Citation: Hu, X. L.; Li, H. G.; Tan, B. E. COFs-based porous materials for photocatalytic applications. Chinese J. Polym. Sci. 2020, 38, 673–684 doi: 10.1007/s10118-020-2394-x shu

COFs-based Porous Materials for Photocatalytic Applications

Figures(4) / Tables(3)

  • Covalent organic frameworks (COFs) are an emerging class of photoactive materials, solely composed of light elements. Their ordered structure, crystallinity, and high porosity led to enormous worldwide attention in many research fields. The extensive π-electron conjugation, light-harvesting and charge transport characteristics make them a fascinating polymer for photocatalytic systems. Versatile selection of building blocks and innumerable synthetic methodologies enable them to be a robust platform for solar energy production. In this mini-review, we summarized recent progress and challenges of the design, construction, and applications of COFs-based photocatalysts, and also presented some perspectives on challenges.
  • 加载中
    1. [1]

      Barber, J. Photosynthetic energy conversion: natural and artificial. Chem. Soc. Rev. 2009, 38, 185−196. doi: 10.1039/B802262N

    2. [2]

      Lewis, N. S. Toward cost-effective solar energy use. Science 2007, 315, 798−801. doi: 10.1126/science.1137014

    3. [3]

      Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338−344. doi: 10.1038/35104607

    4. [4]

      Wang, Z.; Li, C.; Domen, K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem. Soc. Rev. 2019, 48, 2109−2125. doi: 10.1039/C8CS00542G

    5. [5]

      Fu, J.; Yu, J.; Jiang, C.; Cheng, B. g-C3N4-based heterostructured photocatalysts. Adv. Energy Mater. 2018, 8, 1701503. doi: 10.1002/aenm.201701503

    6. [6]

      Slater, A. G.; Cooper, A. I. Porous materials. Function-led design of new porous materials. Science 2015, 348, aaa8075. doi: 10.1126/science.aaa8075

    7. [7]

      Wan, S.; Guo, J.; Kim, J.; Ihee, H.; Jiang, D. A belt-shaped, blue luminescent, and semiconducting covalent organic framework. Angew. Chem. Int. Ed. 2008, 47, 8826−8830. doi: 10.1002/anie.200803826

    8. [8]

      Bertrand, G. H. V.; Michaelis, V. K.; Ong, T. C.; Griffin, R. G.; Dincă, M. Thiophene-based covalent organic frameworks. Proc. Natl. Acad. Sci. 2013, 110, 4923−4928. doi: 10.1073/pnas.1221824110

    9. [9]

      Sprick, R. S.; Jiang, J. X.; Bonillo, B.; Ren, S.; Ratvijitvech, T.; Guiglion, P.; Zwijnenburg, M. A.; Adams, D. J.; Cooper, A. I. Tunable organic photocatalysts for visible-light-driven hydrogen evolution. J. Am. Chem. Soc. 2015, 137, 3265−3270. doi: 10.1021/ja511552k

    10. [10]

      Diercks, C. S.; Yaghi, O. M. The atom, the molecule, and the covalent organic framework. Science 2017, 355, eaal1585. doi: 10.1126/science.aal1585

    11. [11]

      Dawson, R.; Cooper, A. I.; Adams, D. J. Nanoporous organic polymer networks. Prog. Polym. Sci. 2012, 37, 530−563. doi: 10.1016/j.progpolymsci.2011.09.002

    12. [12]

      Lohse, M. S.; Bein, T. Covalent organic frameworks: structures, synthesis, and applications. Adv. Funct. Mater. 2018, 28, 1705553. doi: 10.1002/adfm.201705553

    13. [13]

      Waller, P. J.; Gandara, F.; Yaghi, O. M. Chemistry of covalent organic frameworks. Acc. Chem. Res. 2015, 48, 3053−3063. doi: 10.1021/acs.accounts.5b00369

    14. [14]

      Yang, L. M.; Dornfeld, M.; Hui, P. M.; Frauenheim, T.; Ganz, E. Ten new predicted covalent organic frameworks with strong optical response in the visible and near infrared. J. Chem. Phys. 2015, 142, 244706. doi: 10.1063/1.4923081

    15. [15]

      Wang, P.; Jiang, X.; Zhao, J. Bottom-up design of 2D organic photocatalysts for visible-light driven hydrogen evolution. J. Phys. Condes. Matter 2016, 28, 034004. doi: 10.1088/0953-8984/28/3/034004

    16. [16]

      Chen, K.; Yang, L.; Wu, Z.; Chen, C.; Jiang, J.; Zhang, G. A computational study on the tunability of woven covalent organic frameworks for photocatalysis. Phys. Chem. Chem. Phys. 2019, 21, 546−553. doi: 10.1039/C8CP04373F

    17. [17]

      Pakhira, S.; Mendoza-Cortes, J. L. Intercalation of first row transition metals inside covalent-organic frameworks (COFs): a strategy to fine tune the electronic properties of porous crystalline materials. Phys. Chem. Chem. Phys. 2019, 21, 8785−8796. doi: 10.1039/C8CP07396A

    18. [18]

      Sakaushi, K.; Antonietti, M. Carbon- and nitrogen-based organic frameworks. Acc. Chem. Res. 2015, 48, 1591−1600. doi: 10.1021/acs.accounts.5b00010

    19. [19]

      Vyas, V. S.; Lau, V. W. H.; Lotsch, B. V. Soft photocatalysis: organic polymers for solar fuel productions. Chem. Mater. 2016, 28, 5191−5204. doi: 10.1021/acs.chemmater.6b01894

    20. [20]

      Zhang, G.; Lan, Z. A.; Wang, X. Conjugated polymers: catalysts for photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 2016, 55, 15712−15727. doi: 10.1002/anie.201607375

    21. [21]

