.1016/j.progpolymsci.2012.06.004

    71. [71]

      Qiu, W. Z.; Wu, G. P.; Xu, Z. K. Robust coatings via catechol-amine codeposition: mechanism, kinetics, and application. ACS Appl. Mater. Interfaces 2018, 10, 5902−5908. doi: 10.1021/acsami.7b18934

    72. [72]

      Saiz-Poseu, J.; Mancebo-Aracil, J.; Nador, F.; Busqué, F.; Ruiz-Molina, D. The chemistry behind catechol-based adhesion. Angew. Chem. Int. Ed. 2019, 58, 696−714. doi: 10.1002/anie.201801063

    73. [73]

      Lyu, Q.; Hsueh, N.; Chai, C. L. L. The chemistry of bioinspired catechol(amine)-based coatings. ACS Biomater. Sci. Eng. 2019, 5, 2708−2724. doi: 10.1021/acsbiomaterials.9b00281

    74. [74]

      Tosatti, S.; Michel, R.; Textor, M.; Spencer, N. D. Self-assembled monolayers of dodecyl and hydroxy-dodecyl phosphates on both smooth and rough titanium and titanium oxide surfaces. Langmuir 2002, 18, 3537−3548. doi: 10.1021/la011459p

    75. [75]

      Lee, H.; Scherer, N. F.; Messersmith, P. B. Single-molecule mechanics of mussel adhesion. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 12999. doi: 10.1073/pnas.0605552103

    76. [76]

      Su, J.; Chen, F.; Cryns, V. L.; Messersmith, P. B. Catechol polymers for pH-responsive, targeted drug delivery to cancer cells. J. Am. Chem. Soc. 2011, 133, 11850−11853. doi: 10.1021/ja203077x

    77. [77]

      Mizrahi, B.; Khoo, X.; Chiang, H. H.; Sher, K. J.; Feldman, R. G.; Lee, J. J.; Irusta, S.; Kohane, D. S. Long-lasting antifouling coating from multi-armed polymer. Langmuir 2013, 29, 10087−10094. doi: 10.1021/la4014575

    78. [78]

      Xu, L. Q.; Pranantyo, D.; Neoh, K. G.; Kang, E. T.; Teo, S. L. M.; Fu, G. D. Synthesis of catechol and zwitterion-bifunctionalized poly(ethylene glycol) for the construction of antifouling surfaces. Polym. Chem. 2016, 7, 493−501. doi: 10.1039/C5PY01234A

    79. [79]

      Wei, Q.; Becherer, T.; Noeske, P. L. M.; Grunwald, I.; Haag, R. A universal approach to crosslinked hierarchical polymer multilayers as stable and highly effective antifouling coatings. Adv. Mater. 2014, 26, 2688−2693. doi: 10.1002/adma.201304737

    80. [80]

      Wei, Q.; Becherer, T.; Mutihac, R. C.; Noeske, P. L. M.; Paulus, F.; Haag, R.; Grunwald, I. Multivalent anchoring and cross-linking of mussel-inspired antifouling surface coatings. Biomacromolecules 2014, 15, 3061−3071. doi: 10.1021/bm500673u

    81. [81]

      Banerjee, I.; Pangule, R. C.; Kane, R. S. Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv. Mater. 2011, 23, 690−718. doi: 10.1002/adma.201001215

    82. [82]

      LaVoie, M. J.; Ostaszewski, B. L.; Weihofen, A.; Schlossmacher, M. G.; Selkoe, D. J. Dopamine covalently modifies and functionally inactivates parkin. Nat. Med. 2005, 11, 1214−1221. doi: 10.1038/nm1314

    83. [83]

      Gillich, T.; Benetti, E. M.; Rakhmatullina, E.; Konradi, R.; Li, W.; Zhang, A.; Schlüter, A. D.; Textor, M. Self-assembly of focal point oligo-catechol ethylene glycol dendrons on titanium oxide surfaces: adsorption kinetics, surface characterization, and nonfouling properties. J. Am. Chem. Soc. 2011, 133, 10940−10950. doi: 10.1021/ja202760x

