Citation: Zhong, Y.; Cai, J.; Zhang, L. N. A review of chitin solvents and their dissolution mechanisms. Chinese J. Polym. Sci. 2020, 38, 1047–1060 doi: 10.1007/s10118-020-2459-x shu

A Review of Chitin Solvents and Their Dissolution Mechanisms

  • Corresponding author: Jie Cai, E-mail: caijie@whu.edu.cn
  • Received Date: 2020-04-17
    Available Online: 2020-07-24

Figures(14) / Tables(6)

  • Chitin is an abundant natural nitrogen-containing biopolymer with great application potential in materials, environment, energy, and health. However, the structure characteristics and processing technologies have required intense research in related applications. In particular, there have been great efforts to developing solvents for chitin, and the results so far are quite encouraging. This review summarizes the main solvent systems used for chitin, namely the aqueous solvent systems (mineral acids, inorganic salt aqueous solutions, alkali aqueous solutions) and non-aqueous ones (LiCl-dimethylacetamide solvents, CaCl2·2H2O saturated methanol, ionic liquids, deep eutectic solvents, and protic organic solvents). The solvent properties, dissolution methods, and solution properties are discussed in detail. Special attention is paid to the dissolution mechanism in each system. This review can provide a reference for understanding the dissolution behavior of chitin and finding suitable solvents for it.
  • 加载中
    1. [1]

      Kumar, M. N. V. R. A review of chitin and chitosan applications. React. Funct. Polym. 2000, 46, 1−27. doi: 10.1016/S1381-5148(00)00038-9

    2. [2]

      Bartlett, D. H.; Azam, F. Chitin, cholera, and competence. Science 2005, 310, 1775. doi: 10.1126/science.1122396

    3. [3]

      Nawawi, W. M. F. B. W.; Jones, M.; Murphy, R. J.; Lee, K. Y.; Kontturi, E.; Bismarck, A. Nanomaterials derived from fungal sources-Is it the new type? Biomacromolecules 2020, 21, 30−55. doi: 10.1021/acs.biomac.9b01141

    4. [4]

      Food and Agriculture Organization of the United Nations. The state of world fisheries and aquaculture (FAO, 2018). 2018, https://apo.org.au/node/181941.

    5. [5]

      Crini, G. Historical landmarks in the discovery of chitin. In Sustainable agriculture reviews 35: chitin and chitosan: history, fundamentals and innovations, Crini, G.; Lichtfouse, E. Eds. Springer International Publishing, 2019, DOI: 10.1007/978-3-030-16538-3_1.

    6. [6]

      Rudall, K. M. The chitin/protein complexes of insect cuticles. In Advances in insect physiololy. Beament, J. W. L.; Treherne, J. E.; Wigglesworth, V. B. Eds. Academic Press, 1963, p.1.

    7. [7]

      Blackwell, J.; Gardner, K. H.; Kolpak, F. J.; Minke, R.; Claffey, W. B. Refinement of cellulose and chitin structures. In Fiber diffraction methods, American Chemical Society, 1980, p.141.

    8. [8]

      Sikorski, P.; Hori, R.; Wada, M. Revisit of α-chitin crystal structure using high resolution X-ray diffraction data. Biomacromolecules 2009, 10, 1100−1105. doi: 10.1021/bm801251e

    9. [9]

      Nishiyama, Y.; Noishiki, Y.; Wada, M. X-ray structure of anhydrous β-chitin at 1Å resolution. Macromolecules 2011, 44, 950−957. doi: 10.1021/ma102240r

    10. [10]

      Sawada, D.; Nishiyama, Y.; Langan, P.; Forsyth, V. T.; Kimura, S.; Wada, M. Direct determination of the hydrogen bonding arrangement in anhydrous β-chitin by neutron fiber diffraction. Biomacromolecules 2012, 13, 288−291. doi: 10.1021/bm201512t

    11. [11]

      Krajewska, B. Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme Microb. Technol. 2004, 35, 126−139. doi: 10.1016/j.enzmictec.2003.12.013

    12. [12]

      Jayakumar, R.; Menon, D.; Manzoor, K.; Nair, S. V.; Tamura, H. Biomedical applications of chitin and chitosan based nanomaterials—a short review. Carbohydr. Polym. 2010, 82, 227−232. doi: 10.1016/j.carbpol.2010.04.074

    13. [13]

      Kadokawa, J. I. Ionic liquid as useful media for dissolution, derivatization, and nanomaterial processing of chitin. Green Sustain. Chem. 2013, 3, 19−25.

    14. [14]

      Duan, B.; Huang, Y.; Lu, A.; Zhang, L. Recent advances in chitin based materials constructed via physical methods. Prog. Polym. Sci. 2018, 82, 1−33. doi: 10.1016/j.progpolymsci.2018.04.001

    15. [15]

      Zavgorodnya, O.; Shamshina, J. L.; Berton, P.; Rogers, R. D. Translational research from academia to industry: following the pathway of George Washington Carver. In Ionic liquids: current state and future directions, American Chemical Society, 2017, p.1250.

