Citation: Wang, Y. H.; Gong, J.; Hu, W. B. Transparency of temperature-responsive shape-memory gels tuned by a competition between crystallization and glass transition. Chinese J. Polym. Sci. 2020, 38, 1374–1381 doi: 10.1007/s10118-020-2456-0 shu

Transparency of Temperature-responsive Shape-memory Gels Tuned by a Competition between Crystallization and Glass Transition

Figures(9) / Tables(1)

  • Transparency is often an important property in the practical applications of temperature-responsive shape-memory gels. We investigated the mechanism of significant transparency improvement upon a change in two copolymer gels with their molar ratios between stearyl acrylate and N,N-dimethylacrylamide from 1:1 to 0.75:1. By means of Flash DSC measurement, we made the thermal analysis characterization of crystallization and glass transition in two copolymer gels and compared the results to the parallel experiments of corresponding homopolymers. The results showed that the slightly lower content of stearyl acrylate sequences suppresses crystallization in their side chains due to the chemical confinement of comonomers on copolymer crystallization; meanwhile it shifts up the glass transition temperature of the backbone N,N-dimethylacrylamide sequences. Eventually on cooling, crystallization gives its priority position to glass transition in copolymer gels, resulting in a higher transparency of the gel without losing the shape-memory performance. To confirm the chemical confinement, we further compared the isothermal crystallization kinetics of stearyl acrylate side chains in the copolymer gel to that of their homopolymer. Our observations facilitate the rational design of the temperature-responsive shape-memory gels for the transparency property.
  • 加载中
    1. [1]

      Lendlein, A.; Kelch, S. Shape-memory polymers. Angew. Chem. Int. Ed. 2002, 41, 2034−2057. doi: 10.1002/1521-3773(20020617)41:12<2034::AID-ANIE2034>3.0.CO;2-M

    2. [2]

      Behl, M.; Lendlein, A. Shape-memory polymers. Mater. Today 2007, 10, 20−28.

    3. [3]

      Liu, C.; Qin, H.; Mather, P. T. Review of progress in shape-memory polymers. J. Mater. Chem. 2007, 17, 1543−1558. doi: 10.1039/b615954k

    4. [4]

      Huang, W. M.; Ding, Z.; Wang, C. C.; Wei, J.; Zhao, Y.; Purnawali, H. Shape memory materials. Mater. Today 2010, 13, 54−61.

    5. [5]

      Xie, T. Recent advances in polymer shape memory. Polymer 2011, 52, 4985−5000. doi: 10.1016/j.polymer.2011.08.003

    6. [6]

      Zhao, Q.; Qi, H. J.; Xie, T. Recent progress in shape memory polymer: new behavior, enabling materials, and mechanistic understanding. Prog. Polym. Sci. 2015, 49-50, 79−120. doi: 10.1016/j.progpolymsci.2015.04.001

    7. [7]

      Leng, J.; Lan, X.; Liu, Y.; Du, S. Shape-memory polymers and their composites: stimulus methods and applications. Prog. Mater. Sci. 2011, 56, 1077−1135. doi: 10.1016/j.pmatsci.2011.03.001

    8. [8]

      Hu, J.; Zhu, Y.; Huang, H.; Lu, J. Recent advances in shape-memory polymers: structure, mechanism, functionality, modeling and applications. Prog. Polym. Sci. 2012, 37, 1720−1763. doi: 10.1016/j.progpolymsci.2012.06.001

    9. [9]

      Hager, M. D.; Bode, S.; Weber, C.; Schubert, U. S. Shape memory polymers: past, present and future developments. Prog. Polym. Sci. 2015, 49-50, 3−33. doi: 10.1016/j.progpolymsci.2015.04.002

    10. [10]

      Osada, Y.; Matsuda, A. Shape memory in hydrogels. Nature 1995, 376, 219−219.

    11. [11]

      Okano, T. Molecular design of temperature-responsive polymers as intelligent materials. In Responsive gels: volume transitions II; Dušek, K., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 1993, pp. 179–197.