    84. [84]

      Kang, S. M.; You, I.; Cho, W. K.; Shon, H. K.; Lee, T. G.; Choi, I. S.; Karp, J. M.; Lee, H. One-step modification of superhydrophobic surfaces by a mussel-inspired polymer coating. Angew. Chem. Int. Ed. 2010, 49, 9401−9404. doi: 10.1002/anie.201004693

    85. [85]

      Liu, X.; Deng, J.; Ma, L.; Cheng, C.; Nie, C.; He, C.; Zhao, C. Catechol chemistry inspired approach to construct self-cross-linked polymer nanolayers as versatile biointerfaces. Langmuir 2014, 30, 14905−14915. doi: 10.1021/la503872h

    86. [86]

      Peng, L.; Luo, Y.; Zheng, Y.; Zhang, W.; Chen, G. Sunlight-induced raft synthesis of multifaceted glycopolymers with surface anchoring, in situ AgNP formation, and antibacterial properties. ACS Appl. Nano Mater. 2018, 1, 2219−2226. doi: 10.1021/acsanm.8b00286

    87. [87]

      Peng, L.; Li, Z.; Li, X.; Xue, H.; Zhang, W.; Chen, G. Integrating sugar and dopamine into one polymer: controlled synthesis and robust surface modification. Macromol. Rapid Commun. 2017, 38, 1600548. doi: 10.1002/marc.201600548

    88. [88]

      Peng, L.; Zhou, S.; Yang, B.; Bao, M.; Chen, G.; Zhang, X. Chemically modified surface having a dual-structured hierarchical topography for controlled cell growth. ACS Appl. Mater. Interfaces 2017, 9, 24339−24347. doi: 10.1021/acsami.7b06197

    89. [89]

      Ma, L.; Qin, H.; Cheng, C.; Xia, Y.; He, C.; Nie, C.; Wang, L.; Zhao, C. Mussel-inspired self-coating at macro-interface with improved biocompatibility and bioactivity via dopamine grafted heparin-like polymers and heparin. J. Mater. Chem. B 2014, 2, 363−375. doi: 10.1039/C3TB21388A

    90. [90]

      Ma, L.; Cheng, C.; Nie, C.; He, C.; Deng, J.; Wang, L.; Xia, Y.; Zhao, C. Anticoagulant sodium alginate sulfates and their mussel-inspired heparin-mimetic coatings. J. Mater. Chem. B 2016, 4, 3203−3215. doi: 10.1039/C6TB00636A

    91. [91]

      Wang, R.; Xie, Y.; Xiang, T.; Sun, S.; Zhao, C. Direct catechol conjugation of mussel-inspired biomacromolecule coatings to polymeric membranes with antifouling properties, anticoagulant activity and cytocompatibility. J. Mater. Chem. B 2017, 5, 3035−3046. doi: 10.1039/C6TB03329F

    92. [92]

      Arlov, Ø.; Aachmann, F. L.; Sundan, A.; Espevik, T.; Skjåk-Bræk, G. Heparin-like properties of sulfated alginates with defined sequences and sulfation degrees. Biomacromolecules 2014, 15, 2744−2750. doi: 10.1021/bm500602w

    93. [93]

      Dinoro, J.; Maher, M.; Talebian, S.; Jafarkhani, M.; Mehrali, M.; Orive, G.; Foroughi, J.; Lord, M. S.; Dolatshahi-Pirouz, A. Sulfated polysaccharide-based scaffolds for orthopaedic tissue engineering. Biomaterials 2019, 214, 119214. doi: 10.1016/j.biomaterials.2019.05.025

    94. [94]