    16. [16]

      Wu, S.; Duan, B.; Zeng, X.; Lu, A.; Xu, X.; Wang, Y.; Ye, Q.; Zhang, L. Construction of blood compatible lysine-immobilized chitin/carbon nanotube microspheres and potential applications for blood purified therapy. J. Mater. Chem. B 2017, 5, 2952−2963. doi: 10.1039/C7TB00101K

    17. [17]

      Shen, X.; Shamshina, J. L.; Berton, P.; Gurau, G.; Rogers, R. D. Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chem. 2016, 18, 53−75. doi: 10.1039/C5GC02396C

    18. [18]

      Shamshina, J. L.; Berton, P.; Rogers, R. D. Advances in functional chitin materials: a review. ACS Sustain. Chem. Eng. 2019, 7, 6444−6457. doi: 10.1021/acssuschemeng.8b06372

    19. [19]

      Zhang, L.; Wang, J.; Yang, M.; Ke, N.; Zhang, B.; Wang, H.; Zheng, Q.; Xie, H. Dissolution, materialization and derivatization of chitin and chitosan in ionic liquids. Sci. Sin. Chim. 2019, 49, 1059−1072. doi: 10.1360/SSC-2019-0031

    20. [20]

      Wei, P.; Cai, J.; Zhang, L. High-strength and tough crystalline polysaccharide-based materials. Chin. J. Chem. 2020, DOI: 10.1002/cjoc.202000036.

    21. [21]

      Marchessault, R. H.; Morehead, F. F.; Walter, N. M. Liquid crystal systems from fibrillar polysaccharides. Nature 1959, 184, 632−633. doi: 10.1038/184632a0

    22. [22]

      Fan, Y.; Saito, T.; Isogai, A. Chitin nanocrystals prepared by TEMPO-mediated oxidation of α-chitin. Biomacromolecules 2008, 9, 192−198. doi: 10.1021/bm700966g

    23. [23]

      Fan, Y.; Saito, T.; Isogai, A. TEMPO-mediated oxidation of β-chitin to prepare individual nanofibrils. Carbohydr. Polym. 2009, 77, 832−838. doi: 10.1016/j.carbpol.2009.03.008

    24. [24]

      Fan, Y.; Saito, T.; Isogai, A. Individual chitin nano-whiskers prepared from partially deacetylated α-chitin by fibril surface cationization. Carbohydr. Polym. 2010, 79, 1046−1051. doi: 10.1016/j.carbpol.2009.10.044

    25. [25]

      You, J.; Zhu, L.; Wang, Z.; Zong, L.; Li, M.; Wu, X.; Li, C. Liquid exfoliated chitin nanofibrils for re-dispersibility and hybridization of two-dimensional nanomaterials. Chem. Eng. J. 2018, 344, 498−505. doi: 10.1016/j.cej.2018.03.121

    26. [26]

      Kurita, K. Controlled functionalization of the polysaccharide chitin. Prog. Polym. Sci. 2001, 26, 1921−1971. doi: 10.1016/S0079-6700(01)00007-7

    27. [27]

      Zhong, C.; Cooper, A.; Kapetanovic, A.; Fang, Z.; Zhang, M.; Rolandi, M. A facile bottom-up route to self-assembled biogenic chitin nanofibers. Soft Matter 2010, 6, 5298−5301. doi: 10.1039/c0sm00450b

    28. [28]

      You, J.; Li, M.; Ding, B.; Wu, X.; Li, C. Crab chitin-based 2D soft nanomaterials for fully biobased electric devices. Adv. Mater. 2017, 29, 1606895. doi: 10.1002/adma.201606895

    29. [29]

      Duan, B.; Chang, C.; Ding, B.; Cai, J.; Xu, M.; Feng, S.; Ren, J.; Shi, X.; Du, Y.; Zhang, L. High strength films with gas-barrier fabricated from chitin solution dissolved at low temperature. J. Mater. Chem. A 2013, 1, 1867−1874. doi: 10.1039/C2TA00068G

    30. [30]

      King, C.; Shamshina, J. L.; Gurau, G.; Berton, P.; Khan, N. F. A. F.; Rogers, R. D. A platform for more sustainable chitin films from an ionic liquid process. Green Chem. 2017, 19, 117−126. doi: 10.1039/C6GC02201D

    31. [31]

      Huang, J. C.; Zhong, Y.; Zhang, L. N.; Cai, J. Extremely strong and transparent chitin films: a high-efficiency, energy-saving, and "green" route using an aqueous KOH/urea solution. Adv. Funct. Mater. 2017, 27, 1701100. doi: 10.1002/adfm.201701100

    32. [32]

      Zhu, K.; Shi, S.; Cao, Y.; Lu, A.; Hu, J.; Zhang, L. Robust chitin films with good biocompatibility and breathable properties. Carbohydr. Polym. 2019, 212, 361−367. doi: 10.1016/j.carbpol.2019.02.054

    33. [33]

      Huang, Y.; Zhong, Z.; Duan, B.; Zhang, L.; Yang, Z.; Wang, Y.; Ye, Q. Novel fibers fabricated directly from chitin solution and their application as wound dressing. J. Mater. Chem. B 2014, 2, 3427−3432. doi: 10.1039/c4tb00098f