    12. [12]

      Osada, Y.; Gong, J. P. Soft and wet materials: polymer gels. Adv. Mater. 1998, 10, 827−837. doi: 10.1002/(SICI)1521-4095(199808)10:11<827::AID-ADMA827>3.0.CO;2-L

    13. [13]

      Sun, L.; Huang, W. M.; Ding, Z.; Zhao, Y.; Wang, C. C.; Purnawali, H.; Tang, C. Stimulus-responsive shape memory materials: a review. Mater. Design 2012, 33, 577−640. doi: 10.1016/j.matdes.2011.04.065

    14. [14]

      Chaterji, S.; Kwon, I. K.; Park, K. Smart polymeric gels: redefining the limits of biomedical devices. Prog. Polym. Sci. 2007, 32, 1083−1122. doi: 10.1016/j.progpolymsci.2007.05.018

    15. [15]

      Yokoo, T.; Hidema, R.; Furukawa, H. Smart lenses developed with high-strength and shape memory gels. e-J. Surf. Sci. Nanotech. 2012, 10, 243−247. doi: 10.1380/ejssnt.2012.243

    16. [16]

      Kabir, M. H.; Gong, J.; Watanabe, Y.; Makino, M.; Furukawa, H. Hard-to-soft transition of transparent shape memory gels and the first observation of their critical temperature studied with scanning microscopic light scattering. Mater. Lett. 2013, 108, 239−242. doi: 10.1016/j.matlet.2013.07.002

    17. [17]

      Lendlein, A.; Langer, R. Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 2002, 296, 1673. doi: 10.1126/science.1066102

    18. [18]

      Yamano, M.; Akiaba, N.; Gong, J.; Furukawa, H. Experiments of a two-arm robot using shape memory gel. Proceedings of 2012 IEEE/SICE International Symposium on System Integration 2012, 648–653.

    19. [19]

      Yamano, M.; Goto, D.; Ujiie, K.; Akiaba, N.; Gong, J.; Furukawa, H.; Tadakuma, R. Experiments of a variable stiffness robot using shape memory gel. Proceedings of 2012 IEEE/SICE International Symposium on System Integration 2013, 647–652.

    20. [20]

      Harada, S.; Hidema, R.; Gong, J.; Furukawa, H. Intelligent button developed using smart soft and wet materials. Chem. Lett. 2012, 41, 1047−1049. doi: 10.1246/cl.2012.1047

    21. [21]

      Kaufman, H. S.; Sacher, A.; Alfrey, T.; Fankuchen, I. Side-chain crystallization in alkyl polyacrylates. J. Am. Chem. Soc. 1948, 70, 3147−3147.

    22. [22]

      Morosoff, N.; Morawetz, H.; Post, B. Polymerization in the crystalline state. VII. A crystallographic study of the radiation-initiated polymerization in single crystals of vinyl stearate1, 2. J. Am. Chem. Soc 1965, 87, 3035−3040. doi: 10.1021/ja01092a001

    23. [23]

      Platé, N. A.; Shibaev, V. P. Comb-like polymers. Structure and properties. J. Polym. Sci.: Macromol. Rev. 1974, 8, 117−253. doi: 10.1002/pol.1974.230080103

    24. [24]

      Lee, J. L.; Pearce, E. M.; Kwei, T. K. Side-chain crystallization in alkyl-substituted semiflexible polymers. Macromolecules 1997, 30, 6877−6883. doi: 10.1021/ma970404k

    25. [25]

      Matsuda, A.; Sato, J. I.; Yasunaga, H.; Osada, Y. Order-disorder transition of a hydrogel containing an n-alkyl acrylate. Macromolecules 1994, 27, 7695−7698. doi: 10.1021/ma00104a027

    26. [26]

      Beiner, M.; Huth, H. Nanophase separation and hindered glass transition in side-chain polymers. Nat. Mater. 2003, 2, 595−599. doi: 10.1038/nmat966

    27. [27]

      Pritchard, R. The transparency of crystalline polymers. Polym. Eng. Sci. 1964, 4, 66−71. doi: 10.1002/pen.760040114

    28. [28]

      López-Barrón, C. R.; Tsou, A. H.; Younker, J. M.; Norman, A. I.; Schaefer, J. J.; Hagadorn, J. R.; Throckmorton, J. A. Microstructure of crystallizable α-olefin molecular bottlebrushes: isotactic and atactic poly(L-octadecene). Macromolecules 2018, 51, 872−883. doi: 10.1021/acs.macromol.7b02524

    29. [29]

      Hu, W. Principles of polymer crystallization (In Chinese). Chemical Industry Press, Beijing, 2013.

    30. [30]

      Hu, W.; Frenkel, D. Polymer crystallization driven by anisotropic interactions. Adv. Polym. Sci. 2005, 191, 1−35.

    31. [31]

      Hu, W. Polymer physics: a molecular approach. Springer-Verlag: Wien, 2013.

