Citation: Jian, M.; Zhang, Y.; Liu, Z. Natural biopolymers for flexible sensing and energy devices. Chinese J. Polym. Sci. 2020, 38, 459–490 doi: 10.1007/s10118-020-2379-9 shu

Natural Biopolymers for Flexible Sensing and Energy Devices

Figures(14) / Tables(1)

  • Natural biopolymers feature natural abundance, diverse chemical compositions, tunable properties, easy processability, excellent biocompatibility and biodegradability, as well as nontoxicity, providing new opportunities for the development of flexible sensing and energy devices. Generally, biopolymers are utilized as the passive and active building blocks to endow the flexible devices with mechanical robustness and good biocompatibility. This review aims to provide a comprehensive review on natural biopolymer-based sensing and energy devices. The diverse structures and fabrication processes of three typical biopolymers, including silk, cellulose, and chitin/chitosan, are presented. We review their utilities as the supporting substrates/matrix, active middle layers, separators, electrolytes, and active components of flexible sensing devices (sensors, actuators, transistors) and energy devices (batteries, supercapacitors, triboelectric nanogenerators). Finally, the remaining challenges and future research opportunities are discussed.
  • 加载中
    1. [1]

      Fukagawa, H.; Sasaki, T.; Tsuzuki, T.; Nakajima, Y.; Takei, T.; Motomura, G.; Hasegawa, M.; Morii, K.; Shimizu, T. Long-lived flexible displays employing efficient and stable inverted organic light-emitting diodes. Adv. Mater. 2018, 30, 1706768. doi: 10.1002/adma.201706768

    2. [2]

      Khan, Y.; Ostfeld, A. E.; Lochner, C. M.; Pierre, A.; Arias, A. C. Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater. 2016, 28, 4373−4395. doi: 10.1002/adma.201504366

    3. [3]

      Shi, J.; Liu, S.; Zhang, L.; Yang, B.; Shu, L.; Yang, Y.; Ren, M.; Wang, Y.; Chen, J.; Chen, W.; Chai, Y.; Tao, X. Smart textile-integrated microelectronic systems for wearable applications. Adv. Mater. 2019, 31, 1901958. doi: 10.1002/adma.201901958

    4. [4]

      Wang, C.; Xia, K.; Wang, H.; Liang, X.; Yin, Z.; Zhang, Y. Advanced carbon for flexible and wearable electronics. Adv. Mater. 2019, 31, 1801072. doi: 10.1002/adma.201801072

    5. [5]

      Baik, S.; Lee, H. J.; Kim, D. W.; Kim, J. W.; Lee, Y.; Pang, C. Bioinspired adhesive architectures: from skin patch to integrated bioelectronics. Adv. Mater. 2019, 31, 1803309. doi: 10.1002/adma.201803309

    6. [6]

      Jung, Y. H.; Park, B.; Kim, J. U.; Kim, T. I. Bioinspired electronics for artificial sensory systems. Adv. Mater. 2019, 31, 1803637. doi: 10.1002/adma.201803637

    7. [7]

      Hong, Y. J.; Jeong, H.; Cho, K. W.; Lu, N.; Kim, D. H. Wearable and implantable devices for cardiovascular healthcare: from monitoring to therapy based on flexible and stretchable electronics. Adv. Funct. Mater. 2019, 29, 1808247. doi: 10.1002/adfm.201808247

    8. [8]

      Xu, S.; Jayaraman, A.; Rogers, J. A. Skin sensors are the future of health care. Nature 2019, 571, 319−321. doi: 10.1038/d41586-019-02143-0

    9. [9]

      Jian, M.; Wang, C.; Wang, Q.; Wang, H.; Xia, K.; Yin, Z.; Zhang, M.; Liang, X.; Zhang, Y. Advanced carbon materials for flexible and wearable sensors. Sci. China Mater. 2017, 60, 1026−1062. doi: 10.1007/s40843-017-9077-x

    10. [10]

      Ren, H.; Zheng, L.; Wang, G.; Gao, X.; Tan, Z.; Shan, J.; Cui, L.; Li, K.; Jian, M.; Zhu, L.; Zhang, Y.; Peng, H.; Wei, D.; Liu, Z. Transfer-medium-free nanofiber-reinforced graphene film and applications in wearable transparent pressure sensors. ACS Nano 2019, 13, 5541−5548. doi: 10.1021/acsnano.9b00395

    11. [11]

      Jang, H.; Park, Y. J.; Chen, X.; Das, T.; Kim, M. S.; Ahn, J. H. Graphene-based flexible and stretchable electronics. Adv. Mater. 2016, 28, 4184−4202. doi: 10.1002/adma.201504245

    12. [12]

      Segev-Bar, M.; Haick, H. Flexible sensors based on nanoparticles. ACS Nano 2013, 7, 8366−8378. doi: 10.1021/nn402728g

    13. [13]

      Liu, Z.; Xu, J.; Chen, D.; Shen, G. Flexible electronics based on inorganic nanowires. Chem. Soc. Rev. 2015, 44, 161−192. doi: 10.1039/C4CS00116H

    14. [14]

      Yu, X.; Marks, T. J.; Facchetti, A. Metal oxides for optoelectronic applications. Nat. Mater. 2016, 15, 383−396. doi: 10.1038/nmat4599

    15. [15]

      Root, S. E.; Savagatrup, S.; Printz, A. D.; Rodriquez, D.; Lipomi, D. J. Mechanical properties of organic semiconductors for stretchable, highly flexible, and mechanically robust electronics. Chem. Rev. 2017, 117, 6467−6499. doi: 10.1021/acs.chemrev.7b00003

    16. [16]

      Liu, H.; Li, Q.; Zhang, S.; Yin, R.; Liu, X.; He, Y.; Dai, K.; Shan, C.; Guo, J.; Liu, C.; Shen, C.; Wang, X.; Wang, N.; Wang, Z.; Wei, R.; Guo, Z. Electrically conductive polymer composites for smart flexible strain sensors: a critical review. J. Mater. Chem. C 2018, 6, 12121−12141. doi: 10.1039/C8TC04079F

    17. [17]

      Liu, W.; Song, M. S.; Kong, B.; Cui, Y. Flexible and stretchable energy storage: recent advances and future perspectives. Adv. Mater. 2017, 29, 1603436. doi: 10.1002/adma.201603436

    18. [18]