    34. [34]

      Zhu, K.; Tu, H.; Yang, P.; Qiu, C.; Zhang, D.; Lu, A.; Luo, L.; Chen, F.; Liu, X.; Chen, L.; Fu, Q.; Zhang, L. Mechanically strong chitin fibers with nanofibril structure, biocompatibility, and biodegradability. Chem. Mater. 2019, 31, 2078−2087. doi: 10.1021/acs.chemmater.8b05183

    35. [35]

      Chang, C.; Chen, S.; Zhang, L. Novel hydrogels prepared via direct dissolution of chitin at low temperature: structure and biocompatibility. J. Mater. Chem. 2011, 21, 3865−3871. doi: 10.1039/c0jm03075a

    36. [36]

      Xu, D. D.; Huang, J. C.; Zhao, D.; Ding, B. B.; Zhang, L. N.; Cai, J. High-flexibility, high-toughness double-cross-linked chitin hydrogels by sequential chemical and physical cross-linkings. Adv. Mater. 2016, 28, 5844−5849. doi: 10.1002/adma.201600448

    37. [37]

      Duan, B.; Zheng, X.; Xia, Z.; Fan, X.; Guo, L.; Liu, J.; Wang, Y.; Ye, Q.; Zhang, L. Highly biocompatible nanofibrous microspheres self-assembled from chitin in NaOH/urea aqueous solution as cell carriers. Angew. Chem. Int. Ed. 2015, 54, 5152−5156. doi: 10.1002/anie.201412129

    38. [38]

      Duan, B.; Gao, X.; Yao, X.; Fang, Y.; Huang, L.; Zhou, J.; Zhang, L. Unique elastic N-doped carbon nanofibrous microspheres with hierarchical porosity derived from renewable chitin for high rate supercapacitors. Nano Energy 2016, 27, 482−491. doi: 10.1016/j.nanoen.2016.07.034

    39. [39]

      Duan, B.; Shou, K.; Su, X.; Niu, Y.; Zheng, G.; Huang, Y.; Yu, A.; Zhang, Y.; Xia, H.; Zhang, L. Hierarchical microspheres constructed from chitin nanofibers penetrated hydroxyapatite crystals for bone regeneration. Biomacromolecules 2017, 18, 2080−2089. doi: 10.1021/acs.biomac.7b00408

    40. [40]

      Duan, B.; Gao, H.; He, M.; Zhang, L. Hydrophobic modification on surface of chitin sponges for highly effective separation of oil. ACS Appl. Mater. Interfaces 2014, 6, 19933−19942. doi: 10.1021/am505414y

    41. [41]

      Knecht, E.; Hibbert, E. Some observations relating to chitin. J. Soc. Dyers Colour. 1926, 42, 343−345.

    42. [42]

      Clark, G. L.; Smith, A. F. X-ray diffraction studies of chitin, chitosan, and derivatives. J. Phys. Chem. 1936, 40, 863−879. doi: 10.1021/j150376a001

    43. [43]

      Meyer, K. H.; Wehrli, H. Comparaison chimique de la chitine et de la cellulose. Helv. Chim. Acta 1937, 20, 353−362. doi: 10.1002/hlca.19370200156

    44. [44]

      Hackman, R. H. Studies on chitin V. The action of mineral acids on chitin. Aust. J. Biol. Sci. 1962, 15, 526−537.

    45. [45]

      Nagasawa, K.; Tohira, Y.; Inoue, Y.; Tanoura, N. Reaction between carbohydrates and sulfuric acid: Part I. Depolymerization and sulfation of polysaccharides by sulfuric acid. Carbohydr. Res. 1971, 18, 95−102. doi: 10.1016/S0008-6215(00)80261-X

    46. [46]

      Vincendon, M. Regenerated chitin from phosphoric acid solutions. Carbohydr. Polym. 1997, 32, 233−237. doi: 10.1016/S0144-8617(97)00005-2

    47. [47]

      Wu, T.; Wang, G.; Gao, C.; Chen, Z.; Feng, L.; Wang, P.; Zeng, X.; Wu, Z. Phosphoric acid-based preparing of chitin nanofibers and nanospheres. Cellulose 2016, 23, 477−491. doi: 10.1007/s10570-015-0829-2

    48. [48]

      von Weimarn, P. P. Conversion of fibroin, chitin, casein, and similar substances into the ropy-plastic state and colloidal solution. Ind. Eng. Chem. 1927, 19, 109−110. doi: 10.1021/ie50205a034

    49. [49]

      von Weimarn, P. P. Zur dispersoidchemie von cellulose. Kolloidzeitschrift 1912, 11, 41−47.

