Citation: Lv, C. N.; Li, N.; Du, Y. X.; Li, J. H.; Pan, X. C. Activation and deactivation of chain-transfer agent in controlled radical polymerization by oxygen initiation and regulation. Chinese J. Polym. Sci. 2020, 38, 1178–1184 doi: 10.1007/s10118-020-2441-7 shu

Activation and Deactivation of Chain-transfer Agent in Controlled Radical Polymerization by Oxygen Initiation and Regulation

  • Corresponding author: Xiang-Cheng Pan, E-mail:
  • Received Date: 2020-03-06
    Available Online: 2020-06-05

Figures(5) / Tables(2)

  • The activation and deactivation of the chain-transfer agent were achieved by oxygen initiation and regulation with triethylborane under ambient temperature and atmosphere. The autoxidation of triethylborane overcame the oxygen inhibition and produced initiating radicals that selectively activate the chain-transfer agent for the chain growth or deactivate the active chain-end of polymer in controlled radical polymerization. Both activation and deactivation were highly efficient with broad scope for various polymers with different chain-transfer agents in both organic and aqueous systems. Oxygen molecule was particularly used as an external regulator to initiate and achieve the temporal control of both activation and deactivation by simply feeding the air.
  • 加载中
    1. [1]

      Grubbs, R. B.; Grubbs, R. H. 50th Anniversary perspective: living polymerization-emphasizing the molecule in macromolecules. Macromolecules 2017, 50, 6979−6997. doi: 10.1021/acs.macromol.7b01440

    2. [2]

      Braunecker, W. A.; Matyjaszewski, K. Controlled/living radical polymerization: features, developments, and perspectives. Prog. Polym. Sci. 2007, 32, 93−146. doi: 10.1016/j.progpolymsci.2006.11.002

    3. [3]

      Matyjaszewski, K.; Davis, T. P. Handbook of radical polymerization. Wiley, Hoboken, 2002.

    4. [4]

      Wang, J. S.; Matyjaszewsk, K. Controlled/"living" radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc. 1995, 117, 5614−5615. doi: 10.1021/ja00125a035

    5. [5]

      Matyjaszewski, K.; Tsarevsky, N. V. Nanostructured functional materials prepared by atom transfer radical polymerization. Nat. Chem. 2009, 1, 276−288. doi: 10.1038/nchem.257

    6. [6]

      Pan, X.; Fantin, M.; Yuan, F.; Matyjaszewski, K. Externally controlled atom transfer radical polymerization. Chem. Soc. Rev. 2018, 47, 5457−5490. doi: 10.1039/C8CS00259B

    7. [7]

      Chiefari, J.; Chong, Y. K. B.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H. Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules 1998, 31, 5559−5562. doi: 10.1021/ma9804951

    8. [8]

      Hill, M. R.; Carmean, R. N.; Sumerlin, B. S. Expanding the scope of RAFT polymerization: recent advances and new horizons. Macromolecules 2015, 48, 5459−5469.

    9. [9]

      Moad, G.; Rizzardo, E.; Thang, S. H. Toward living radical polymerization. Acc. Chem. Res. 2008, 41, 1133−1142. doi: 10.1021/ar800075n

    10. [10]

      Benaglia, M.; Chiefari, J.; Chong, Y. K.; Moad, G.; Rizzardo, E.; Thang, S. H. Universal (switchable) RAFT agents. J. Am. Chem. Soc. 2009, 131, 6914−6915. doi: 10.1021/ja901955n

    11. [11]

      Mayadunne, R. T. A.; Rizzardo, E.; Chiefari, J.; Krstina, J.; Moad, G.; Postma, A.; Thang, S. H. Living polymers by the use of trithiocarbonates as reversible addition-fragmentation chain transfer (RAFT) agents: ABA triblock copolymers by radical polymerization in two steps. Macromolecules 2000, 33, 243−245. doi: 10.1021/ma991451a

    12. [12]

      Mayadunne, R. T. A.; Jeffery, J.; Moad, G.; Rizzardo, E. Living free radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization): approaches to star polymers. Macromolecules 2003, 36, 1505−1513. doi: 10.1021/ma021219w

    13. [13]