      Cheng, X.; Pan, J.; Zhao, Y.; Liao, M.; Peng, H. Gel polymer electrolytes for electrochemical energy storage. Adv. Energy Mater. 2018, 8, 1702184. doi: 10.1002/aenm.201702184

    19. [19]

      Shi, Y.; Peng, L.; Ding, Y.; Zhao, Y.; Yu, G. Nanostructured conductive polymers for advanced energy storage. Chem. Soc. Rev. 2015, 44, 6684−6696. doi: 10.1039/C5CS00362H

    20. [20]

      Chandrashekar, B. N.; Deng, B.; Smitha, A. S.; Chen, Y.; Tan, C.; Zhang, H.; Peng, H.; Liu, Z. Roll-to-roll green transfer of CVD graphene onto plastic for a transparent and flexible triboelectric nanogenerator. Adv. Mater. 2015, 27, 5210−5216. doi: 10.1002/adma.201502560

    21. [21]

      Wen, L.; Li, F.; Cheng, H. M. Carbon nanotubes and graphene for flexible electrochemical energy storage: from materials to devices. Adv. Mater. 2016, 28, 4306−4337. doi: 10.1002/adma.201504225

    22. [22]

      Wu, Z.; Wang, Y.; Liu, X.; Lv, C.; Li, Y.; Wei, D.; Liu, Z. Carbon-nanomaterial-based flexible batteries for wearable electronics. Adv. Mater. 2019, 31, 1800716. doi: 10.1002/adma.201800716

    23. [23]

      Chen, K.; Shi, L.; Zhang, Y.; Liu, Z. Scalable chemical-vapour-deposition growth of three-dimensional graphene materials towards energy-related applications. Chem. Soc. Rev. 2018, 47, 3018−3036. doi: 10.1039/C7CS00852J

    24. [24]

      Yu, L.; Yi, Y.; Yao, T.; Song, Y.; Chen, Y.; Li, Q.; Xia, Z.; Wei, N.; Tian, Z.; Nie, B.; Zhang, L.; Liu, Z.; Sun, J. All VN-graphene architecture derived self-powered wearable sensors for ultrasensitive health monitoring. Nano Res. 2018, 12, 331−338.

    25. [25]

      Guan, C.; Zhao, W.; Hu, Y.; Ke, Q.; Li, X.; Zhang, H.; Wang, J. High-performance flexible solid-state Ni/Fe battery consisting of metal oxides coated carbon cloth/carbon nanofiber electrodes. Adv. Energy Mater. 2016, 6, 1601034. doi: 10.1002/aenm.201601034

    26. [26]

      Pang, J.; Bachmatiuk, A.; Yin, Y.; Trzebicka, B.; Zhao, L.; Fu, L.; Mendes, R. G.; Gemming, T.; Liu, Z.; Rummeli, M. H. Applications of phosphorene and black phosphorus in energy conversion and storage devices. Adv. Energy Mater. 2018, 8, 1702093. doi: 10.1002/aenm.201702093

    27. [27]

      Pang, J.; Mendes, R. G.; Bachmatiuk, A.; Zhao, L.; Ta, H. Q.; Gemming, T.; Liu, H.; Liu, Z.; Rummeli, M. H. Applications of 2D Mxenes in energy conversion and storage systems. Chem. Soc. Rev. 2019, 48, 72−133. doi: 10.1039/C8CS00324F

    28. [28]

      Yi, F.; Ren, H.; Shan, J.; Sun, X.; Wei, D.; Liu, Z. Wearable energy sources based on 2D materials. Chem. Soc. Rev. 2018, 47, 3152−3188. doi: 10.1039/C7CS00849J

    29. [29]

      Yang, Q.; Wang, Y.; Li, X.; Li, H.; Wang, Z.; Tang, Z.; Ma, L.; Mo, F.; Zhi, C. Recent progress of Mxene-based nanomaterials in flexible energy storage and electronic devices. Energy Environ. Mater. 2018, 1, 183−195. doi: 10.1002/eem2.12023

    30. [30]

      Li, Y. C. E. Sustainable biomass materials for biomedical applications. ACS Biomater. Sci. Eng. 2019, 5, 2079−2092. doi: 10.1021/acsbiomaterials.8b01634

    31. [31]

      Wang, L.; Chen, D.; Jiang, K.; Shen, G. New insights and perspectives into biological materials for flexible electronics. Chem. Soc. Rev. 2017, 46, 6764−6815. doi: 10.1039/C7CS00278E

    32. [32]

      Zhao, S.; Malfait, W. J.; Guerrero-Alburquerque, N.; Koebel, M. M.; Nystrom, G. Biopolymer aerogels and foams: chemistry, properties, and applications. Angew. Chem. Int. Ed. 2018, 57, 7580−7608. doi: 10.1002/anie.201709014

    33. [33]

      Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 2011, 40, 3941−3994. doi: 10.1039/c0cs00108b

    34. [34]

      Rockwood, D. N.; Preda, R. C.; Yucel, T.; Wang, X.; Lovett, M. L.; Kaplan, D. L. Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. 2011, 6, 1612−1631. doi: 10.1038/nprot.2011.379

    35. [35]

      Ling, S.; Chen, W.; Fan, Y.; Zheng, K.; Jin, K.; Yu, H.; Buehler, M. J.; Kaplan, D. L. Biopolymer nanofibrils: structure, modeling, preparation, and applications. Prog. Polym. Sci. 2018, 85, 1−56. doi: 10.1016/j.progpolymsci.2018.06.004

    36. [36]

      Talebian, S.; Foroughi, J.; Wade, S. J.; Vine, K. L.; Dolatshahi-Pirouz, A.; Mehrali, M.; Conde, J.; Wallace, G. G. Biopolymers for antitumor implantable drug delivery systems: recent advances and future outlook. Adv. Mater. 2018, 30, 1706665. doi: 10.1002/adma.201706665

    37. [37]

      Park, S. B.; Lih, E.; Park, K. S.; Joung, Y. K.; Han, D. K. Biopolymer-based functional composites for medical applications. Prog. Polym. Sci. 2017, 68, 77−105. doi: 10.1016/j.progpolymsci.2016.12.003

    38. [38]

      Zhu, B.; Wang, H.; Leow, W. R.; Cai, Y.; Loh, X. J.; Han, M. Y.; Chen, X. Silk fibroin for flexible electronic devices. Adv. Mater. 2016, 28, 4250−4265. doi: 10.1002/adma.201504276