    50. [50]

      Gagnaire, D.; Saintgermain, J.; Vincendon, M. NMR studies of chitin and chitin derivatives. Macromol. Chem. Phys. 1982, 183, 593−601. doi: 10.1002/macp.1982.021830309

    51. [51]

      Musatova, G. N.; Mogilevskii, E. M.; Ginzberg, M. A.; Arkhangelskii, D. N. The dissolution temperature of cellulose xanthate. Fibre Chem. 1972, 2, 451−453. doi: 10.1007/BF00581007

    52. [52]

      Noguchi, J.; Wada, O.; Seo, H.; Tokura, S.; Nishi, N. Chitin and chitosan-cellulose fibres. Kobunshi Kagaku 1973, 30, 320−326. doi: 10.1295/koron1944.30.320

    53. [53]

      Sannan, T.; Kurita, K.; Iwakura, Y. Studies on chitin, 1. Solubility change by alkaline treatment and film casting. Makromo. Chem. 1975, 176, 1191−1195. doi: 10.1002/macp.1975.021760426

    54. [54]

      Einbu, A.; Naess, S. N.; Elgsaeter, A.; Vårum, K. M. Solution properties of chitin in alkali. Biomacromolecules 2004, 5, 2048−2054. doi: 10.1021/bm049710d

    55. [55]

      Feng, F.; Liu, Y.; Hu, K. Influence of alkali-freezing treatment on the solid state structure of chitin. Carbohydr. Res. 2004, 339, 2321−2324. doi: 10.1016/j.carres.2004.06.017

    56. [56]

      Cai, J.; Zhang, L. Rapid dissolution of cellulose in LiOH/Urea and NaOH/Urea aqueous solutions. Macromol. Biosci. 2005, 5, 539−548. doi: 10.1002/mabi.200400222

    57. [57]

      Cai, J.; Zhang, L. Unique gelation behavior of cellulose in NaOH/Urea aqueous solution. Biomacromolecules 2006, 7, 183−189. doi: 10.1021/bm0505585

    58. [58]

      Cai, J.; Zhang, L.; Zhou, J.; Qi, H.; Chen, H.; Kondo, T.; Chen, X.; Chu, B. Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: structure and properties. Adv. Mater. 2007, 19, 821−825. doi: 10.1002/adma.200601521

    59. [59]

      Cai, J.; Zhang, L.; Liu, S. L.; Liu, Y. T.; Xu, X. J.; Chen, X. M.; Chu, B.; Guo, X. L.; Xu, J.; Cheng, H.; Han, C. C.; Kuga, S. Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules 2008, 41, 9345−9351. doi: 10.1021/ma801110g

    60. [60]

      Hu, X.; Du, Y.; Tang, Y.; Wang, Q.; Feng, T.; Yang, J.; Kennedy, J. F. Solubility and property of chitin in NaOH/urea aqueous solution. Carbohydr. Polym. 2007, 70, 451−458. doi: 10.1016/j.carbpol.2007.05.002

    61. [61]

      Ding, B.; Cai, J.; Huang, J.; Zhang, L.; Chen, Y.; Shi, X.; Du, Y.; Kuga, S. Facile preparation of robust and biocompatible chitin aerogels. J. Mater. Chem. 2012, 22, 5801−5809. doi: 10.1039/c2jm16032c

    62. [62]

      Cai, J.; Huang, J. C.; Zhang, L. N. 2013, ZL 201310034088.4.

    63. [63]

      Huang, J. Rapid dissolution of chitin in potassium hydroxide/urea aqueous solution under low temperature, and preparation and characterization of novel materials. Doctoral thesis, Wuhan University, Hubei, China, 2017.

    64. [64]

      Ding, B.; Zhao, D.; Song, J.; Gao, H.; Xu, D.; Xu, M.; Cao, X.; Zhang, L.; Cai, J. Light weight, mechanically strong and biocompatible α-chitin aerogels from different aqueous alkali hydroxide/urea solutions. Sci. China Chem. 2016, 59, 1405−1414. doi: 10.1007/s11426-016-0205-5

    65. [65]

      Xu, H.; Fang, Z.; Tian, W.; Wang, Y.; Ye, Q.; Zhang, L.; Cai, J. Green fabrication of amphiphilic quaternized β-chitin derivatives with excellent biocompatibility and antibacterial activities for wound healing. Adv. Mater. 2018, 30, 1801100. doi: 10.1002/adma.201801100

    66. [66]

      Cai, J.; Zhang, L. N. Method for continuously preparing chitin/chitosan solutions with different deacetylation degrees. 2017, CN201711023349A.

    67. [67]

      Fang, Y.; Duan, B.; Lu, A.; Liu, M.; Liu, H.; Xu, X.; Zhang, L. Intermolecular interaction and the extended wormlike chain conformation of chitin in NaOH/urea aqueous solution. Biomacromolecules 2015, 16, 1410−1417. doi: 10.1021/acs.biomac.5b00195

    68. [68]

      Fang, Y.; Zhang, R.; Duan, B.; Liu, M.; Lu, A.; Zhang, L. Recyclable universal solvents for chitin to chitosan with various degrees of acetylation and construction of robust hydrogels. ACS Sustain. Chem. Eng. 2017, 5, 2725−2733. doi: 10.1021/acssuschemeng.6b03055

    69. [69]

      Ru, G.; Luo, H.; Liang, X.; Wang, L.; Liu, C.; Feng, J. Quantitative NMR investigation on the low-temperature dissolution mechanism of chitin in NaOH/urea aqueous solution. Cellulose 2015, 22, 2221−2229. doi: 10.1007/s10570-015-0667-2

    70. [70]

      Austin, P. R. Chitin solution. 1977, US4059457A.