      Zhang, Y.; Jin, S. Recent advancements in the synthesis of covalent triazine frameworks for energy and environmental applications. Polymers 2018, 11, 31. doi: 10.3390/polym11010031

    22. [22]

      Ball, B.; Chakravarty, C.; Mandal, B.; Sarkar, P. Computational investigation on the electronic structure and functionalities of a thiophene-based covalent triazine framework. ACS Omega 2019, 4, 3556−3564. doi: 10.1021/acsomega.8b03488

    23. [23]

      Song, Y.; Sun, Q.; Aguila, B.; Ma, S. Opportunities of covalent organic frameworks for advanced applications. Adv. Sci. 2019, 6, 1801410. doi: 10.1002/advs.201801410

    24. [24]

      Gan, S.; Tong, X.; Zhang, Y.; Wu, J.; Hu, Y.; Yuan, A. Covalent organic framework-supported molecularly dispersed near-infrared dyes boost immunogenic phototherapy against tumors. Adv. Funct. Mater. 2019, 29, 1902757. doi: 10.1002/adfm.201902757

    25. [25]

      Wei, P. F.; Qi, M. Z.; Wang, Z. P.; Ding, S. Y.; Yu, W.; Liu, Q.; Wang, L. K.; Wang, H. Z.; An, W. K.; Wang, W. Benzoxazole-linked ultrastable covalent organic frameworks for photocatalysis. J. Am. Chem. Soc. 2018, 140, 4623−4631. doi: 10.1021/jacs.8b00571

    26. [26]

      Stegbauer, L.; Schwinghammer, K.; Lotsch, B. V. A hydrazone-based covalent organic framework for photocatalytic hydrogen production. Chem. Sci. 2014, 5, 2789−2793. doi: 10.1039/C4SC00016A

    27. [27]

      Vyas, V. S.; Haase, F.; Stegbauer, L.; Savasci, G.; Podjaski, F.; Ochsenfeld, C.; Lotsch, B. V. A tunable azine covalent organic framework platform for visible light-induced hydrogen generation. Nat. Commun. 2015, 6, 8508. doi: 10.1038/ncomms9508

    28. [28]

      Wang, X.; Chen, L.; Chong, S. Y.; Little, M. A.; Wu, Y.; Zhu, W. H.; Clowes, R.; Yan, Y.; Zwijnenburg, M. A.; Sprick, R. S.; Cooper, A. I. Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water. Nat. Chem. 2018, 10, 1180−1189. doi: 10.1038/s41557-018-0141-5

    29. [29]

      Chen, J.; Tao, X.; Tao, L.; Li, H.; Li, C.; Wang, X.; Li, C.; Li, R.; Yang, Q. Novel conjugated organic polymers as candidates for visible-light-driven photocatalytic hydrogen production. Appl. Catal. B: Environ. 2019, 241, 461−470. doi: 10.1016/j.apcatb.2018.09.011

    30. [30]

      Sheng, J. L.; Dong, H.; Meng, X. B.; Tang, H. L.; Yao, Y. H.; Liu, D. Q.; Bai, L. L.; Zhang, F. M.; Wei, J. Z.; Sun, X. J. Effect of different functional groups on photocatalytic hydrogen evolution in covalent-organic frameworks. ChemCatChem 2019, 11, 2313−2319. doi: 10.1002/cctc.201900058

    31. [31]

      Ding, S. Y.; Wang, P. L.; Yin, G. L.; Zhang, X.; Lu, G. Energy transfer in covalent organic frameworks for visible-light-induced hydrogen evolution. Int. J. Hydrogen Energy 2019, 44, 11872−11876. doi: 10.1016/j.ijhydene.2019.03.039

    32. [32]

      Pachfule, P.; Acharjya, A.; Roeser, J.; Langenhahn, T.; Schwarze, M.; Schomaecker, R.; Thomas, A.; Schmidt, J. Diacetylene functionalized covalent organic framework (COF) for photocatalytic hydrogen generation. J. Am. Chem. Soc. 2018, 140, 1423−1427. doi: 10.1021/jacs.7b11255

    33. [33]

      Hao, W.; Chen, D.; Li, Y.; Yang, Z.; Xing, G.; Li, J.; Chen, L. Facile synthesis of porphyrin based covalent organic frameworks via an A2B2 monomer for highly efficient heterogeneous catalysis. Chem. Mater. 2019, 31, 8100−8105. doi: 10.1021/acs.chemmater.9b02718

    34. [34]

      Yan, X.; Liu, H.; Li, Y.; Chen, W.; Zhang, T.; Zhao, Z.; Xing, G.; Chen, L. Ultrastable covalent organic frameworks via self-polycondensation of an A2B2 monomer for heterogeneous photocatalysis. Macromolecules 2019, 52, 7977−7983. doi: 10.1021/acs.macromol.9b01600

    35. [35]

      Jin, E.; Lan, Z.; Jiang, Q.; Geng, K.; Li, G.; Wang, X.; Jiang, D. 2D sp2 carbon-conjugated covalent organic frameworks for photocatalytic hydrogen production from water. Chem 2019, 5, 1632−1647. doi: 10.1016/j.chempr.2019.04.015

    36. [36]

      Bi, S.; Yang, C.; Zhang, W.; Xu, J.; Liu, L.; Wu, D.; Wang, X.; Han, Y.; Liang, Q.; Zhang, F. Two-dimensional semiconducting covalent organic frameworks via condensation at arylmethyl carbon atoms. Nat. Commun. 2019, 10, 2467. doi: 10.1038/s41467-019-10504-6

    37. [37]

      Wei, S.; Zhang, F.; Zhang, W.; Qiang, P.; Yu, K.; Fu, X.; Wu, D.; Bi, S.; Zhang, F. Semiconducting 2D triazine-cored covalent organic frameworks with unsubstituted olefin linkages. J. Am. Chem. Soc. 2019, 141, 14272−14279. doi: 10.1021/jacs.9b06219

    38. [38]