    39. [39]

      Sun, Q.; Qian, B.; Uto, K.; Chen, J.; Liu, X.; Minari, T. Functional biomaterials towards flexible electronics and sensors. Biosens. Bioelectron. 2018, 119, 237−251. doi: 10.1016/j.bios.2018.08.018

    40. [40]

      Suginta, W.; Khunkaewla, P.; Schulte, A. Electrochemical biosensor applications of polysaccharides chitin and chitosan. Chem. Rev. 2013, 113, 5458−5479. doi: 10.1021/cr300325r

    41. [41]

      Chen, C.; Hu, L. Nanocellulose toward advanced energy storage devices: structure and electrochemistry. Acc. Chem. Res. 2018, 51, 3154−3165. doi: 10.1021/acs.accounts.8b00391

    42. [42]

      Zhu, H.; Luo, W.; Ciesielski, P. N.; Fang, Z.; Zhu, J. Y.; Henriksson, G.; Himmel, M. E.; Hu, L. Wood-derived materials for green electronics, biological devices, and energy applications. Chem. Rev. 2016, 116, 9305−9374. doi: 10.1021/acs.chemrev.6b00225

    43. [43]

      Azuma, K.; Izumi, R.; Osaki, T.; Ifuku, S.; Morimoto, M.; Saimoto, H.; Minami, S.; Okamoto, Y. Chitin, chitosan, and its derivatives for wound healing: old and new materials. J. Funct. Biomater. 2015, 6, 104−142. doi: 10.3390/jfb6010104

    44. [44]

      Yao, B.; Zhang, J.; Kou, T.; Song, Y.; Liu, T.; Li, Y. Paper-based electrodes for flexible energy storage devices. Adv. Sci. 2017, 4, 1700107. doi: 10.1002/advs.201700107

    45. [45]

      Gao, M.; Shih, C. C.; Pan, S. Y.; Chueh, C. C.; Chen, W. C. Advances and challenges of green materials for electronics and energy storage applications: from design to end-of-life recovery. J. Mater. Chem. A 2018, 6, 20546−20563. doi: 10.1039/C8TA07246A

    46. [46]

      Omenetto, F. G.; Kaplan, D. L. New opportunities for an ancient material. Science 2010, 329, 528−531. doi: 10.1126/science.1188936

    47. [47]

      Ling, S.; Kaplan, D. L.; Buehler, M. J. Nanofibrils in nature and materials engineering. Nat. Rev. Mater. 2018, 3, 18016. doi: 10.1038/natrevmats.2018.16

    48. [48]

      Niu, Q.; Peng, Q.; Lu, L.; Fan, S.; Shao, H.; Zhang, H.; Wu, R.; Hsiao, B. S.; Zhang, Y. Single molecular layer of silk nanoribbon as potential basic building block of silk materials. ACS Nano 2018, 12, 11860−11870. doi: 10.1021/acsnano.8b03943

    49. [49]

      Keten, S.; Xu, Z.; Ihle, B.; Buehler, M. J. Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk. Nat. Mater. 2010, 9, 359−367. doi: 10.1038/nmat2704

    50. [50]

      Koh, L. D.; Cheng, Y.; Teng, C. P.; Khin, Y. W.; Loh, X. J.; Tee, S. Y.; Low, M.; Ye, E.; Yu, H. D.; Zhang, Y. W.; Han, M. Y. Structures, mechanical properties and applications of silk fibroin materials. Prog. Polym. Sci. 2015, 46, 86−110. doi: 10.1016/j.progpolymsci.2015.02.001

    51. [51]

      Tan, M. J.; Owh, C.; Chee, P. L.; Kyaw, A. K. K.; Kai, D.; Loh, X. J. Biodegradable electronics: cornerstone for sustainable electronics and transient applications. J. Mater. Chem. C 2016, 4, 5531−5558. doi: 10.1039/C6TC00678G

    52. [52]

      Aigner, T. B.; DeSimone, E.; Scheibel, T. Biomedical applications of recombinant silk-based materials. Adv. Mater. 2018, 30, 1704636. doi: 10.1002/adma.201704636

    53. [53]

      Huang, W.; Ling, S.; Li, C.; Omenetto, F. G.; Kaplan, D. L. Silkworm silk-based materials and devices generated using bio-nanotechnology. Chem. Soc. Rev. 2018, 47, 6486−6504. doi: 10.1039/C8CS00187A

    54. [54]

      Koeppel, A.; Holland, C. Progress and trends in artificial silk spinning: a systematic review. ACS Biomater. Sci. Eng. 2017, 3, 226−237. doi: 10.1021/acsbiomaterials.6b00669

    55. [55]

      Wang, C.; Wu, S.; Jian, M.; Xie, J.; Xu, L.; Yang, X.; Zheng, Q.; Zhang, Y. Silk nanofibers as high efficient and lightweight air filter. Nano Res. 2016, 9, 2590−2597. doi: 10.1007/s12274-016-1145-3

    56. [56]

      Shang, L.; Yu, Y.; Liu, Y.; Chen, Z.; Kong, T.; Zhao, Y. Spinning and applications of bioinspired fiber systems. ACS Nano 2019, 13, 2749−2772. doi: 10.1021/acsnano.8b09651

    57. [57]

      Liu, Y.; Ren, J.; Ling, S. Bioinspired and biomimetic silk spinning. Compos. Commun. 2019, 13, 85−96. doi: 10.1016/j.coco.2019.03.004

    58. [58]

      Lammel, A. S.; Hu, X.; Park, S. H.; Kaplan, D. L.; Scheibel, T. R. Controlling silk fibroin particle features for drug delivery. Biomaterials 2010, 31, 4583−4591. doi: 10.1016/j.biomaterials.2010.02.024

    59. [59]

      Ling, S.; Li, C.; Adamcik, J.; Shao, Z.; Chen, X.; Mezzenga, R. Modulating materials by orthogonally oriented β-strands: composites of amyloid and silk fibroin fibrils. Adv. Mater. 2014, 26, 4569−4574. doi: 10.1002/adma.201400730

    60. [60]

      Ling, S.; Qin, Z.; Li, C.; Huang, W.; Kaplan, D. L.; Buehler, M. J. Polymorphic regenerated silk fibers assembled through bioinspired spinning. Nat. Commun. 2017, 8, 1387. doi: 10.1038/s41467-017-00613-5

    61. [61]