    71. [71]

      Poirier, M.; Charlet, G. Chitin fractionation and characterization in N,N-dimethylacetamide/lithium chloride solvent system. Carbohydr. Polym. 2002, 50, 363−370. doi: 10.1016/S0144-8617(02)00040-1

    72. [72]

      Germain, J. S.; Vincendon, M. 1H, 13C and 7Li nuclear magnetic resonance study of the lithium chloride-N,N-dimethylacetamide system. Org. Magn. Reson. 1983, 21, 371−375. doi: 10.1002/omr.1270210607

    73. [73]

      Vincendon, M. 1H NMR study of the chitin dissolution mechanism. Makromo. Chem. 1985, 186, 1787−1795. doi: 10.1002/macp.1985.021860907

    74. [74]

      de Vasconcelos, C. L.; Bezerril, P. M.; Pereira, M. R.; Ginani, M. F.; Fonseca, J. L. C. Viscosity-temperature behavior of chitin solutions using lithium chloride/DMA as solvent. Carbohydr. Res. 2011, 346, 614−618. doi: 10.1016/j.carres.2010.12.016

    75. [75]

      Austin, P. R.; Brine, C. J.; Castle, J. E.; Zikakis, J. P. Chitin: new facets of research. Science 1981, 212, 749. doi: 10.1126/science.7221561

    76. [76]

      Okuda, H.; Takeuchi, T.; Senoh, H.; Arito, H.; Matsushima, T. Developmental toxicity induced by inhalation exposure of pregnant rats to N,N-dimethylacetamide. J. Occup. Health 2006, 48, 154. doi: 10.1539/joh.48.154

    77. [77]

      Gitlin, M. Lithium side effects and toxicity: prevalence and management strategies. Int. J. Bipolar Disord. 2016, 4, 27. doi: 10.1186/s40345-016-0068-y

    78. [78]

      Tokura, S.; Nishi, N.; Takahashi, K.; Shirai, A.; Uraki, Y. Novel drug delivery system by chitin derivative. Macromol. Symp. 1995, 99, 201−208. doi: 10.1002/masy.19950990121

    79. [79]

      Tokura, S.; Nishimura, S. I.; Sakairi, N.; Nishi, N. Biological activities of biodegradable polysaccharide. Macromol. Symp. 1996, 101, 389−396. doi: 10.1002/masy.19961010144

    80. [80]

      Tamura, H.; Nagahama, H.; Tokura, S. Preparation of chitin hydrogel under mild conditions. Cellulose 2006, 13, 357−364. doi: 10.1007/s10570-006-9058-z

    81. [81]

      Nagahama, H.; Higuchi, T.; Jayakumar, R.; Furuike, T.; Tamura, H. XRD studies of β-chitin from squid pen with calcium solvent. Int. J. Biol. Macromol. 2008, 42, 309−313. doi: 10.1016/j.ijbiomac.2007.10.011

    82. [82]

      Sun, B. Study on the mechanism of Nylon 6,6 dissolving process using CaCl2/MeOH as the solvent. Chinese J. Polym. Sci. 1994, 12, 57−65.

    83. [83]

      Hattori, M.; Saito, M.; Okajima, K.; Kamide, K. Molecular characterization of nylon 6,6 and its dissolved state in mixture of calcium chloride and methanol. Polym. J. 1995, 27, 631−644. doi: 10.1295/polymj.27.631

    84. [84]

      Wasserscheid, P.; Keim, W. Ionic liquids—new “solutions” for transition metal catalysis. Angew. Chem. Int. Ed. 2000, 39, 3772−3789. doi: 10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5

    85. [85]

      Swatloski, R. P.; Spear, S. K.; Holbrey, J. D.; Rogers, R. D. Dissolution of cellose with ionic liquids. J. Am. Chem. Soc. 2002, 124, 4974−4975. doi: 10.1021/ja025790m

    86. [86]

      Reichert, W. M.; Swatloski, R. P.; Rogers, R. D. In The 222nd ACS National Meeting, Chicago, IL, 2001.

    87. [87]

      Reichert, W. M.; Swatloski, R. P.; Rogers, R. D. In The 221st ACS National Meeting, San Diego, CA, 2001.

    88. [88]

      Spear, S. K.; Swatloski, R. P.; Rogers, R. D. In The 221st ACS National Meeting, San Diego, CA, 2001.