      Xu, J.; Jung, K.; Atme, A.; Shanmugam, S.; Boyer, C. A robust and versatile photoinduced living polymerization of conjugated and unconjugated monomers and its oxygen tolerance. J. Am. Chem. Soc. 2014, 136, 5508−5519. doi: 10.1021/ja501745g

    14. [14]

      Xu, J.; Shanmugam, S.; Fu, C.; Aguey-Zinsou, K. F.; Boyer, C. Selective photoactivation: from a single unit monomer insertion reaction to controlled polymer architectures. J. Am. Chem. Soc. 2016, 138, 3094−3106. doi: 10.1021/jacs.5b12408

    15. [15]

      McKenzie, T. G.; Fu, Q.; Uchiyama, M.; Satoh, K.; Xu, J.; Boyer, C.; Kamigaito, M.; Qiao, G. G. Beyond traditional RAFT: alternative activation of thiocarbonylthio compounds for controlled polymerization. Adv. Sci. 2016, 3, 1500394−1500403. doi: 10.1002/advs.201500394

    16. [16]

      Pan, X.; Tasdelen, M. A.; Laun, J.; Junkers, T.; Yagci, Y.; Matyjaszewski, K. Photomediated controlled radical polymerization. Prog. Polym. Sci. 2016, 62, 73−125. doi: 10.1016/j.progpolymsci.2016.06.005

    17. [17]

      Chen, M.; Zhong, M.; Johnson, J. A. Light-controlled radical polymerization: mechanisms, methods, and applications. Chem. Rev. 2016, 116, 10167−10211. doi: 10.1021/acs.chemrev.5b00671

    18. [18]

      Dadashi-Silab, S.; Doran, S.; Yagci, Y. Photoinduced electron transfer reactions for macromolecular syntheses. Chem. Rev. 2016, 116, 10212−10275. doi: 10.1021/acs.chemrev.5b00586

    19. [19]

      Willcock, H.; O'Reilly, R. K. End group removal and modification of RAFT polymers. Polym. Chem. 2010, 1, 149−157. doi: 10.1039/B9PY00340A

    20. [20]

      Sinnwell, S.; Inglis, A. J.; Davis, T. P.; Stenzel, M. H.; Barner-Kowollik, C. An atom-efficient conjugation approach to well-defined block copolymers using RAFT chemistry and hetero diels–alder cycloaddition. Chem. Commun. 2008, 2008, 2052−2054.

    21. [21]

      Xu, J.; He, J.; Fan, D.; Tang, W.; Yang, Y. Thermal decomposition of dithioesters and its effect on RAFT polymerization. Macromolecules 2006, 39, 3753−3759. doi: 10.1021/ma060184n

    22. [22]

      Alagi, P.; Hadjichristidis, N.; Gnanou, Y.; Feng, X. Fast and complete neutralization of thiocarbonylthio compounds using trialkylborane and oxygen: application to their removal from RAFT-synthesized polymers. ACS Macro Lett. 2019, 8, 664−669. doi: 10.1021/acsmacrolett.9b00357

    23. [23]

      Chapman, R.; Gormley, A. J.; Stenzel, M. H.; Stevens, M. M. Combinatorial low-volume synthesis of well-defined polymers by enzyme degassing. Angew. Chem. Int. Ed. 2016, 55, 4500−4503. doi: 10.1002/anie.201600112

    24. [24]

      Liu, Z.; Lv, Y.; An, Z. Enzymatic cascade catalysis for the synthesis of multiblock and ultrahigh-molecular-weight polymers with oxygen tolerance. Angew. Chem. Int. Ed. 2017, 56, 13852−13856. doi: 10.1002/anie.201707993

    25. [25]

      Enciso, A. E.; Fu, L.; Russell, A. J.; Matyjaszewski, K. J.; Matyjaszewski, K. A breathing atom-transfer radical polymerization: fully oxygen-tolerant polymerization inspired by aerobic respiration of cells. Angew. Chem. Int. Ed. 2018, 57, 933−936.