    32. [32]

      Hu, W. The physics of polymer chain-folding. Phys. Rep. 2018, 747, 1−50. doi: 10.1016/j.physrep.2018.04.004

    33. [33]

      Hu, W.; Mathot, V. B. F.; Frenkel, D. Phase transitions of bulk statistical copolymers studied by dynamic Monte Carlo simulations. Macromolecules 2003, 36, 2165−2175. doi: 10.1021/ma0213854

    34. [34]

      Hu, W.; Mathot, V. B. F.; Alamo, R. G.; Gao, H.; Chen, X. Crystallization of statistical copolymers. Adv. Polym. Sci. 2017, 276, 1−43.

    35. [35]

      Schick, C. Differential scanning calorimetry (DSC) of semicrystalline polymers. Anal. Bioanal. Chem. 2009, 395, 1589−1611. doi: 10.1007/s00216-009-3169-y

    36. [36]

      Schawe, J. E. K.; Pogatscher, S. Material characterization by fast scanning calorimetry: practice and applications. In Fast scanning calorimetry. Schick, C.; Mathot, V., Eds., Springer International Publishing, Cham, 2016, 3–80.

    37. [37]

      Mathot, V.; Pyda, M.; Pijpers, T.; Vanden Poel, G.; van de Kerkhof, E.; van Herwaarden, S.; van Herwaarden, F.; Leenaers, A. The Flash DSC 1, a power compensation twin-type, chip-based fast scanning calorimeter (FSC): first findings on polymers. Thermochim. Acta 2011, 522, 36−45. doi: 10.1016/j.tca.2011.02.031

    38. [38]

      Van Herwaarden, S.; Iervolino, E.; Van Herwaarden, F.; Wijffels, T.; Leenaers, A.; Mathot, V. Design, performance and analysis of thermal lag of the UFS1 twin-calorimeter chip for fast scanning calorimetry using the Mettler-Toledo Flash DSC 1. Thermochim. Acta 2011, 522, 46−52. doi: 10.1016/j.tca.2011.05.025

    39. [39]

      Poel, G. V.; Istrate, D.; Magon, A.; Mathot, V. Performance and calibration of the Flash DSC 1, a new, MEMS-based fast scanning calorimeter. J. Therm. Anal. Calorim. 2012, 110, 1533−1546. doi: 10.1007/s10973-012-2722-7

    40. [40]

      Iervolino, E.; van Herwaarden, A. W.; van Herwaarden, F. G.; van de Kerkhof, E.; van Grinsven, P. P. W.; Leenaers, A. C. H. I.; Mathot, V. B. F.; Sarro, P. M. Temperature calibration and electrical characterization of the differential scanning calorimeter chip UFS1 for the Mettler-Toledo Flash DSC 1. Thermochim. Acta 2011, 522, 53−59. doi: 10.1016/j.tca.2011.01.023

    41. [41]

      Li, Z.; Zhou, D.; Hu, W. Recent progress on Flash DSC study of polymer crystallization and melting. Acta Polymerica Sinica (in Chinese) 2016, 1179−1197.

    42. [42]

      Toda, A.; Androsch, R.; Schick, C. Insights into polymer crystallization and melting from fast scanning chip calorimetry. Polymer 2016, 91, 239−263. doi: 10.1016/j.polymer.2016.03.038

    43. [43]

      Schick, C.; Androsch, R.; Schmelzer, J. W. P. Homogeneous crystal nucleation in polymers. J. Phys.: Condens. Matter 2017, 29, 453002. doi: 10.1088/1361-648X/aa7fe0

    44. [44]

      He, Y.; Xie, K.; Wang, Y.; Zhou, D.; Hu, W. Characterization of polymer crystallization kinetics via fast-scanning chip-calorimetry. Acta Phys. -Chim. Sin. 2020, 36, 1905081.

    45. [45]

      Cavallo, D.; Gardella, L.; Alfonso, G. C.; Mileva, D.; Androsch, R. Effect of comonomer partitioning on the kinetics of mesophase formation in random copolymers of propene and higher α-olefins. Polymer 2012, 53, 4429−4437. doi: 10.1016/j.polymer.2012.08.001

    46. [46]

      Cavallo, D.; Zhang, L.; Portale, G.; Alfonso, G. C.; Janani, H.; Alamo, R. G. Unusual crystallization behavior of isotactic polypropylene and propene/1-alkene copolymers at large undercoolings. Polymer 2014, 55, 3234−3241. doi: 10.1016/j.polymer.2014.05.053

    47. [47]