      Ling, S.; Jin, K.; Kaplan, D. L.; Buehler, M. J. Ultrathin free-standing Bombyx mori silk nanofibril membranes. Nano Lett. 2016, 16, 3795−3800. doi: 10.1021/acs.nanolett.6b01195

    62. [62]

      Partlow, B. P.; Hanna, C. W.; Rnjak-Kovacina, J.; Moreau, J. E.; Applegate, M. B.; Burke, K. A.; Marelli, B.; Mitropoulos, A. N.; Omenetto, F. G.; Kaplan, D. L. Highly tunable elastomeric silk biomaterials. Adv. Funct. Mater. 2014, 24, 4615−4624. doi: 10.1002/adfm.201400526

    63. [63]

      Wang, Y.; Guo, J.; Zhou, L.; Ye, C.; Omenetto, F. G.; Kaplan, D. L.; Ling, S. Design, fabrication, and function of silk-based nanomaterials. Adv. Funct. Mater. 2018, 28, 1805305. doi: 10.1002/adfm.201805305

    64. [64]

      Xu, S.; Song, J.; Morikawa, H.; Chen, Y.; Lin, H. Fabrication of hierarchical structured Fe3O4 and Ag nanoparticles dual-coated silk fibers through electrostatic self-assembly. Mater. Lett. 2016, 164, 274−277. doi: 10.1016/j.matlet.2015.08.051

    65. [65]

      Zhang, M.; Wang, C.; Wang, Q.; Jian, M.; Zhang, Y. Sheath-core graphite/silk fiber made by dry-Meyer-rod-coating for wearable strain sensors. ACS Appl. Mater. Interfaces 2016, 8, 20894−20899. doi: 10.1021/acsami.6b06984

    66. [66]

      Wu, R.; Ma, L.; Hou, C.; Meng, Z.; Guo, W.; Yu, W.; Yu, R.; Hu, F.; Liu, X. Y. Silk composite electronic textile sensor for high space precision 2D combo temperature-pressure sensing. Small 2019, 15, 1901558. doi: 10.1002/smll.201901558

    67. [67]

      Ryan, J. D.; Mengistie, D. A.; Gabrielsson, R.; Lund, A.; Muller, C. Machine-washable PEDOT:PSS dyed silk yarns for electronic textiles. ACS Appl. Mater. Interfaces 2017, 9, 9045−9050. doi: 10.1021/acsami.7b00530

    68. [68]

      Chen, J.; Venkatesan, H.; Hu, J. Chemically modified silk proteins. Adv. Eng. Mater. 2018, 20, 1700961. doi: 10.1002/adem.201700961

    69. [69]

      Tansil, N. C.; Li, Y.; Teng, C. P.; Zhang, S.; Win, K. Y.; Chen, X.; Liu, X. Y.; Han, M. Y. Intrinsically colored and luminescent silk. Adv. Mater. 2011, 23, 1463−1466. doi: 10.1002/adma.201003860

    70. [70]

      Cai, L.; Shao, H.; Hu, X.; Zhang, Y. Reinforced and ultraviolet resistant silks from silkworms fed with titanium dioxide nanoparticles. ACS Sustain. Chem. Eng. 2015, 3, 2551−2557. doi: 10.1021/acssuschemeng.5b00749

    71. [71]

      Yan, M.; Ma, X.; Yang, Y.; Wang, X.; Cheong, W. C.; Chen, Z.; Xu, X.; Huang, Y.; Wang, S.; Lian, C.; Li, Y. Biofabrication strategy for functional fabrics. Nano Lett. 2018, 18, 6017−6021. doi: 10.1021/acs.nanolett.8b02905

    72. [72]

      Wang, J. T.; Li, L. L.; Zhang, M. Y.; Liu, S. L.; Jiang, L. H.; Shen, Q. Directly obtaining high strength silk fiber from silkworm by feeding carbon nanotubes. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 34, 417−421. doi: 10.1016/j.msec.2013.09.041

    73. [73]

      Wang, Q.; Wang, C.; Zhang, M.; Jian, M.; Zhang, Y. Feeding single-walled carbon nanotubes or graphene to silkworms for reinforced silk fibers. Nano Lett. 2016, 16, 6695−6700. doi: 10.1021/acs.nanolett.6b03597

    74. [74]

      Cho, S. Y.; Yun, Y. S.; Lee, S.; Jang, D.; Park, K. Y.; Kim, J. K.; Kim, B. H.; Kang, K.; Kaplan, D. L.; Jin, H. J. Carbonization of a stable β-sheet-rich silk protein into a pseudographitic pyroprotein. Nat. Commun. 2015, 6, 7145. doi: 10.1038/ncomms8145

    75. [75]

      Holland, C.; Numata, K.; Rnjak-Kovacina, J.; Seib, F. P. The biomedical use of silk: past, present, future. Adv. Healthc. Mater. 2019, 8, 1800465. doi: 10.1002/adhm.201800465

    76. [76]

      Fan, S.; Zhang, Y.; Huang, X.; Geng, L.; Shao, H.; Hu, X.; Zhang, Y. Silk materials for medical, electronic and optical applications. Sci. China Technol. Sci. 2019, 62, 903−918. doi: 10.1007/s11431-018-9403-8

    77. [77]

      Suhas; Gupta, V. K.; Carrott, P. J.; Singh, R.; Chaudhary, M.; Kushwaha, S. Cellulose: a review as natural, modified and activated carbon adsorbent. Bioresour. Technol. 2016, 216, 1066−1076. doi: 10.1016/j.biortech.2016.05.106

    78. [78]

      Zhu, H.; Jia, Z.; Chen, Y.; Weadock, N.; Wan, J.; Vaaland, O.; Han, X.; Li, T.; Hu, L. Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. Nano Lett. 2013, 13, 3093−3100. doi: 10.1021/nl400998t

    79. [79]

      Klemm, D.; Kramer, F.; Moritz, S.; Lindstrom, T.; Ankerfors, M.; Gray, D.; Dorris, A. Nanocelluloses: a new family of nature-based materials. Angew. Chem. Int. Ed. 2011, 50, 5438−5466. doi: 10.1002/anie.201001273

    80. [80]

      Jing, Y.; Guo, Y.; Xia, Q.; Liu, X.; Wang, Y. Catalytic production of value-added chemicals and liquid fuels from lignocellulosic biomass. Chem 2019, 5, 2520−2546. doi: 10.1016/j.chempr.2019.05.022