      Kuhn, P.; Antonietti, M.; Thomas, A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem. Int. Ed. 2008, 47, 3450−3453. doi: 10.1002/anie.200705710

    39. [39]

      Niu, F.; Tao, L.; Deng, Y.; Gao, H.; Liu, J.; Song, W. A covalent triazine framework as an efficient catalyst for photodegradation of methylene blue under visible light illumination. New J. Chem. 2014, 38, 5695−5699. doi: 10.1039/C4NJ01534G

    40. [40]

      Schwinghammer, K.; Hug, S.; Mesch, M. B.; Senker, J.; Lotsch, B. V. Phenyl-triazine oligomers for light-driven hydrogen evolution. Energy Environ. Sci. 2015, 8, 3345−3353. doi: 10.1039/C5EE02574E

    41. [41]

      Bi, J.; Fang, W.; Li, L.; Wang, J.; Liang, S.; He, Y.; Liu, M.; Wu, L. Covalent triazine-based frameworks as visible light photocatalysts for the splitting of water. Macromol. Rapid Commun. 2015, 36, 1799−1805. doi: 10.1002/marc.201500270

    42. [42]

      Li, L.; Fang, W.; Zhang, P.; Bi, J.; He, Y.; Wang, J.; Su, W. Sulfur-doped covalent triazine-based frameworks for enhanced photocatalytic hydrogen evolution from water under visible light. J. Mater. Chem. A 2016, 4, 12402−12406. doi: 10.1039/C6TA04711D

    43. [43]

      Huang, W.; Ma, B. C.; Lu, H.; Li, R.; Wang, L.; Landfester, K.; Zhang, K. A. I. Visible-light-promoted selective oxidation of alcohols using a covalent triazine framework. ACS Catal. 2017, 7, 5438−5442. doi: 10.1021/acscatal.7b01719

    44. [44]

      Wang, K.; Yang, L. M.; Wang, X.; Guo, L.; Cheng, G.; Zhang, C.; Jin, S.; Tan, B.; Cooper, A. Covalent triazine frameworks via a low-temperature polycondensation approach. Angew. Chem. Int. Ed. 2017, 56, 14149−14153. doi: 10.1002/anie.201708548

    45. [45]

      Liu, M.; Huang, Q.; Wang, S.; Li, Z.; Li, B.; Jin, S.; Tan, B. Crystalline covalent triazine frameworks by in situ oxidation of alcohols to aldehyde monomers. Angew. Chem. Int. Ed. 2018, 57, 11968−11972. doi: 10.1002/anie.201806664

    46. [46]

      Liu, M.; Jiang, K.; Ding, X.; Wang, S.; Zhang, C.; Liu, J.; Zhan, Z.; Cheng, G.; Li, B.; Chen, H.; Jin, S.; Tan, B. Controlling monomer feeding rate to achieve highly crystalline covalent triazine frameworks. Adv. Mater. 2019, 31, 1807865. doi: 10.1002/adma.201807865

    47. [47]

      Liras, M.; Barawi, M.; O'Shea, V. A. D . Hybrid materials based on conjugated polymers and inorganic semiconductors as photocatalysts: from environmental to energy applications. Chem. Soc. Rev. 2019, 48, 5454−5487. doi: 10.1039/C9CS00377K

    48. [48]

      Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev. 2016, 116, 7159−329. doi: 10.1021/acs.chemrev.6b00075

    49. [49]

      Banerjee, T.; Haase, F.; Savasci, G.; Gottschling, K.; Ochsenfeld, C.; Lotsch, B. V. Single-site photocatalytic H2 evolution from covalent organic frameworks with molecular cobaloxime co-catalysts. J. Am. Chem. Soc. 2017, 139, 16228−16234. doi: 10.1021/jacs.7b07489

    50. [50]

      Haase, F.; Banerjee, T.; Savasci, G.; Ochsenfeld, C.; Lotsch, B. V. Structure-property-activity relationships in a pyridine containing azine-linked covalent organic framework for photocatalytic hydrogen evolution. Faraday Discuss. 2017, 201, 247−264. doi: 10.1039/C7FD00051K

    51. [51]

      Banerjee, T.; Gottschling, K.; Savasci, G.; Ochsenfeld, C.; Lotsch, B. V. H2 evolution with covalent organic framework photocatalysts. ACS Energy Lett. 2018, 3, 400−409. doi: 10.1021/acsenergylett.7b01123

    52. [52]

      Stegbauer, L.; Zech, S.; Savasci, G.; Banerjee, T.; Podjaski, F.; Schwinghammer, K.; Ochsenfeld, C.; Lotsch, B. V. Tailor-made photoconductive pyrene-based covalent organic frameworks for visible-light driven hydrogen generation. Adv. Energy Mater. 2018, 8, 1703278. doi: 10.1002/aenm.201703278

    53. [53]

      Thote, J.; Aiyappa, H. B.; Deshpande, A.; Díaz, D. D.; Kurungot, S.; Banerjee, R. A covalent organic framework-cadmium sulfide hybrid as a prototype photocatalyst for visible-light-driven hydrogen production. Chem. Eur. J. 2014, 20, 15961−15965. doi: 10.1002/chem.201403800

    54. [54]

      Chen, J.; Tao, X.; Li, C.; Ma, Y.; Tao, L.; Zheng, D.; Zhu, J.; Li, H.; Li, R.; Yang, Q. Synthesis of bipyridine-based covalent organic frameworks for visible-light-driven photocatalytic water oxidation. Appl. Catal. B: Environ. 2020, 262, 118271. doi: 10.1016/j.apcatb.2019.118271

    55. [55]

      Zhang, F. M.; Sheng, J. L.; Yang, Z. D.; Sun, X. J.; Tang, H. L.; Lu, M.; Dong, H.; Shen, F. C.; Liu, J.; Lan, Y. Q. Rational design of MOF/COF hybrid materials for photocatalytic H2 evolution in the presence of sacrificial electron donors. Angew. Chem. Int. Ed. 2018, 57, 12106−12110. doi: 10.1002/anie.201806862