    26. [26]

      Oytun, F.; Kahveci, M. U.; Yagci, Y. Sugar overcomes oxygen inhibition in photoinitiated free radical polymerization. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 1658−1689. doi: 10.1002/pola.26554

    27. [27]

      Yeow, J.; Chapman, R.; Gormley, A. J.; Boyer, C. Up in the air: oxygen tolerance in controlled/living radical polymerization. Chem. Soc. Rev. 2018, 47, 4357−4387. doi: 10.1039/C7CS00587C

    28. [28]

      Liarou, E.; Whitfield, R.; Anastasaki, A.; Engelis, N. G.; Jones, G. R.; Velonia, K.; Haddleton, D. M. Copper-mediated polymerization without external deoxygenation or oxygen scavengers. Angew. Chem. Int. Ed. 2018, 57, 8998−9002. doi: 10.1002/anie.201804205

    29. [29]

      Rolland, M.; Whitfield, R.; Messmer, D.; Parkatzidis, K.; Truong, N. P.; Anastasaki, A. Effect of polymerization components on oxygen-tolerant photo-ATRP. ACS Macro Lett. 2019, 8, 1546−1551. doi: 10.1021/acsmacrolett.9b00855

    30. [30]

      Liarou, E.; Anastasaki, A.; Whitfield, R.; Lacono, C. E.; Patias, G.; Engelis, N. G.; Marathianos, A.; Jones, G. R.; Haddleton, D. M. Ultra-low volume oxygen tolerant photoinduced Cu-RDRP. Polym. Chem. 2019, 10, 963−971. doi: 10.1039/C8PY01720D

    31. [31]

      Lv, C.; He, C.; Pan, X. Oxygen-initiated and regulated controlled radical polymerization under ambient conditions. Angew. Chem. Int. Ed. 2018, 57, 9430−9433.

    32. [32]

      Lv, C.; Du, Y.; Pan, X. Alkylboranes in conventional and controlled radical polymerization. J. Polym. Sci. 2020, 58, 14−19. doi: 10.1002/pola.29477

    33. [33]

      Wilson, O. R.; Magenau, A. J. D. Oxygen tolerant and room temperature RAFT through alkylborane initiation. ACS Macro Lett. 2018, 7, 370−375. doi: 10.1021/acsmacrolett.8b00076

    34. [34]

      Leibfarth, F. A.; Mattson, K. M.; Fors, B. P.; Collins, H. A.; Hawker, C. J. External regulation of controlled polymerizations. Angew. Chem. Int. Ed. 2013, 52, 199−210. doi: 10.1002/anie.201206476

    35. [35]

      Teator, A. J.; Lastovickova, D. N.; Bielawski, C. W. Switchable polymerization catalysts. Chem. Rev. 2016, 116, 1969−1992. doi: 10.1021/acs.chemrev.5b00426

    36. [36]

      Curran, D. P.; McFadden, T. R. Understanding initiation with triethylboron and oxygen: the differences between low-oxygen and high-oxygen regimes. J. Am. Chem. Soc. 2016, 138, 7741−7752. doi: 10.1021/jacs.6b04014

    37. [37]

      Ollivier, C.; Renaud, P. Organoboranes as a source of radicals. Chem. Rev. 2001, 101, 3415−3434. doi: 10.1021/cr010001p

    38. [38]

      Jin, J.; Newcomb, M. Rate constants for reactions of alkyl radicals with water and methanol complexes of triethylborane. J. Org. Chem. 2007, 72, 5098−5103. doi: 10.1021/jo070336s

    39. [39]

      Medeiros, M. R.; Schacherer, L. N.; Spiegel, D. A.; Wood, J. L. Expanding the scope of trialkylborane/water-mediated radical reactions. Org. Lett. 2007, 9, 4427−4429. doi: 10.1021/ol7016609

  • 加载中
    1. [1]

      Li-bin BaiKun ZhaoYong-gang WuWen-liang LiSu-juan WangHai-jun WangXin-wu BaHong-chi Zhao . A New Method for Synthesizing Hyperbranched Polymers with Reductive Groups Using Redox/RAFT/SCVP. Chinese J. Polym. Sci, 2014, 32(4): 385-394. doi: 10.1007/s10118-014-1418-9

    2. [2]

      Jian JiangWei YanLing-yan LiuWei-xing ChangJing Li . Morphological Studies on Sn-O Coordination Driving Self-assembly of Well-defined Organotin-containing Block Copolymers. Chinese J. Polym. Sci, 2014, 32(12): 1655-1665. doi: 10.1007/s10118-014-1546-2

    3. [3]