    89. [89]

      Shamshina, J. L. Chitin in ionic liquids: historical insights into the polymer's dissolution and isolation a review. Green Chem. 2019, 21, 3974−3993. doi: 10.1039/C9GC01830A

    90. [90]

      Xie, H.; Zhang, S.; Li, S. Chitin and chitosan dissolved in ionic liquids as reversible sorbents of CO2. Green Chem. 2006, 8, 630−633. doi: 10.1039/b517297g

    91. [91]

      Wu, Y.; Sasaki, T.; Irie, S.; Sakurai, K. A novel biomass-ionic liquid platform for the utilization of native chitin. Polymer 2008, 49, 2321−2327. doi: 10.1016/j.polymer.2008.03.027

    92. [92]

      Prasad, K.; Murakami, M.; Kaneko, Y.; Takada, A.; Nakamura, Y.; Kadokawa, J. Weak gel of chitin with ionic liquid, 1-allyl-3-methylimidazolium bromide. Int. J. Biol. Macromol. 2009, 45, 221−225. doi: 10.1016/j.ijbiomac.2009.05.004

    93. [93]

      Qin, Y.; Lu, X.; Sun, N.; Rogers, R. D. Dissolution or extraction of crustacean shells using ionic liquids to obtain high molecular weight purified chitin and direct production of chitin films and fibers. Green Chem. 2010, 12, 968−971. doi: 10.1039/c003583a

    94. [94]

      Rogers R. D. 2019, Application Number US2019/0040209A1.

    95. [95]

      Wang, W. T.; Zhu, J.; Wang, X. L.; Huang, Y.; Wang, Y. Z. Dissolution behavior of chitin in ionic liquids. J. Maromol. Sci. B 2010, 49, 528−541. doi: 10.1080/00222341003595634

    96. [96]

      Taft, R. W.; Kamlet, M. J. The solvatochromic comparison method. 2. The α-scale of solvent hydrogen-bond donor (HBD) acidities. J. Am. Chem. Soc. 1976, 98, 2886−2894. doi: 10.1021/ja00426a036

    97. [97]

      Kamlet, M. J.; Taft, R. W. The solvatochromic comparison method. I. The β-scale of solvent hydrogen-bond acceptor (HBA) basicities. J. Am. Chem. Soc. 1976, 98, 377−383. doi: 10.1021/ja00418a009

    98. [98]

      Yokoyama, T.; Taft, R. W.; Kamlet, M. J. The solvatochromic comparison method. 3. Hydrogen bonding by some 2-nitroaniline derivatives. J. Am. Chem. Soc. 1976, 98, 3233−3237. doi: 10.1021/ja00427a030

    99. [99]

      Kamlet, M. J.; Abboud, J. L.; Taft, R. W. The solvatochromic comparison method. 6. The π* scale of solvent polarities. J. Am. Chem. Soc. 1977, 99, 6027−6038. doi: 10.1021/ja00460a031

    100. [100]

      Crowhurst, L.; Mawdsley, P. R.; Perez-Arlandis, J. M.; Salter, P. A.; Welton, T. Solvent–solute interactions in ionic liquids. Phys. Chem. Chem. Phys. 2003, 5, 2790−2794. doi: 10.1039/B303095D

    101. [101]

      Shimo, M.; Abe, M.; Ohno, H. Functional comparison of polar ionic liquids and onium hydroxides for chitin dissolution and deacetylation to chitosan. ACS Sustain. Chem. Eng. 2016, 4, 3722−3727. doi: 10.1021/acssuschemeng.6b00368

    102. [102]

      Uto, T.; Idenoue, S.; Yamamoto, K.; Kadokawa, J. I. Understanding dissolution process of chitin crystal in ionic liquids: theoretical study. Phys. Chem. Chem. Phys. 2018, 20, 20669−20677. doi: 10.1039/C8CP02749H

    103. [103]

      Petkovic, M.; Seddon, K. R.; Rebelo, L. P. N.; Silva, Pereira C. Ionic liquids: a pathway to environmental acceptability. Chem. Soc. Rev. 2011, 40, 1383−1403. doi: 10.1039/C004968A

    104. [104]

      Swatloski, R. P.; Holbrey, J. D.; Rogers, R. D. Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate. Green Chem. 2003, 5, 361−363. doi: 10.1039/b304400a

    105. [105]

      Smiglak, M.; Reichert, W. M.; Holbrey, J. D.; Wilkes, J. S.; Sun, L.; Thrasher, J. S.; Kirichenko, K.; Singh, S.; Katritzky, A. R.; Rogers, R. D. Combustible ionic liquids by design: is laboratory safety another ionic liquid myth? Chem. Commun. 2006, 2554−2556. doi: 10.1039/b602086k

    106. [106]

      Ostadjoo, S.; Berton, P.; Shamshina, J. L.; Rogers, R. D. Scaling-up ionic liquid-based technologies: how much do we care about their toxicity? Prima facie information on 1-ethyl-3-methylimidazolium acetate Toxicol. Sci. 2017, 161, 249−265.