    56. [56]

      Ming, J.; Liu, A.; Zhao, J.; Zhang, P.; Huang, H.; Lin, H.; Xu, Z.; Zhang, X.; Wang, X.; Hofkens, J.; Roeffaers, M. B. J.; Long, J. Hot π-electron tunneling of metal-insulator-COF nanostructures for efficient hydrogen production. Angew. Chem. Int. Ed. 2019, 58, 1−6. doi: 10.1002/anie.201813481

    57. [57]

      Cheng, Y. J.; Wang, R.; Wang, S.; Xi, X. J.; Ma, L. F.; Zang, S. Q. Encapsulating [Mo3S13]2− clusters in cationic covalent organic frameworks: enhancing stability and recyclability by converting a homogeneous photocatalyst to a heterogeneous photocatalyst. Chem. Commun. 2018, 54, 13563−13566. doi: 10.1039/C8CC07784C

    58. [58]

      Biswal, B. P.; Vignolo-González, H. A.; Banerjee, T.; Grunenberg, L.; Savasci, G.; Gottschling, K.; Nuss, J.; Ochsenfeld, C.; Lotsch, B. V. Sustained solar H2 evolution from a thiazolo[5,4-d]thiazole-bridged covalent organic framework and nickel-thiolate cluster in water. J. Am. Chem. Soc. 2019, 141, 11082−11092. doi: 10.1021/jacs.9b03243

    59. [59]

      Gao, M. Y.; Li, C. C.; Tang, H. L.; Sun, X. J.; Dong, H.; Zhang, F. M. Boosting visible-light-driven hydrogen evolution of covalent organic frameworks through compositing with MoS2: a promising candidate for noble-metal-free photocatalysts. J. Mater. Chem. A 2019, 7, 20193−20200. doi: 10.1039/C9TA07319A

    60. [60]

      Li, L.; Zhou, Z.; Li, L.; Zhuang, Z.; Bi, J.; Chen, J.; Yu, Y.; Yu, J. Thioether-functionalized 2D covalent organic framework featuring specific affinity to Au for photocatalytic hydrogen production from seawater. ACS Sustain. Chem. Eng. 2019, 7, 18574−18581. doi: 10.1021/acssuschemeng.9b04749

    61. [61]

      Liu, M.; Guo, L.; Jin, S.; Tan, B. Covalent triazine frameworks: synthesis and applications. J. Mater. Chem. A 2019, 7, 5153−5172. doi: 10.1039/C8TA12442F

    62. [62]

      Xu, C.; Zhang, W.; Tang, J.; Pan, C.; Yu, G. Porous organic polymers: an emerged platform for photocatalytic water splitting. Front. Chem. 2018, 6, 592. doi: 10.3389/fchem.2018.00592

    63. [63]

      Meier, C. B.; Sprick, R. S.; Monti, A.; Guiglion, P.; Lee, J. S. M.; Zwijnenburg, M. A.; Cooper, A. I. Structure-property relationships for covalent triazine-based frameworks: the effect of spacer length on photocatalytic hydrogen evolution from water. Polymer 2017, 126, 283−290. doi: 10.1016/j.polymer.2017.04.017

    64. [64]

      Lin, L.; Wang, C.; Ren, W.; Ou, H.; Zhang, Y.; Wang, X. Photocatalytic overall water splitting by conjugated semiconductors with crystalline poly(triazine imide) frameworks. Chem. Sci. 2017, 8, 5506−5511. doi: 10.1039/C7SC00900C

    65. [65]

      Kuecken, S.; Acharjya, A.; Zhi, L.; Schwarze, M.; Schomaecker, R.; Thomas, A. Fast tuning of covalent triazine frameworks for photocatalytic hydrogen evolution. Chem. Commun. 2017, 53, 5854−5857. doi: 10.1039/C7CC01827D

    66. [66]

      Guiglion, P.; Butchosa, C.; Zwijnenburg, M. A. Polymer photocatalysts for water splitting: insights from computational modeling. Macromol. Chem. Phys. 2016, 217, 344−353. doi: 10.1002/macp.201500432

    67. [67]

      Jiang, X.; Wang, P.; Zhao, J. 2D covalent triazine framework: a new class of organic photocatalyst for water splitting. J. Mater. Chem. A 2015, 3, 7750−7758. doi: 10.1039/C4TA03438D

    68. [68]

      Lan, Z. A.; Fang, Y.; Chen, X.; Wang, X. Thermal annealing-induced structural reorganization in polymeric photocatalysts for enhanced hydrogen evolution. Chem. Commun. 2019, 55, 7756−7759. doi: 10.1039/C9CC02966D

    69. [69]

      Guo, L.; Niu, Y.; Razzaque, S.; Tan, B.; Jin, S. Design of D-A1-A2 covalent triazine frameworks via copolymerization for photocatalytic hydrogen evolution. ACS Catal. 2019, 9, 9438−9445. doi: 10.1021/acscatal.9b01951

    70. [70]

      Wang, N.; Cheng, G.; Guo, L.; Tan, B.; Jin, S. Hollow covalent triazine frameworks with variable shell thickness and morphology. Adv. Funct. Mater. 2019, 29, 1904781. doi: 10.1002/adfm.201904781

    71. [71]

      Cheng, Z.; Fang, W.; Zhao, T.; Fang, S.; Bi, J.; Liang, S.; Li, L.; Yu, Y.; Wu, L. Efficient visible-light-driven photocatalytic hydrogen evolution on phosphorus-doped covalent triazine-based frameworks. ACS Appl. Mater. Interfaces 2018, 10, 41415−41421. doi: 10.1021/acsami.8b16013

    72. [72]