      Xu, G.; Pranantyo, D.; Xu, L.; Neoh, K. G.; Kang, E. T.; Teo, S. L. M. Antifouling, antimicrobial, and antibiocorrosion multilayer coatings assembled by layer-by-layer deposition involving host-guest interaction. Ind. Eng. Chem. 2016, 55, 10906−10915. doi: 10.1021/acs.iecr.6b02190

  • 加载中
    1. [1]

      Bing LiuMeng-zhe FangSu-yun JieZhi-yang BuBo-Geng Li . Nickel(II) -Diimine Catalysts with Carboxyl Groups for Ethylene Oligomerization and Polymerization. Chinese J. Polym. Sci, 2016, 34(2): 221-228. doi: 10.1007/s10118-016-1734-3

    2. [2]

      Hua DuanKe ZhengYuan-chen CuiYu-dong LiLei Zhang . Effect of Tetrabutylammonium Bromide on Enzymatic Polymerization of Phenol Catalyzed by Horseradish Peroxidase. Chinese J. Polym. Sci, 2014, 32(7): 906-913. doi: 10.1007/s10118-014-1473-2

    3. [3]

      De-liang HeFei LiSan-bao XiaFu-rong LiuYing XiongQuan Zhang . Synthesis and Characterization of a Novel Ionic Liquid Polymer:Poly(1-(3-aminobenzyl)-3-methylimidazolium chloride). Chinese J. Polym. Sci, 2014, 32(2): 163-168. doi: 10.1007/s10118-014-1385-1

    4. [4]

      Qi-song ShiXiang HaoCarl RedshawWen-hua Sun . HALONICKEL 2,4-DI-t-BUTYL-6-(QUINOLIN-8-YLIMINOMETHYL)PHENOLATES: SYNTHESIS, CHARACTERIZATION AND ETHYLENE REACTIVITY. Chinese J. Polym. Sci, 2013, 31(5): 769-777. doi: 10.1007/s10118-013-1266-z

    5. [5]

      Chonggang WangShudan ChenHao ZhouJinlou GuAiguo Hu . Palladium-catalyzed Cycloaromatization Polymerization of Enediynes. Chinese J. Polym. Sci, 2018, 36(2): 237-243. doi: 10.1007/s10118-018-2088-9

    6. [6]

      Shaogang GongPeng DuHaiyan Ma . Binuclear Aluminum Complexes Supported by Linked Bis(β-diketiminate) Ligands for Ring-Opening Polymerization of Cyclic Esters. Chinese J. Polym. Sci, 2018, 36(2): 190-201. doi: 10.1007/s10118-018-2053-7

    7. [7]

      Zhen ZhangBai-Yu JiangBiao ZhangZhi-Sheng FuZhi-Qiang Fan . Deactivation Effect Caused by Catalyst-Cocatalyst Pre-contact in Propylene Polymerization with MgCl2-supported Ziegler-Natta Catalyst. Chinese J. Polym. Sci, 2019, 37(10): 1023-1030. doi: 10.1007/s10118-019-2319-8

    8. [8]

      Yu-man LiuQiang LiHuan-huan LiuHui-hui ChengJian YuZhao-xia Guo . Antibacterial Thermoplastic Polyurethane Electrospun Fiber Mats Prepared by 3-Aminopropyltriethoxysilane-assisted Adsorption of Ag Nanoparticles. Chinese J. Polym. Sci, 2017, 35(6): 713-720. doi: 10.1007/s10118-017-1928-3

    9. [9]

      Ann-Kathrin DannerDaniel LeibigLea-Marie VogtHolger Frey . Monomer-activated Copolymerization of Ethylene Oxide and Epichlorohydrin: In Situ Kinetics Evidences Tapered Block Copolymer Formation. Chinese J. Polym. Sci, 2019, 37(9): 912-918. doi: 10.1007/s10118-019-2296-y

    10. [10]