      Mileva, D.; Androsch, R. Effect of co-unit type in random propylene copolymers on the kinetics of mesophase formation and crystallization. Colloid. Polym. Sci. 2012, 290, 465−471. doi: 10.1007/s00396-011-2576-8

    48. [48]

      Zhuravlev, E.; Madhavi, V.; Lustiger, A.; Androsch, R.; Schick, C. Crystallization of polyethylene at large undercooling. ACS Macro Lett. 2016, 5, 365−370. doi: 10.1021/acsmacrolett.5b00889

    49. [49]

      Kalapat, D.; Tang, Q.; Zhang, X.; Hu, W. Comparing crystallization kinetics among two G-resin samples and iPP via flash DSC measurement. J. Therm. Anal. Calorim. 2017, 128, 1859−1866. doi: 10.1007/s10973-017-6095-9

    50. [50]

      Cai, J.; Luo, R.; Lv, R.; He, Y.; Zhou, D.; Hu, W. Crystallization kinetics of ethylene-co-propylene rubber/isotactic polypropylene blend investigated via chip-calorimeter measurement. Eur. Polym. J. 2017, 96, 79−86. doi: 10.1016/j.eurpolymj.2017.09.003

  • 加载中
    1. [1]

      Rabia SattarAyesha KausarMuhammad Siddiq . Thermal, Mechanical and Electrical Studies of Novel Shape Memory Polyurethane/Polyaniline Blends. Chinese J. Polym. Sci, 2015, 33(9): 1313-1324. doi: 10.1007/s10118-015-1680-5

    2. [2]

      Bi-wei QiuFeng ChenYong-gang ShangguanYu LinQiang Zheng . Effects of Composition on Microstructure and Crystallization Behavior for Impact Polypropylene Copolymer Investigated by Restructuring the Complex Core-Shell Dispersed Particles in Ternary Blends. Chinese J. Polym. Sci, 2015, 33(1): 95-108. doi: 10.1007/s10118-015-1556-8

    3. [3]

      Yong-jin PengChen-ting CaiRong-chun ZhangTie-hong ChenPing-chuan SunBao-hui LiXiao-liang WangGi XueAn-Chang Shi . Probing the Two-stage Transition upon Crossing the Glass Transition of Polystyrene by Solid-state NMR. Chinese J. Polym. Sci, 2016, 34(4): 446-456. doi: 10.1007/s10118-016-1762-z

    4. [4]

      Yue-long HouQiang WuTie-hong ChenPing-chuan Sun . UNIQUE EVOLUTION OF SPATIAL AND DYNAMIC HETEROGENEITIES ON THE GLASS TRANSITION BEHAVIOR OF PVPh/PEO BLENDS. Chinese J. Polym. Sci, 2012, 30(6): 900-915. doi: 10.1007/s10118-012-1182-7

    5. [5]

      Xu-feng NiuFeng TianLi-zhen WangXiao-ming LiGang ZhouYu-bo Fan . Synthesis and Characterization of Chitosan-graft-Poly(lactic acid) Copolymer. Chinese J. Polym. Sci, 2014, 32(1): 43-50. doi: 10.1007/s10118-014-1369-1

    6. [6]

      Jin-hua LengHeng LiuBo-bing HeBin YangXian ChenQing-quan Qin . COMBINED EFFECT OF MODIFIED ZEOLITE 13X AND -NUCLEATING AGENT ON IMPROVING -CRYSTAL CONTENT AND TOUGHENING POLYPROPYLENE RANDOM COPOLYMER. Chinese J. Polym. Sci, 2013, 31(11): 1563-1578. doi: 10.1007/s10118-013-1311-y

    7. [7]

      Li-na ZhangWei-chao ShiCharles C HanHe Cheng . Uniform to Accelerated Crystal Twisting Transition in Deuterate Polyethylene/Poly(ethylene-alt-propylene) Blend Films. Chinese J. Polym. Sci, 2014, 32(9): 1260-1270. doi: 10.1007/s10118-014-1500-3

    8. [8]

      Shu-ying GuXie-feng GaoSheng-peng JinLiu Yan-liang . Biodegradable Shape Memory Polyurethanes with Controllable Trigger Temperature. Chinese J. Polym. Sci, 2016, 34(6): 720-729. doi: 10.1007/s10118-016-1795-3

    9. [9]

      Chanita SungkapreechaWalter W. FockeRené Androsch . Competition between Liquid-liquid De-mixing, Crystallization, and Glass Transition in Solutions of PLA of Different Stereochemistry and DEET. Chinese J. Polym. Sci, 2020, 38(2): 174-178. doi: 10.1007/s10118-019-2314-0