      Guo, L.; Niu, Y.; Xu, H.; Li, Q.; Razzaque, S.; Huang, Q.; Jin, S.; Tan, B. Engineering heteroatoms with atomic precision in donor-acceptor covalent triazine frameworks to boost photocatalytic hydrogen production. J. Mater. Chem. A 2018, 6, 19775−19781. doi: 10.1039/C8TA07391K

    73. [73]

      Wang, D.; Li, X.; Zheng, L. L.; Qin, L. M.; Li, S.; Ye, P.; Li, Y.; Zou, J. P. Size-controlled synthesis of CdS nanoparticles confined on covalent triazine-based frameworks for durable photocatalytic hydrogen evolution under visible light. Nanoscale 2018, 10, 19509−19516. doi: 10.1039/C8NR06691D

    74. [74]

      Zhou, G.; Zheng, L. L.; Wang, D.; Xing, Q. J.; Li, F.; Ye, P.; Xiao, X.; Li, Y.; Zou, J. P. A general strategy via chemically covalent combination for constructing heterostructured catalysts with enhanced photocatalytic hydrogen evolution. Chem. Commun. 2019, 55, 4150−4153. doi: 10.1039/C9CC01161G

    75. [75]

      Jiang, Q.; Sun, L.; Bi, J.; Liang, S.; Li, L.; Yu, Y.; Wu, L. MoS2 quantum dots-modified covalent triazine-based frameworks for enhanced photocatalytic hydrogen evolution. ChemSusChem 2018, 11, 1108−1113. doi: 10.1002/cssc.201702220

    76. [76]

      Li, F.; Wang, D.; Xing, Q. J.; Zhou, G.; Liu, S. S.; Li, Y.; Zheng, L. L.; Ye, P.; Zou, J. P. Design and syntheses of MOF/COF hybrid materials via postsynthetic covalent modification: an efficient strategy to boost the visible-light-driven photocatalytic performance. Appl. Catal. B: Environ. 2019, 243, 621−628. doi: 10.1016/j.apcatb.2018.10.043

    77. [77]

      Huang, W.; He, Q.; Hu, Y.; Li, Y. Molecular heterostructures of covalent triazine frameworks for highly enhanced photocatalytic hydrogen production. Angew. Chem. Int. Ed. 2019, 58, 8676−8680. doi: 10.1002/anie.201900046

    78. [78]

      Lan, Z. A.; Fang, Y.; Zhang, Y.; Wang, X. Photocatalytic oxygen evolution from functional triazine-based polymers with tunable band structures. Angew. Chem. Int. Ed. 2018, 57, 470−474. doi: 10.1002/anie.201711155

    79. [79]

      Xie, J.; Shevlin, S. A.; Ruan, Q.; Moniz, S. J. A.; Liu, Y.; Liu, X.; Li, Y.; Lau, C. C.; Guo, Z. X.; Tang, J. Efficient visible light-driven water oxidation and proton reduction by an ordered covalent triazine-based framework. Energy Environ. Sci. 2018, 11, 1617−1624. doi: 10.1039/C7EE02981K

    80. [80]

      Fresno, F.; Villar-García, I. J.; Collado, L.; Alfonso-González, E.; Reñones, P.; Barawi, M.; de la Peña O’Shea, V. A. Mechanistic view of the main current issues in photocatalytic CO2 reduction. J. Phys. Chem. Lett. 2018, 9, 7192−7204. doi: 10.1021/acs.jpclett.8b02336

    81. [81]

      Wang, S.; Xu, M.; Peng, T.; Zhang, C.; Li, T.; Hussain, I.; Wang, J.; Tan, B. Porous hypercrosslinked polymer-TiO2-graphene composite photocatalysts for visible-light-driven CO2 conversion. Nat. Commun. 2019, 10, 676. doi: 10.1038/s41467-019-08651-x

    82. [82]

      Yang, S.; Hu, W.; Zhang, X.; He, P.; Pattengale, B.; Liu, C.; Cendejas, M.; Hermans, I.; Zhang, X.; Zhang, J.; Huang, J. 2D covalent organic frameworks as intrinsic photocatalysts for visible light-driven CO2 reduction. J. Am. Chem. Soc. 2018, 140, 14614−14618. doi: 10.1021/jacs.8b09705

    83. [83]

      Zhang, S.; Wang, S.; Guo, L.; Chen, H.; Tan, B.; Jin, S. An artificial photosynthesis system comprising a covalent triazine framework as an electron relay facilitator for photochemical carbon dioxide reduction. J. Mater. Chem. C 2020, 8, 192−200. doi: 10.1039/C9TC05297F

    84. [84]

      Lu, M.; Liu, J.; Li, Q.; Zhang, M.; Liu, M.; Wang, J. L.; Yuan, D. Q.; Lan, Y. Q. Rational design of crystalline covalent organic frameworks for efficient CO2 photoreduction with H2O. Angew. Chem. Int. Ed. 2019, 58, 12392−12397. doi: 10.1002/anie.201906890

    85. [85]

      Liu, W.; Li, X.; Wang, C.; Pan, H.; Liu, W.; Wang, K.; Zeng, Q.; Wang, R.; Jiang, J. A scalable general synthetic approach toward ultrathin imine-linked two-dimensional covalent organic framework nanosheets for photocatalytic CO2 reduction. J. Am. Chem. Soc. 2019, 141, 17431−17440. doi: 10.1021/jacs.9b09502

    86. [86]

      Lu, M.; Li, Q.; Liu, J.; Zhang, F. M.; Zhang, L.; Wang, J. L.; Kang, Z. H.; Lan, Y. Q. Installing earth-abundant metal active centers to covalent organic frameworks for efficient heterogeneous photocatalytic CO2 reduction. Appl. Catal. B: Environ. 2019, 254, 624−633. doi: 10.1016/j.apcatb.2019.05.033

    87. [87]