      Heng LiaoJie GaoLiu ZhongHai-Yang GaoQing Wu . Regioselective Polymerizations of α-Olefins with an α-Diamine Nickel Catalyst. Chinese J. Polym. Sci, 2019, 37(10): 959-965. doi: 10.1007/s10118-019-2227-y

    11. [11]

      Sheng-liu WangXiao-fang YangLian-ying LiuWan-tai Yang . HIGH IMMOBILIZATION OF ANTIBACTERIAL MOIETIES ONTO MONODISPERSE MICROSPHERES BY DISPERSION POLYMERIZATION USING BICATIONIC VIOLOGEN SURFMER. Chinese J. Polym. Sci, 2012, 30(6): 865-872. doi: 10.1007/s10118-012-1180-9

    12. [12]

      Yong Chen aHong-sheng Lu bPeng Wang a . SURFACE FUNCTIONALIZATION OF POLYSTYRENE TO BIND WITH FMRF PEPTIDES FOR NOVEL BIOCOMPATIBILITY. Chinese J. Polym. Sci, 2010, 28(6): 895-902. doi: 10.1007/s10118-010-9168-9

    13. [13]

      WANG LingzhiJIANG YingyanZHANG ChangdeHUANG Dexiu . IMMOBILIZATION OF GLUCOSE OXIDASE AND CELLULASE BY CHITOSAN— POLYACRYLIC ACID COMPLEX. Chinese J. Polym. Sci, 1990, 8(2): 115-120.

    14. [14]

      LI FumianWANG LinLI YuequingFENG Xinde . SYNTHESIS OF ACTIVE ACRYLIC ESTERS OF 8-HYDROXYQUINOLINE AND IMMOBILIZATION OF PROTEINS WITH THEIR POLYMERS. Chinese J. Polym. Sci, 1986, 4(1): 100-104.

    15. [15]

      XUE GiDAI QinpinDING JianfuWU Peiyi . COORDINATION POLYMERIZATION OF BENZOTRIAZOLE ON THE SURFACE OF METALLIC COPPER. Chinese J. Polym. Sci, 1989, 7(3): 239-244.

    16. [16]

      Dong-dong PengRan-xing Nancy LiChi-hang LamOphelia K. C. Tsui . TWO-LAYER MODEL DESCRIPTION OF POLYMER THIN FILM DYNAMICS. Chinese J. Polym. Sci, 2013, 31(1): 12-20. doi: 10.1007/s10118-013-1207-x

    17. [17]

      Kai KangCheng-you KanYi DuDe-shan Liu . INFLUENCES OF ACID POST-TREATMENT ON THE MORPHOLOGY OF SOAP-FREE P(MMA-EA-MAA) PARTICLES PREPARED BY SEEDED EMULSION POLYMERIZATION. Chinese J. Polym. Sci, 2005, 23(5): 479-485.

    18. [18]

      Lin-Can YangLi HanHong-Wei MaPi-Bo LiuHe-Yu ShenChao LiSong-Bo ZhangYang Li . Synthesis of Alkyne-functionalized Polymers via Living Anionic Polymerization and Investigation of Features during the Post-“thiol-yne” Click Reaction. Chinese J. Polym. Sci, 2019, 37(9): 841-850. doi: 10.1007/s10118-019-2203-6

    19. [19]

      . SURFACE MULTI-FUNCTIONALIZATION OF POLY(LACTIC ACID) NANOPARTICLES AND C6 GLIOMA CELL TARGETING in vivo. Chinese J. Polym. Sci, 2009, 27(2): 231-239.

    20. [20]

      . STUDY ON THE IMMOBILIZATION OF PAPAIN WITH A MACROPOROUS BEAD CARRIER OF COPOLYMER CONTAINING MONOMER UNITS OF NAMINOETHYL ACRYLAMIDE AND VINYL ALCOHOL*. Chinese J. Polym. Sci, 2000, 18(1): 25-31.

Article Metrics
  • PDF Downloads(8)
  • Abstract views(2116)
  • HTML views(188)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return