    81. [81]

      Kaushik, M.; Moores, A. Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem. 2016, 18, 622−637. doi: 10.1039/C5GC02500A

    82. [82]

      Abraham, E.; Kam, D.; Nevo, Y.; Slattegard, R.; Rivkin, A.; Lapidot, S.; Shoseyov, O. Highly modified cellulose nanocrystals and formation of epoxy-nanocrystalline cellulose (CNC) nanocomposites. ACS Appl. Mater. Interfaces 2016, 8, 28086−28095. doi: 10.1021/acsami.6b09852

    83. [83]

      Foster, E. J.; Moon, R. J.; Agarwal, U. P.; Bortner, M. J.; Bras, J.; Camarero-Espinosa, S.; Chan, K. J.; Clift, M. J. D.; Cranston, E. D.; Eichhorn, S. J.; Fox, D. M.; Hamad, W. Y.; Heux, L.; Jean, B.; Korey, M.; Nieh, W.; Ong, K. J.; Reid, M. S.; Renneckar, S.; Roberts, R.; Shatkin, J. A.; Simonsen, J.; Stinson-Bagby, K.; Wanasekara, N.; Youngblood, J. Current characterization methods for cellulose nanomaterials. Chem. Soc. Rev. 2018, 47, 2609−2679. doi: 10.1039/C6CS00895J

    84. [84]

      Chen, W.; Li, Q.; Wang, Y.; Yi, X.; Zeng, J.; Yu, H.; Liu, Y.; Li, J. Comparative study of aerogels obtained from differently prepared nanocellulose fibers. ChemSusChem 2014, 7, 154−161. doi: 10.1002/cssc.201300950

    85. [85]

      Nogi, M.; Iwamoto, S.; Nakagaito, A. N.; Yano, H. Optically transparent nanofiber paper. Adv. Mater. 2009, 21, 1595−1598. doi: 10.1002/adma.200803174

    86. [86]

      Yang, X.; Cranston, E. D. Chemically cross-linked cellulose nanocrystal aerogels with shape recovery and superabsorbent properties. Chem. Mater. 2014, 26, 6016−6025. doi: 10.1021/cm502873c

    87. [87]

      Jiang, F.; Li, T.; Li, Y.; Zhang, Y.; Gong, A.; Dai, J.; Hitz, E.; Luo, W.; Hu, L. Wood-based nanotechnologies toward sustainability. Adv. Mater. 2018, 30, 1703453. doi: 10.1002/adma.201703453

    88. [88]

      Kontturi, E.; Laaksonen, P.; Linder, M. B.; Nonappa; Groschel A. H.; Rojas, O. J.; Ikkala, O. Advanced materials through assembly of nanocelluloses. Adv. Mater. 2018, 30, 1703779. doi: 10.1002/adma.201703779

    89. [89]

      Wang, S.; Lu, A.; Zhang, L. Recent advances in regenerated cellulose materials. Prog. Polym. Sci. 2016, 53, 169−206. doi: 10.1016/j.progpolymsci.2015.07.003

    90. [90]

      Nechyporchuk, O.; Yu, J.; Nierstrasz, V. A.; Bordes, R. Cellulose nanofibril-based coatings of woven cotton fabrics for improved inkjet printing with a potential in e-textile manufacturing. ACS Sustain. Chem. Eng. 2017, 5, 4793−4801. doi: 10.1021/acssuschemeng.7b00200

    91. [91]

      Zheng, Q.; Cai, Z.; Ma, Z.; Gong, S. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 3263−3271. doi: 10.1021/am507999s

    92. [92]

      Wang, Z.; Carlsson, D. O.; Tammela, P.; Hua, K.; Zhang, P.; Nyholm, L.; Stromme, M. Surface modified nanocellulose fibers yield conducting polymer-based flexible supercapacitors with enhanced capacitances. ACS Nano 2015, 9, 7563−7571. doi: 10.1021/acsnano.5b02846

    93. [93]

      Dutta, S.; Kim, J.; Ide, Y.; Ho, Kim J.; Hossain, M. S. A.; Bando, Y.; Yamauchi, Y.; Wu, K. C. W. 3D network of cellulose-based energy storage devices and related emerging applications. Mater. Horiz. 2017, 4, 522−545. doi: 10.1039/C6MH00500D

    94. [94]

      Zhang, T.; Yang, L.; Yan, X.; Ding, X. Recent advances of cellulose-based materials and their promising application in sodium-ion batteries and capacitors. Small 2018, 14, 1802444. doi: 10.1002/smll.201802444

    95. [95]

      Zargar, V.; Asghari, M.; Dashti, A. A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. ChemBioEng Rev. 2015, 2, 204−226. doi: 10.1002/cben.201400025

    96. [96]

      Shamshina, J. L.; Berton, P.; Rogers, R. D. Advances in functional chitin materials: a review. ACS Sustain. Chem. Eng. 2019, 7, 6444−6457. doi: 10.1021/acssuschemeng.8b06372

    97. [97]

      Raabe, D.; Al-Sawalmih, A.; Yi, S. B.; Fabritius, H. Preferred crystallographic texture of α-chitin as a microscopic and macroscopic design principle of the exoskeleton of the lobster Homarus americanus. Acta Biomater. 2007, 3, 882−895. doi: 10.1016/j.actbio.2007.04.006

    98. [98]

      Shamshina, J. L.; Barber, P. S.; Gurau, G.; Griggs, C. S.; Rogers, R. D. Pulping of crustacean waste using ionic liquids: to extract or not to extract. ACS Sustain. Chem. Eng. 2016, 4, 6072−6081. doi: 10.1021/acssuschemeng.6b01434

    99. [99]

      Pillai, C. K. S.; Paul, W.; Sharma, C. P. Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog. Polym. Sci. 2009, 34, 641−678. doi: 10.1016/j.progpolymsci.2009.04.001

    100. [100]

      Shukla, S. K.; Mishra, A. K.; Arotiba, O. A.; Mamba, B. B. Chitosan-based nanomaterials: a state-of-the-art review. Int. J. Biol. Macromol. 2013, 59, 46−58. doi: 10.1016/j.ijbiomac.2013.04.043

    101. [101]

      Yeul, V. S.; Rayalu, S. S. Unprecedented chitin and chitosan: a chemical overview. J. Polym. Environ. 2012, 21, 606−614.