      Zhong, W.; Sa, R.; Li, L.; He, Y.; Li, L.; Bi, J.; Zhuang, Z.; Yu, Y.; Zou, Z. A covalent organic framework bearing single Ni sites as a synergistic photocatalyst for selective photoreduction of CO2 to CO. J. Am. Chem. Soc. 2019, 141, 7615−7621. doi: 10.1021/jacs.9b02997

    88. [88]

      Fu, Y.; Zhu, X.; Huang, L.; Zhang, X.; Zhang, F.; Zhu, W. Azine-based covalent organic frameworks as metal-free visible light photocatalysts for CO2 reduction with H2O. Appl. Catal., B 2018, 239, 46−51. doi: 10.1016/j.apcatb.2018.08.004

    89. [89]

      Fu, Z.; Wang, X.; Gardner, A.; Wang, X.; Chong, S. Y.; Neri, G.; Cowan, A. J.; Liu, L.; Li, X.; Vogel, A.; Clowes, R.; Bilton, M.; Chen, L.; Sprick, R. S.; Cooper, A. A stable covalent organic framework for photocatalytic carbon dioxide reduction. Chem. Sci. 2020, 11, 543−550. doi: 10.1039/C9SC03800K

    90. [90]

      Xu, R.; Wang, X. S.; Zhao, H.; Lin, H.; Huang, Y. B.; Cao, R. Rhenium-modified porous covalent triazine framework for highly efficient photocatalytic carbon dioxide reduction in a solid-gas system. Catal. Sci. Technol. 2018, 8, 2224−2230. doi: 10.1039/C8CY00176F

    91. [91]

      Romero, N. A.; Nicewicz, D. A. Organic photoredox catalysis. Chem. Rev. 2016, 116, 10075−10166. doi: 10.1021/acs.chemrev.6b00057

    92. [92]

      Liu, W.; Su, Q.; Ju, P.; Guo, B.; Zhou, H.; Li, G.; Wu, Q. A hydrazone-based covalent organic framework as an efficient and reusable photocatalyst for the cross-dehydrogenative coupling reaction of N-aryltetrahydroisoquinolines. ChemSusChem 2017, 10, 664−669. doi: 10.1002/cssc.201601702

    93. [93]

      Zhi, Y.; Li, Z.; Feng, X.; Xia, H.; Zhang, Y.; Shi, Z.; Mu, Y.; Liu, X. Covalent organic frameworks as metal-free heterogeneous photocatalysts for organic transformations. J. Mater. Chem. A 2017, 5, 22933−22938. doi: 10.1039/C7TA07691F

    94. [94]

      Sun, D.; Jang, S.; Yim, S. J.; Ye, L.; Kim, D. P. Metal doped core-shell metal-organic frameworks@covalent organic frameworks (MOFs@COFs) hybrids as a novel photocatalytic platform. Adv. Funct. Mater. 2018, 28, 1707110. doi: 10.1002/adfm.201707110

    95. [95]

      Chen, R.; Shi, J. L.; Lin, G.; Lang, X.; Wang, C.; Ma, Y. Designed synthesis of a 2D porphyrin-based sp2 carbon-conjugated covalent organic framework for heterogeneous photocatalysis. Angew. Chem. Int. Ed. 2019, 58, 6430−6434. doi: 10.1002/anie.201902543

    96. [96]

      Li, Z.; Zhi, Y.; Shao, P.; Xia, H.; Li, G.; Feng, X.; Chen, X.; Shi, Z.; Liu, X. Covalent organic framework as an efficient, metal-free, heterogeneous photocatalyst for organic transformations under visible light. Appl. Catal. B: Environ. 2019, 245, 334−342. doi: 10.1016/j.apcatb.2018.12.065

    97. [97]

      Liu, S.; Pan, W.; Wu, S.; Bu, X.; Xin, S.; Yu, J.; Xu, H.; Yang, X. Visible-light-induced tandem radical addition-cyclization of 2-aryl phenyl isocyanides catalysed by recyclable covalent organic frameworks. Green Chem. 2019, 21, 2905−2910. doi: 10.1039/C9GC00022D

    98. [98]

      Bhadra, M.; Kandambeth, S.; Sahoo, M. K.; Addicoat, M.; Balaraman, E.; Banerjee, R. Triazine functionalized porous covalent organic framework for photo-organocatalytic E-Z isomerization of olefins. J. Am. Chem. Soc. 2019, 141, 6152−6156. doi: 10.1021/jacs.9b01891

    99. [99]

      Zhao, Y.; Liu, H.; Wu, C.; Zhang, Z.; Pan, Q.; Hu, F.; Wang, R.; Li, P.; Huang, X.; Li, Z. Fully conjugated two-dimensional sp2-carbon covalent organic frameworks as artificial photosystem I with high efficiency. Angew. Chem. Int. Ed. 2019, 131, 5430−5435. doi: 10.1002/ange.201901194

    100. [100]

      Huang, W.; Byun, J.; Roerich, I.; Ramanan, C.; Blom, P. W. M.; Lu, H.; Wang, D.; da Silva, L. C.; Li, R.; Wang, L.; Landfester, K.; Zhang, K. A. I. Asymmetric covalent triazine framework for enhanced visible-light photoredox catalysis via energy transfer cascade. Angew. Chem. Int. Ed. 2018, 57, 8316−8320. doi: 10.1002/anie.201801112

    101. [101]

      Huang, W.; Wang, Z. J.; Ma, B. C.; Ghasimi, S.; Gehrig, D.; Laquai, F.; Landfester, K.; Zhang, K. A. I. Hollow nanoporous covalent triazine frameworks via acid vapor-assisted solid phase synthesis for enhanced visible light photoactivity. J. Mater. Chem. A 2016, 4, 7555−7559. doi: 10.1039/C6TA01828A

    102. [102]