    10. [10]

      Yi-kun RenYun-tao LiLiang-bin Li . A Theoretical Interpretation of Free Volume at Glass Transition. Chinese J. Polym. Sci, 2017, 35(11): 1415-1427. doi: 10.1007/s10118-017-1968-8

    11. [11]

      Khalil FaghihiAkram Feyzi . SYNTHESIS AND CHARACTERIZATION OF OPTICALLY ACTIVE POLY(AMIDE-IMIDE)S BASED ON [N,N'-(4,4'-CARBONYLDIPHTALOYL)-BIS-L-AMINO DIACID]S AND 1,5-BIS(4-AMINOPHENYL)PENTA-1,4-DIEN-3-ONE. Chinese J. Polym. Sci, 2012, 30(6): 777-785. doi: 10.1007/s10118-012-1172-9

    12. [12]

      Xiu-bo JiangQing-fei ZhangAi-hua He . Synthesis and Characterization of Trans-1,4-butadiene/Isoprene Copolymers: Determination of Sequence Distribution and Thermal Properties. Chinese J. Polym. Sci, 2015, 33(6): 815-822. doi: 10.1007/s10118-015-1626-y

    13. [13]

      Qing-fei ZhangXiu-bo JiangAi-hua He . Synthesis and Characterization of trans-1,4-Butadiene/Isoprene Copolymers:Determination of Monomer Reactivity Ratios and Temperature Dependence. Chinese J. Polym. Sci, 2014, 32(8): 1068-1076. doi: 10.1007/s10118-014-1467-0

    14. [14]

      Wei-xi YangLing-ling WangHan ZhuRi-wei XuYi-xian Wu . SYNTHESIS OF POLY(GLUTAMIC ACID-co-ASPARTIC ACID) VIA COMBINATION OF N-CARBOXYANHYDRIDE RING OPENING POLYMERIZATION WITH DEBENZYLATION. Chinese J. Polym. Sci, 2013, 31(12): 1706-1716. doi: 10.1007/s10118-013-1363-z

    15. [15]

      Yao-hui XingShao-liang LinJia-ping LinXiao-hua He . SYNTHESIS, SELF-ASSEMBLY AND RESPONSIVE PROPERTIES OF PEG-b-PDMAEMA-b-PMMAzo TRIBLOCK COPOLYMERS. Chinese J. Polym. Sci, 2013, 31(5): 833-840. doi: 10.1007/s10118-013-1283-y

    16. [16]

      Ying-jie XuYi-hu SongQiang Zheng . Effects of Nanosilica on Crystallization and Thermal Ageing Behaviors of Polyethylene Terephthalate. Chinese J. Polym. Sci, 2015, 33(5): 697-708. doi: 10.1007/s10118-015-1619-x

    17. [17]

      Hai-jun WangHui-ping FengXue-chuan WangQing-chuan DuChao Yan . Crystallization of Poly(ethylene adipate) within -Phase Poly(vinylidene fluoride) Matrix. Chinese J. Polym. Sci, 2015, 33(6): 823-829. doi: 10.1007/s10118-015-1627-x

    18. [18]

      Zhi-liang WangJia-li XuLian-jia WuXin ChenShu-guang YangHui-chao LiuXian-ju Zhou . Dissolution, Hydrolysis and Crystallization Behavior of Polyamide 6 in Superheated Water. Chinese J. Polym. Sci, 2015, 33(9): 1334-1343. doi: 10.1007/s10118-015-1682-3

    19. [19]

      Li LiJun-teng LiuZhong-jie RenShou-ke Yan . Crystallization Behavior of Disproportionately High and Low Molecular Weight PEO Blends. Chinese J. Polym. Sci, 2014, 32(9): 1199-1209. doi: 10.1007/s10118-014-1497-7

    20. [20]

      Sheng-Xue QinCui-Xiang YuXue-Yang ChenHai-Ping ZhouLi-Fen Zhao . Fully Biodegradable Poly(lactic acid)/Poly(propylene carbonate) Shape Memory Materials with Low Recovery Temperature Based on in situ Compatibilization by Dicumyl Peroxide. Chinese J. Polym. Sci, 2018, 36(6): 783-790. doi: 10.1007/s10118-018-2065-3

Article Metrics
  • PDF Downloads(34)
  • Abstract views(1052)
  • HTML views(197)
  • Cited By(0)

通讯作者: 陈斌,
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索


DownLoad:  Full-Size Img  PowerPoint