    102. [102]

      Zhang, X.; Rolandi, M. Engineering strategies for chitin nanofibers. J. Mater. Chem. B 2017, 5, 2547−2559. doi: 10.1039/C6TB03324E

    103. [103]

      Rinaudo, M. Chitin and chitosan: properties and applications. Prog. Polym. Sci. 2006, 31, 603−632. doi: 10.1016/j.progpolymsci.2006.06.001

    104. [104]

      Ifuku, S.; Nogi, M.; Abe, K.; Yoshioka, M.; Morimoto, M.; Saimoto, H.; Yano, H. Preparation of chitin nanofibers with a uniform width as α-chitin from crab shells. Biomacromolecules 2009, 10, 1584−1588. doi: 10.1021/bm900163d

    105. [105]

      Ifuku, S.; Saimoto, H. Chitin nanofibers: preparations, modifications, and applications. Nanoscale 2012, 4, 3308−3318. doi: 10.1039/c2nr30383c

    106. [106]

      Kaya, M.; Akyuz, B.; Bulut, E.; Sargin, I.; Eroglu, F.; Tan, G. Chitosan nanofiber production from drosophila by electrospinning. Int. J. Biol. Macromol. 2016, 92, 49−55. doi: 10.1016/j.ijbiomac.2016.07.021

    107. [107]

      Kim, K.; Ha, M.; Choi, B.; Joo, S. H.; Kang, H. S.; Park, J. H.; Gu, B.; Park, C.; Park, C.; Kim, J.; Kwak, S. K.; Ko, H.; Jin, J.; Kang, S. J. Biodegradable, electro-active chitin nanofiber films for flexible piezoelectric transducers. Nano Energy 2018, 48, 275−283. doi: 10.1016/j.nanoen.2018.03.056

    108. [108]

      Xu, D.; Huang, J.; Zhao, D.; Ding, B.; Zhang, L.; Cai, J. High-flexibility, high-toughness double-cross-linked chitin hydrogels by sequential chemical and physical cross-linkings. Adv. Mater. 2016, 28, 5844−5849. doi: 10.1002/adma.201600448

    109. [109]

      Wang, L.; Wang, K.; Lou, Z.; Jiang, K.; Shen, G. Plant-based modular building blocks for “green” electronic skins. Adv. Funct. Mater. 2018, 28, 1804510. doi: 10.1002/adfm.201804510

    110. [110]

      Irimia-Vladu, M. "Green" electronics: biodegradable and biocompatible materials and devices for sustainable future. Chem. Soc. Rev. 2014, 43, 588−610. doi: 10.1039/C3CS60235D

    111. [111]

      Wu, X.; Zhou, J.; Huang, J. Integration of biomaterials into sensors based on organic thin-film transistors. Macromol. Rapid Commun. 2018, 39, 1800084. doi: 10.1002/marc.201800084

    112. [112]

      Su, B.; Gong, S.; Ma, Z.; Yap, L. W.; Cheng, W. Mimosa-inspired design of a flexible pressure sensor with touch sensitivity. Small 2015, 11, 1886−1891. doi: 10.1002/smll.201403036

    113. [113]

      Jian, M.; Xia, K.; Wang, Q.; Yin, Z.; Wang, H.; Wang, C.; Xie, H.; Zhang, M.; Zhang, Y. Flexible and highly sensitive pressure sensors based on bionic hierarchical structures. Adv. Funct. Mater. 2017, 27, 1606066. doi: 10.1002/adfm.201606066

    114. [114]

      Xia, K.; Wang, C.; Jian, M.; Wang, Q.; Zhang, Y. CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor. Nano Res. 2017, 11, 1124−1134.

    115. [115]

      Nie, P.; Wang, R.; Xu, X.; Cheng, Y.; Wang, X.; Shi, L.; Sun, J. High-performance piezoresistive electronic skin with bionic hierarchical microstructure and microcracks. ACS Appl. Mater. Interfaces 2017, 9, 14911−14919. doi: 10.1021/acsami.7b01979

    116. [116]

      Wei, Y.; Chen, S.; Lin, Y.; Yang, Z.; Liu, L. Cu-Ag core-shell nanowires for electronic skin with a petal molded microstructure. J. Mater. Chem. C 2015, 3, 9594−9602. doi: 10.1039/C5TC01723H

    117. [117]

      Li, T.; Luo, H.; Qin, L.; Wang, X.; Xiong, Z.; Ding, H.; Gu, Y.; Liu, Z.; Zhang, T. Flexible capacitive tactile sensor based on micropatterned dielectric layer. Small 2016, 12, 5042−5048. doi: 10.1002/smll.201600760

    118. [118]

      Wang, X.; Gu, Y.; Xiong, Z.; Cui, Z.; Zhang, T. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv. Mater. 2014, 26, 1336−1342. doi: 10.1002/adma.201304248

    119. [119]

      Afroj, S.; Karim, N.; Wang, Z.; Tan, S.; He, P.; Holwill, M.; Ghazaryan, D.; Fernando, A.; Novoselov, K. S. Engineering graphene flakes for wearable textile sensors via highly scalable and ultrafast yarn dyeing technique. ACS Nano 2019, 13, 3847−3857. doi: 10.1021/acsnano.9b00319

    120. [120]

      Tao, L. Q.; Zhang, K. N.; Tian, H.; Liu, Y.; Wang, D. Y.; Chen, Y. Q.; Yang, Y.; Ren, T. L. Graphene-paper pressure sensor for detecting human motions. ACS Nano 2017, 11, 8790−8795. doi: 10.1021/acsnano.7b02826

    121. [121]

      Liu, Z. L.; Li, Z.; Cheng, L.; Chen, S. H.; Wu, D. Y.; Dai, F. Y. Reduced graphene oxide coated silk fabrics with conductive property for wearable electronic textiles application. Adv. Electron. Mater. 2019, 5, 1800648. doi: 10.1002/aelm.201800648

    122. [122]

      Souri, H.; Bhattacharyya, D. Highly sensitive, stretchable and wearable strain sensors using fragmented conductive cotton fabric. J. Mater. Chem. C 2018, 6, 10524−10531. doi: 10.1039/C8TC03702G

    123. [123]

      Hamedi, M. M.; Ainla, A.; Guder, F.; Christodouleas, D. C.; Fernandez-Abedul, M. T.; Whitesides, G. M. Integrating electronics and microfluidics on paper. Adv. Mater. 2016, 28, 5054−5063. doi: 10.1002/adma.201505823