      Pachfule, P.; Acharjya, A.; Roeser, J.; Sivasankaran, R. P.; Ye, M. Y.; Bruckner, A.; Schmidt, J.; Thomas, A. Donor-acceptor covalent organic frameworks for visible light induced free radical polymerization. Chem. Sci. 2019, 10, 8316−8322. doi: 10.1039/C9SC02601K

    103. [103]

      Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69−96. doi: 10.1021/cr00033a004

    104. [104]

      Pan, J.; Guo, L.; Zhang, S.; Wang, N.; Jin, S.; Tan, B. Embedding carbon nitride into a covalent organic framework with enhanced photocatalysis performance. Chem. Asian J. 2018, 13, 1674−1677. doi: 10.1002/asia.201800506

    105. [105]

      He, S.; Rong, Q.; Niu, H.; Cai, Y. Construction of a superior visible-light-driven photocatalyst based on a C3N4 active center-photoelectron shift platform-electron withdrawing unit triadic structure covalent organic framework. Chem. Commun. 2017, 53, 9636−9639. doi: 10.1039/C7CC04515H

    106. [106]

      Liu, T.; Hu, X.; Wang, Y.; Meng, L.; Zhou, Y.; Zhang, J.; Chen, M.; Zhang, X. Triazine-based covalent organic frameworks for photodynamic inactivation of bacteria as type-Ⅱ photosensitizers. J. Photochem. Photobiol. B: Biol. 2017, 175, 156−162. doi: 10.1016/j.jphotobiol.2017.07.013

    107. [107]

      He, S.; Yin, B.; Niu, H.; Cai, Y. Targeted synthesis of visible-light-driven covalent organic framework photocatalyst via molecular design and precise construction. Appl. Catal. B: Environ. 2018, 239, 147−153. doi: 10.1016/j.apcatb.2018.08.005

    108. [108]

      Chen, W.; Yang, Z.; Xie, Z.; Li, Y.; Yu, X.; Lu, F.; Chen, L. Benzothiadiazole functionalized D-A type covalent organic frameworks for effective photocatalytic reduction of aqueous chromium(VI). J. Mater. Chem. A 2019, 7, 998−1004. doi: 10.1039/C8TA10046B

    109. [109]

      Lv, H.; Zhao, X.; Niu, H.; He, S.; Tang, Z.; Wu, F.; Giesy, J. P. Ball milling synthesis of covalent organic framework as a highly active photocatalyst for degradation of organic contaminants. J. Hazard. Mater. 2019, 369, 494−502. doi: 10.1016/j.jhazmat.2019.02.046

    110. [110]

      Wang, R. L.; Li, D. P.; Wang, L. J.; Zhang, X.; Zhou, Z. Y.; Mu, J. L.; Su, Z. M. The preparation of new covalent organic framework embedded with silver nanoparticles and its applications in degradation of organic pollutants from waste water. Dalton Trans. 2019, 48, 1051−1059. doi: 10.1039/C8DT04458A

    111. [111]

      Hynek, J.; Zelenka, J.; Rathousky, J.; Kubat, P.; Ruml, T.; Demel, J.; Lang, K. Designing porphyrinic covalent organic frameworks for the photodynamic inactivation of bacteria. ACS Appl. Mater. Interfaces 2018, 10, 8527−8535. doi: 10.1021/acsami.7b19835

    112. [112]

      Peng, Y.; Zhao, M.; Chen, B.; Zhang, Z.; Huang, Y.; Dai, F.; Lai, Z.; Cui, X.; Tan, C.; Zhang, H. Hybridization of MOFs and COFs: a new strategy for construction of MOF@COF core-shell hybrid materials. Adv. Mater. 2018, 30, 1705454. doi: 10.1002/adma.201705454

    113. [113]

      He, S.; Rong, Q.; Niu, H.; Cai, Y. Platform for molecular-material dual regulation: a direct Z-scheme MOF/COF heterojunction with enhanced visible-light photocatalytic activity. Appl. Catal. B: Environ. 2019, 247, 49−56. doi: 10.1016/j.apcatb.2019.01.078

    114. [114]

      Zhu, S. R.; Qi, Q.; Fang, Y.; Zhao, W. N.; Wu, M. K.; Han, L. Covalent triazine framework modified BiOBr nanoflake with enhanced photocatalytic activity for antibiotic removal. Cryst. Growth Des. 2018, 18, 883−891. doi: 10.1021/acs.cgd.7b01367

    115. [115]

      Castano, A. P.; Mroz, P.; Hamblin, M. R. Photodynamic therapy and anti-tumour immunity. Nat. Rev. Cancer 2006, 6, 535−545. doi: 10.1038/nrc1894

    116. [116]

      Nagai, A.; Chen, X.; Feng, X.; Ding, X.; Guo, Z.; Jiang, D. A squaraine-linked mesoporous covalent organic framework. Angew. Chem. Int. Ed. 2013, 52, 3770−3774. doi: 10.1002/anie.201300256

    117. [117]

      Chen, X.; Addicoat, M.; Jin, E.; Zhai, L.; Xu, H.; Huang, N.; Guo, Z.; Liu, L.; Irle, S.; Jiang, D. Locking covalent organic frameworks with hydrogen bonds: general and remarkable effects on crystalline structure, physical properties, and photochemical activity. J. Am. Chem. Soc. 2015, 137, 3241−3247. doi: 10.1021/ja509602c

    118. [118]

      Lin, G.; Ding, H.; Chen, R.; Peng, Z.; Wang, B.; Wang, C. 3D porphyrin-based covalent organic frameworks. J. Am. Chem. Soc. 2017, 139, 8705−8709. doi: 10.1021/jacs.7b04141

    119. [119]

      Tan, J.; Namuangruk, S.; Kong, W.; Kungwan, N.; Guo, J.; Wang, C. Manipulation of amorphous-to-crystalline transformation: towards the construction of covalent organic framework hybrid microspheres with NIR photothermal conversion ability. Angew. Chem. Int. Ed. 2016, 128, 14185−14190. doi: 10.1002/ange.201606155