      Di-zheng LiuWei-lin SunRong RenYan-hua WangZhi-quan Shen . Synthesis of Poly[6-(2, 6-bis(1'-methylbenzimidazolyl)pyridin-4-yloxy)hexyl acrylate] (PBIP) and Magnetic Property of Its Neodymium Complex (PBIP-Nd3+). Chinese J. Polym. Sci, 2016, 34(7): 910-918. doi: 10.1007/s10118-016-1804-6

    4. [4]

      Jing-jing WangXin-song Li . IMPROVED OXYGEN PERMEABILITY AND MECHANICAL STRENGTH OF SILICONE HYDROGELS WITH INTERPENETRATING NETWORK STRUCTURE. Chinese J. Polym. Sci, 2010, 28(6): 849-857. doi: 10.1007/s10118-010-9142-6

    5. [5]


    6. [6]


    7. [7]


    8. [8]

      Quan-long LiLei LiHong-song WangRui WangWei WangYong-jing JiangQian TianJia-ping Liu . The Doubly Thermo-responsive Triblock Copolymer Nanoparticles Prepared through Seeded RAFT Polymerization. Chinese J. Polym. Sci, 2017, 35(1): 66-77. doi: 10.1007/s10118-016-1859-4

    9. [9]

      Na-er GuangShou-xin LiuXuan LiLei TianHong-guang Mao . Micellization and Gelation of the Double Thermoresponsive ABC-type Triblock Copolymer Synthesized by RAFT. Chinese J. Polym. Sci, 2016, 34(8): 965-980. doi: 10.1007/s10118-016-1817-1

    10. [10]

      Yan XinHong WangBo-wen LiuJin-ying Yuan . Synthesis and MALDI-TOF Characterization of -CD Core ATRP Initiators and RAFT Chain Transfers with Different Degrees of Substitution. Chinese J. Polym. Sci, 2015, 33(1): 36-48. doi: 10.1007/s10118-015-1572-8

    11. [11]

      Jun LiangGuo-rong ShanPeng-ju Pan . Aqueous RAFT Polymerization of Acrylamide: A Convenient Method for Polyacrylamide with Narrow Molecular Weight Distribution. Chinese J. Polym. Sci, 2017, 35(1): 123-129. doi: 10.1007/s10118-017-1874-0

    12. [12]

      Liu-Qiao ZhangYang GaoZhi-Hao HuangWei ZhangNian-Chen ZhouZheng-Biao ZhangXiu-Lin Zhu . Controllably Growing Topologies in One-shot RAFT Polymerization via Macro-latent Monomer Strategy. Chinese J. Polym. Sci, 2021, 39(1): 60-69. doi: 10.1007/s10118-020-2463-1

    13. [13]

      Bao-qing ShentuZhi-xue WengHiroyuki Nishide . SYNTHESIS OF POLY(3,4-AZOPYRIDYLENE) AND OXYGEN-BINDING AFFINITY OF ITS COMPLEX WITH COBALTPORPHYRIN. Chinese J. Polym. Sci, 2005, 23(4): 417-422.

    14. [14]

      Ran-Long DuanYan-Chuan ZhouZhi-Qiang SunYue-Zhou HuangXuan PangXue-Si Chen . The Effect of Oxygen to Salen-Co Complexes for the Copolymerization of PO/CO2. Chinese J. Polym. Sci, 2020, 38(10): 1124-1130. doi: 10.1007/s10118-020-2451-5

    15. [15]

      Wei-Bin CaiDong-Dong LiuYing ChenLi ZhangJian-Bo Tan . Enzyme-assisted Photoinitiated Polymerization-induced Self-assembly in Continuous Flow Reactors with Oxygen Tolerance. Chinese J. Polym. Sci, 2020, 38(): 1-11. doi: 10.1007/s10118-021-2533-z

    16. [16]

      Min GaoBing-jun LiuLong-cheng GaoPeng-gang YinLei Jiang . ARK-MIMETIC LAYER-BY-LAYER ASSEMBLED MONTMORILLONITE/POLY(p-AMINOSTYRENE) FLEXIBLE NANOCOMPOSITES SHIELDING ATOMIC OXYGEN EROSION. Chinese J. Polym. Sci, 2013, 31(1): 83-87. doi: 10.1007/s10118-013-1213-z

Article Metrics
  • PDF Downloads(58)
  • Abstract views(880)
  • HTML views(230)
  • Cited By(0)

通讯作者: 陈斌,
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索


DownLoad:  Full-Size Img  PowerPoint