    124. [124]

      Pyo, S.; Lee, J.; Kim, W.; Jo, E.; Kim, J. Multi-layered, hierarchical fabric-based tactile sensors with high sensitivity and linearity in ultrawide pressure range. Adv. Funct. Mater. 2019, 29, 1902484. doi: 10.1002/adfm.201902484

    125. [125]

      Lima, R.; Alcaraz-Espinoza, J. J.; da Silva, F. A. G., Jr.; de Oliveira, H. P. Multifunctional wearable electronic textiles using cotton fibers with polypyrrole and carbon nanotubes. ACS Appl. Mater. Interfaces 2018, 10, 13783−13795. doi: 10.1021/acsami.8b04695

    126. [126]

      Lund, A.; Darabi, S.; Hultmark, S.; Ryan, J. D.; Andersson, B.; Ström, A.; Müller, C. Roll-to-roll dyed conducting silk yarns: a versatile material for e-textile devices. Adv. Mater. Technol. 2018, 3, 1800251. doi: 10.1002/admt.201800251

    127. [127]

      Li, B.; Xiao, G.; Liu, F.; Qiao, Y.; Li, C. M.; Lu, Z. A flexible humidity sensor based on silk fabrics for human respiration monitoring. J. Mater. Chem. C 2018, 6, 4549−4554. doi: 10.1039/C8TC00238J

    128. [128]

      Liu, M.; Pu, X.; Jiang, C.; Liu, T.; Huang, X.; Chen, L.; Du, C.; Sun, J.; Hu, W.; Wang, Z. L. Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Adv. Mater. 2017, 29, 1703700. doi: 10.1002/adma.201703700

    129. [129]

      Guder, F.; Ainla, A.; Redston, J.; Mosadegh, B.; Glavan, A.; Martin, T. J.; Whitesides, G. M. Paper-based electrical respiration sensor. Angew. Chem. Int. Ed. 2016, 55, 5727−5732. doi: 10.1002/anie.201511805

    130. [130]

      Liao, X.; Zhang, Z.; Liao, Q.; Liang, Q.; Ou, Y.; Xu, M.; Li, M.; Zhang, G.; Zhang, Y. Flexible and printable paper-based strain sensors for wearable and large-area green electronics. Nanoscale 2016, 8, 13025−13032. doi: 10.1039/C6NR02172G

    131. [131]

      Liao, X.; Liao, Q.; Yan, X.; Liang, Q.; Si, H.; Li, M.; Wu, H.; Cao, S.; Zhang, Y. Flexible and highly sensitive strain sensors fabricated by pencil drawn for wearable monitor. Adv. Funct. Mater. 2015, 25, 2395−2401. doi: 10.1002/adfm.201500094

    132. [132]

      Mahadeva, S. K.; Walus, K.; Stoeber, B. Paper as a platform for sensing applications and other devices: a review. ACS Appl. Mater. Interfaces 2015, 7, 8345−8362. doi: 10.1021/acsami.5b00373

    133. [133]

      Zhang, Y.; Zhang, L.; Cui, K.; Ge, S.; Cheng, X.; Yan, M.; Yu, J.; Liu, H. Flexible electronics based on micro/nanostructured paper. Adv. Mater. 2018, 30, 1801588. doi: 10.1002/adma.201801588

    134. [134]

      Asadpoordarvish, A.; Sandström, A.; Larsen, C.; Bollström, R.; Toivakka, M.; Österbacka, R.; Edman, L. Light-emitting paper. Adv. Funct. Mater. 2015, 25, 3238−3245. doi: 10.1002/adfm.201500528

    135. [135]

      Xu, J.; Zhang, Y.; Li, L.; Kong, Q.; Zhang, L.; Ge, S.; Yu, J. Colorimetric and electrochemiluminescence dual-mode sensing of lead ion based on integrated lab-on-paper device. ACS Appl. Mater. Interfaces 2018, 10, 3431−3440. doi: 10.1021/acsami.7b18542

    136. [136]

      Yang, H.; Zhang, Y.; Li, L.; Zhang, L.; Lan, F.; Yu, J. Sudoku-like lab-on-paper cyto-device with dual enhancement of electrochemiluminescence intermediates strategy. Anal. Chem. 2017, 89, 7511−7519. doi: 10.1021/acs.analchem.7b01194

    137. [137]

      Zhang, Y.; Ge, L.; Li, M.; Yan, M.; Ge, S.; Yu, J.; Song, X.; Cao, B. Flexible paper-based ZnO nanorod light-emitting diodes induced multiplexed photoelectrochemical immunoassay. Chem. Commun. 2014, 50, 1417−1419. doi: 10.1039/C3CC48421A

    138. [138]

      Chen, G.; Matsuhisa, N.; Liu, Z.; Qi, D.; Cai, P.; Jiang, Y.; Wan, C.; Cui, Y.; Leow, W. R.; Liu, Z.; Gong, S.; Zhang, K. Q.; Cheng, Y.; Chen, X. Plasticizing silk protein for on-skin stretchable electrodes. Adv. Mater. 2018, 30, 1800129. doi: 10.1002/adma.201800129

    139. [139]

      Seo, J.-W.; Kim, H.; Kim, K.; Choi, S. Q.; Lee, H. J. Calcium-modified silk as a biocompatible and strong adhesive for epidermal electronics. Adv. Funct. Mater. 2018, 28, 1800802. doi: 10.1002/adfm.201800802

    140. [140]

      Kim, D. H.; Viventi, J.; Amsden, J. J.; Xiao, J.; Vigeland, L.; Kim, Y. S.; Blanco, J. A.; Panilaitis, B.; Frechette, E. S.; Contreras, D.; Kaplan, D. L.; Omenetto, F. G.; Huang, Y.; Hwang, K. C.; Zakin, M. R.; Litt, B.; Rogers, J. A. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 2010, 9, 511−517. doi: 10.1038/nmat2745

    141. [141]

      Hwang, S. W.; Tao, H.; Kim, D. H.; Cheng, H.; Song, J. K.; Rill, E.; Brenckle, M. A.; Panilaitis, B.; Won, S. M.; Kim, Y. S. A physically transient form of silicon electronics. Science 2012, 337, 1640−1644. doi: 10.1126/science.1226325

    142. [142]