    120. [120]

      Hu, C.; Cai, L.; Liu, S.; Pang, M. Integration of a highly monodisperse covalent organic framework photosensitizer with cation exchange synthesized Ag2Se nanoparticles for enhanced phototherapy. Chem. Commun. 2019, 55, 9164−9167. doi: 10.1039/C9CC04668B

  • 加载中
    1. [1]

      Xin-Lei ZhangLei WangLiang ChenXiao-Yu MaHang-Xun Xu . Ultrathin 2D Conjugated Polymer Nanosheets for Solar Fuel Generation. Chinese J. Polym. Sci, 2019, 37(2): 101-114. doi: 10.1007/s10118-019-2171-x

    2. [2]

      Zhen LiHang-Yu ZhouFu-Lai ZhaoTian-Xiong WangXuesong DingBao-Hang HanWei Feng . Three-dimensional Covalent Organic Frameworks as Host Materials for Lithium-Sulfur Batteries. Chinese J. Polym. Sci, 2020, 38(5): 550-557. doi: 10.1007/s10118-020-2384-z

    3. [3]

      Wei ZhaoJia QiaoTian-Li NingXi-Kui Liu . Scalable Ambient Pressure Synthesis of Covalent Organic Frameworks and Their Colorimetric Nanocomposites through Dynamic Imine Exchange Reactions. Chinese J. Polym. Sci, 2018, 36(1): 1-7. doi: 10.1007/s10118-018-2010-5

    4. [4]

      Rashid IqbalAmir BadshahYing-Jie MaLin-Jie Zhi . An Electrochemically Stable 2D Covalent Organic Framework for High-performance Organic Supercapacitors. Chinese J. Polym. Sci, 2020, 38(5): 558-564. doi: 10.1007/s10118-020-2412-z

    5. [5]

      Shu-Yan JiangXin Zhao . Soluble Two-dimensional Supramolecular Organic Frameworks (SOFs): An Emerging Class of 2D Supramolecular Polymers with Internal Long-range Orders. Chinese J. Polym. Sci, 2019, 37(1): 1-10. doi: 10.1007/s10118-019-2189-0

    6. [6]

      Wei ZhaoTian-Pin WangJia-Li WuRu-Ping PanXiang-Yang LiuXi-Kui Liu . Monolithic Covalent Organic Framework Aerogels through Framework Crystallization Induced Self-assembly: Heading towards Framework Materials Synthesis over All Length Scales. Chinese J. Polym. Sci, 2019, 37(11): 1045-1052. doi: 10.1007/s10118-019-2313-1

    7. [7]

      Yi SunYong-Yuan RenQi LiRong-Wei ShiYin HuJiang-Na GuoZhe SunFeng Yan . Conductive, Stretchable, and Self-healing Ionic Gel Based on Dynamic Covalent Bonds and Electrostatic Interaction. Chinese J. Polym. Sci, 2019, 37(11): 1053-1059. doi: 10.1007/s10118-019-2325-x

    8. [8]

      Dong LiYang-ping WenJing-kun XuHao-hua HeMing Liu . AN AMPEROMETRIC BIOSENSOR BASED ON COVALENT IMMOBILIZATION OF ASCORBATE OXIDASE ON BIOCOMPATIABLE AND LOW-TOXIC POLY(THIOPHENE-3-ACETIC ACID) MATRIX. Chinese J. Polym. Sci, 2012, 30(5): 705-718. doi: 10.1007/s10118-012-1167-6

    9. [9]

      HUANG WeiyuanHUANG BingnanHu Changming . STUDY ON THE SYNTHESIS OF POLYPERFLUOROTRIAZINE——The Synthesis and Polymerization of a Novel α,ω-Diiodoperfluorooxaalkyl s-Triazine Monomer*. Chinese J. Polym. Sci, 1983, 1(1): 40-52.

    10. [10]


    11. [11]

      Mohsen HajibeygiKhalil FaghihiMajid Khodaei-TehraniZeinab Mirzakhanian . Thermally Stable and Organo-soluble Polyamides Containing Triazine Rings and Ether Linkages in the Main Chain: Synthesis and Characterization. Chinese J. Polym. Sci, 2015, 33(1): 109-117. doi: 10.1007/s10118-015-1562-x

    12. [12]

      WU ZhichaoZHANG ZhichengZHANG Manwei . SYNTHESIS OF A NEW ORGANIC AEROGEL. Chinese J. Polym. Sci, 1996, 14(2): 127-133.

    13. [13]

      Hui LiuXiao-Nan KanChen-Yu WuQing-Yan PanZhi-Bo LiYing-Jie Zhao . Synthetic Two-dimensional Organic Structures. Chinese J. Polym. Sci, 2018, 36(4): 425-444. doi: 10.1007/s10118-018-2070-6

    14. [14]

      Lin ZhangWei Ma . Morphology Optimization in Ternary Organic Solar Cells. Chinese J. Polym. Sci, 2017, 35(2): 184-197. doi: 10.1007/s10118-017-1898-5

    15. [15]


    16. [16]


    17. [17]

      QIU KunyuanZHANG JingyiHU YuanjieFENG Xinde . STUDIES ON THE ORGANIC PEROXIDE-DITERTIARY AMINE INITIATION SYSTEMS*. Chinese J. Polym. Sci, 1985, 3(1): 76-81.

    18. [18]


    19. [19]


    20. [20]

      . MULTILAYER ORGANIC LEDS BASED ON A NEW DYE-DOPED POLYMER*. Chinese J. Polym. Sci, 1999, 17(4): 343-346.

Article Metrics
  • PDF Downloads(77)
  • Abstract views(2276)
  • HTML views(225)
  • Cited By(0)

通讯作者: 陈斌,
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索


DownLoad:  Full-Size Img  PowerPoint