    107. [107]

      Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 2003, 70−71. doi: 10.1039/b210714g

    108. [108]

      Abbott, A. P.; Boothby, D.; Capper, G.; Davies, D. L.; Rasheed, R. K. Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J. Am. Chem. Soc. 2004, 126, 9142−9147. doi: 10.1021/ja048266j

    109. [109]

      Francisco, M.; van, den Bruinhorst A.; Kroon, M. C. New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing. Green Chem. 2012, 14, 2153−2157. doi: 10.1039/c2gc35660k

    110. [110]

      Silva, L. P.; Araújo, C. F.; Abranches, D. O.; Melle-Franco, M.; Martins, M. A. R.; Nolasco, M. M.; Ribeiro-Claro, P. J. A.; Pinho, S. P.; Coutinho, J. A. P. What a difference a methyl group makes – probing choline-urea molecular interactions through urea structure modification. Phys. Chem. Chem. Phys. 2019, 21, 18278−18289. doi: 10.1039/C9CP03552D

    111. [111]

      Ashworth, C. R.; Matthews, R. P.; Welton, T.; Hunt, P. A. Doubly ionic hydrogen bond interactions within the choline chloride-urea deep eutectic solvent. Phys. Chem. Chem. Phys. 2016, 18, 18145−18160. doi: 10.1039/C6CP02815B

    112. [112]

      Sharma, M.; Mukesh, C.; Mondal, D.; Prasad, K. Dissolution of α-chitin in deep eutectic solvents. RSC Adv. 2013, 3, 18149−18155. doi: 10.1039/c3ra43404d

    113. [113]

      Mukesh, C.; Mondal, D.; Sharma, M.; Prasad, K. Choline chloride-thiourea, a deep eutectic solvent for the production of chitin nanofibers. Carbohydr. Polym. 2014, 103, 466−471. doi: 10.1016/j.carbpol.2013.12.082

    114. [114]

      Idenoue, S.; Yamamoto, K.; Kadokawa, J. I. Dissolution of chitin in deep eutectic solvents composed of imidazolium ionic liquids and thiourea. ChemEngineering 2019, 3, 90. doi: 10.3390/chemengineering3040090

    115. [115]

      Shuklov, I. A.; Dubrovina, N. V.; Boerner, A. Fluorinated alcohols as solvents, cosolvents and additives in homogeneous catalysis. ChemInform 2007, 19, 2925−2943 . doi: 10.1055/s-2007-983902

    116. [116]

      Tokura, S.; Nishi, N.; Noguchi, J. Studies on chitin. III. Preparation of chitin fibers. Polym. J. 1979, 11, 781−786. doi: 10.1295/polymj.11.781

    117. [117]

      Austin, P. R. Chitin solutions and purification of chitin. In Methods enzymol. Academic Press, 1988, 161.

    118. [118]

      Buffington, L. A.; Stevens, E. S. Far-ultraviolet circular dichroism of solutions, gels, and films of chitins. J. Am. Chem. Soc. 1979, 101, 5159−5162. doi: 10.1021/ja00512a008

    119. [119]

      Min, B. M.; Lee, S. W.; Lim, J. N.; You, Y.; Lee, T. S.; Kang, P. H.; Park, W. H. Chitin and chitosan nanofibers: electrospinning of chitin and deacetylation of chitin nanofibers. Polymer 2004, 45, 7137−7142. doi: 10.1016/j.polymer.2004.08.048

  • 加载中
    1. [1]

      Hui-na WangMing-xi YangLong-bo LuoJie-yang HuangKe LiXu WangYan FengXiang-yang Liu . Catalysis and Inhibition of Benzimidazole Units on Thermal Imidization of Poly(amic acid) via Hydrogen Bonding Interactions. Chinese J. Polym. Sci, 2015, 33(4): 621-632. doi: 10.1007/s10118-015-1614-2

    2. [2]

      Fa-liang LuoFa-hai LuoQian XingXiu-qin ZhangHong-qiao JiaoMin YaoChun-tao LuoDu-jin Wang . HYDROGEN-BONDING INDUCED CHANGE OF CRYSTALLIZATION BEHAVIOR OF POLY(BUTYLENE SUCCINATE) IN ITS MIXTURES WITH BISPHENOL A. Chinese J. Polym. Sci, 2013, 31(12): 1685-1696. doi: 10.1007/s10118-013-1364-y

    3. [3]

      Hao ZhangTao LiBin LiuTeng-Ning MaLong HuangZe-Ming BaiDan Lu . Effect and Mechanism of Solvent Properties on Solution Behavior and Films Condensed State Structure for the Semi-rigid Conjugated Polymers. Chinese J. Polym. Sci, 2021, 39(): 1-19. doi: 10.1007/s10118-021-2555-6

    4. [4]

      Xue LiHai-lan KangJian-xiang ShenLi-qun ZhangToshio NishiKohzo Ito . Miscibility, Intramolecular Specific Interactions and Mechanical Properties of a DGEBA Based Epoxy Resin Toughened with a Sliding Graft Copolymer. Chinese J. Polym. Sci, 2015, 33(3): 433-443. doi: 10.1007/s10118-015-1596-0

    5. [5]

      Da-peng WangMu-quan YangZhi-xin DongShu-qin BoXiang-ling Ji . INTERACTION BETWEEN POLY (ETHYLENE OXIDE) AND SILICA NANOPARTICLES IN DILUTE SOLUTIONS. Chinese J. Polym. Sci, 2013, 31(9): 1290-1298. doi: 10.1007/s10118-013-1321-9

    6. [6]

      Tian-bo YangXiao-li SunZhong-jie RenHui-hui LiShou-ke Yan . Crystallizability of Poly(-caprolactone) Blends with Poly(vinylphenol) under Different Conditions. Chinese J. Polym. Sci, 2014, 32(9): 1119-1127. doi: 10.1007/s10118-014-1492-z

    7. [7]

      Rui-yuan LiuTong ZhangXiao-dong YangYi-chen YanJin-qing Qu . Synthesis, Chiroptical Properties of a Helical Polyacetylene Derivative Carrying Urea Moieties. Chinese J. Polym. Sci, 2014, 32(7): 931-940. doi: 10.1007/s10118-014-1468-z

    8. [8]

      Qian WuBing XuJun-jie WeiQing WangQi-gang WangWen-guang Liu . A Mechanically Strong Conductive Hydrogel Reinforced by Diaminotriazine Hydrogen Bonding. Chinese J. Polym. Sci, 2017, 35(10): 1222-1230. doi: 10.1007/s10118-017-1960-3

    9. [9]

      Lei KanXiao OuyangShan GaoRui LiNing MaShi-hui HanHao WeiLian-he Liu . High Damping and Mechanical Properties of Hydrogen-bonded Polyethylene Materials with Variable Contents of Hydroxyls: Effect of Hydrogen Bonding Density. Chinese J. Polym. Sci, 2017, 35(5): 649-658. doi: 10.1007/s10118-017-1918-5

    10. [10]

      Yi-Gang LuanXiao-A ZhangSheng-Ling JiangJian-Huan ChenYa-Fei Lyu . Self-Healing Supramolecular Polymer Composites by Hydrogen Bonding Interactions between Hyperbranched Polymer and Graphene Oxide. Chinese J. Polym. Sci, 2018, 36(5): 584-591. doi: 10.1007/s10118-018-2025-y

    11. [11]

      Juan LiuXin LuZhong XinChang-lu Zhou . Surface Properties and Hydrogen Bonds of Mono-functional Polybenzoxazines with Different N-substituents. Chinese J. Polym. Sci, 2016, 34(8): 919-932. doi: 10.1007/s10118-016-1810-8

    12. [12]

      An-Qi XiaoXiao-Lin LyuHong-Bing PanZhe-Hao TangWei ZhangZhi-Hao ShenXing-He Fan . Homeotropic Alignment and Selective Adsorption of Nanoporous Polymer Film Polymerized from Hydrogen-bonded Liquid Crystal

      . Chinese J. Polym. Sci, 2020, 38(11): 1185-1191. doi: 10.1007/s10118-020-2431-9

    13. [13]

      Jing NieZhi-liang WangJie-fu LiYing GongJia-xing SunShu-guang Yang . Interface Hydrogen-bonded Core-Shell Nanofibers by Coaxial Electrospinning. Chinese J. Polym. Sci, 2017, 35(8): 1001-1008. doi: 10.1007/s10118-017-1984-8

    14. [14]

      Xue-Min DaiHong GaoRan ZhangZhi-Jun DuTong-Fei ShiXiang-Ling JiXue-Peng QiuYong-Feng Men . Preparation and Properties of High-performance Polyimide Copolymer Fibers Derived from 5-Amino-2-(2-hydroxy-5-aminobenzene)-benzoxazole. Chinese J. Polym. Sci, 2019, 37(5): 478-492. doi: 10.1007/s10118-019-2205-4

    15. [15]

      Lei ShiRuo-Yu ZhangWu-Bin YingHan HuYu-Bin WangYa-Qian GuoWen-Qin WangZhao-Bin TangJin Zhu . Polyether-polyester and HMDI Based Polyurethanes: Effect of PLLA Content on Structure and Property. Chinese J. Polym. Sci, 2019, 37(11): 1152-1161. doi: 10.1007/s10118-019-2283-3

    16. [16]

      N. LevarayX.X. Zhu . Polyurethanes Made from Bile Acids. Chinese J. Polym. Sci, 2016, 34(5): 616-622. doi: 10.1007/s10118-016-1776-6

    17. [17]

      Sen XuPengfei ChangBingjie ZhaoMuhammad AdeelSixun Zheng . Formation of Poly(ε-caprolactone) Networks via Supramolecular Hydrogen Bonding Interactions. Chinese J. Polym. Sci, 2019, 37(3): 197-207. doi: 10.1007/s10118-019-2199-y

    18. [18]

      Jun ZhuChang-wang PanLing TongHan YanJian ShenSi-cong Lin . Improving Nonthrombogenicity of Chitin with Zwitterionic Structure of Sulfobetaine. Chinese J. Polym. Sci, 2005, 23(4): 449-452.

    19. [19]

      . REINFORCEMENT OF CALCIUM PHOSPHATE CEMENTS WITH PHOSPHORYLATED CHITIN*. Chinese J. Polym. Sci, 2002, 20(4): 325-332.

    20. [20]

      . BASE-INDUCED RELEASE OF MOLECULES FROM HYDROGEN BONDING DIRECTED LAYER-BY-LAYER FILM*. Chinese J. Polym. Sci, 2003, 21(5): 499-503.

Article Metrics
  • PDF Downloads(16)
  • Abstract views(2065)
  • HTML views(310)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return