      Mannoor, M. S.; Tao, H.; Clayton, J. D.; Sengupta, A.; Kaplan, D. L.; Naik, R. R.; Verma, N.; Omenetto, F. G.; McAlpine, M. C. Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun. 2012, 3, 763. doi: 10.1038/ncomms1767

    143. [143]

      Jin, J.; Lee, D.; Im, H. G.; Han, Y. C.; Jeong, E. G.; Rolandi, M.; Choi, K. C.; Bae, B. S. Chitin nanofiber transparent paper for flexible green electronics. Adv. Mater. 2016, 28, 5169−5175. doi: 10.1002/adma.201600336

    144. [144]

      Hong, M. S.; Choi, G. M.; Kim, J.; Jang, J.; Choi, B.; Kim, J. K.; Jeong, S.; Leem, S.; Kwon, H. Y.; Hwang, H. B.; Im, H. G.; Park, J. U.; Bae, B. S.; Jin, J. Biomimetic chitin-silk hybrids: an optically transparent structural platform for wearable devices and advanced electronics. Adv. Funct. Mater. 2018, 28, 1705480. doi: 10.1002/adfm.201705480

    145. [145]

      Fang, Z.; Zhu, H.; Bao, W.; Preston, C.; Liu, Z.; Dai, J.; Li, Y.; Hu, L. Highly transparent paper with tunable haze for green electronics. Energy Environ. Sci. 2014, 7, 3313−3319. doi: 10.1039/C4EE02236J

    146. [146]

      Barhoum, A.; Samyn, P.; Ohlund, T.; Dufresne, A. Review of recent research on flexible multifunctional nanopapers. Nanoscale 2017, 9, 15181−15205. doi: 10.1039/C7NR04656A

    147. [147]

      Jung, Y. H.; Chang, T. H.; Zhang, H.; Yao, C.; Zheng, Q.; Yang, V. W.; Mi, H.; Kim, M.; Cho, S. J.; Park, D. W.; Jiang, H.; Lee, J.; Qiu, Y.; Zhou, W.; Cai, Z.; Gong, S.; Ma, Z. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat. Commun. 2015, 6, 7170. doi: 10.1038/ncomms8170

    148. [148]

      Fujisaki, Y.; Koga, H.; Nakajima, Y.; Nakata, M.; Tsuji, H.; Yamamoto, T.; Kurita, T.; Nogi, M.; Shimidzu, N. Transparent nanopaper-based flexible organic thin-film transistor array. Adv. Funct. Mater. 2014, 24, 1657−1663. doi: 10.1002/adfm.201303024

    149. [149]

      Yin, Z.; Jian, M.; Wang, C.; Xia, K.; Liu, Z.; Wang, Q.; Zhang, M.; Wang, H.; Liang, X.; Liang, X.; Long, Y.; Yu, X.; Zhang, Y. Splash-resistant and light-weight silk-sheathed wires for textile electronics. Nano Lett. 2018, 18, 7085−7091. doi: 10.1021/acs.nanolett.8b03085

    150. [150]

      Zhang, C.; Fan, S.; Shao, H.; Hu, X.; Zhu, B.; Zhang, Y. Graphene trapped silk scaffolds integrate high conductivity and stability. Carbon 2019, 148, 16−27. doi: 10.1016/j.carbon.2019.03.042

    151. [151]

      Veres, J.; Ogier, S.; Lloyd, G.; de Leeuw, D. Gate insulators in organic field-effect transistors. Chem. Mater. 2004, 16, 4543−4555. doi: 10.1021/cm049598q

    152. [152]

      Wang, C. H.; Hsieh, C. Y.; Hwang, J. C. Flexible organic thin-film transistors with silk fibroin as the gate dielectric. Adv. Mater. 2011, 23, 1630−1634. doi: 10.1002/adma.201004071

    153. [153]

      Cunha, I.; Barras, R.; Grey, P.; Gaspar, D.; Fortunato, E.; Martins, R.; Pereira, L. Reusable cellulose-based hydrogel sticker film applied as gate dielectric in paper electrolyte-gated transistors. Adv. Funct. Mater. 2017, 27, 1606755. doi: 10.1002/adfm.201606755

    154. [154]

      Liu, Y. H.; Zhu, L. Q.; Feng, P.; Shi, Y.; Wan, Q. Freestanding artificial synapses based on laterally proton-coupled transistors on chitosan membranes. Adv. Mater. 2015, 27, 5599−5604. doi: 10.1002/adma.201502719

    155. [155]

      Tan, C.; Liu, Z.; Huang, W.; Zhang, H. Non-volatile resistive memory devices based on solution-processed ultrathin two-dimensional nanomaterials. Chem. Soc. Rev. 2015, 44, 2615−2628. doi: 10.1039/C4CS00399C

    156. [156]

      Lin, W. P.; Liu, S. J.; Gong, T.; Zhao, Q.; Huang, W. Polymer-based resistive memory materials and devices. Adv. Mater. 2014, 26, 570−606. doi: 10.1002/adma.201302637

    157. [157]

      Wang, H.; Meng, F.; Zhu, B.; Leow, W. R.; Liu, Y.; Chen, X. Resistive switching memory devices based on proteins. Adv. Mater. 2015, 27, 7670−7676. doi: 10.1002/adma.201405728

    158. [158]

      Hota, M. K.; Bera, M. K.; Kundu, B.; Kundu, S. C.; Maiti, C. K. A natural silk fibroin protein-based transparent bio-memristor. Adv. Funct. Mater. 2012, 22, 4493−4499. doi: 10.1002/adfm.201200073

    159. [159]

      Wang, H.; Du, Y.; Li, Y.; Zhu, B.; Leow, W. R.; Li, Y.; Pan, J.; Wu, T.; Chen, X. Configurable resistive switching between memory and threshold characteristics for protein-based devices. Adv. Funct. Mater. 2015, 25, 3825−3831. doi: 10.1002/adfm.201501389

    160. [160]

      Wang, H.; Zhu, B.; Wang, H.; Ma, X.; Hao, Y.; Chen, X. Ultra-lightweight resistive switching memory devices based on silk fibroin. Small 2016, 12, 3360−3365. doi: 10.1002/smll.201600893

    161. [161]

      Hosseini, N. R.; Lee, J. S. Biocompatible and flexible chitosan-based resistive switching memory with magnesium electrodes. Adv. Funct. Mater. 2015, 25, 5586−5592. doi: 10.1002/adfm.201502592

    162. [162]

      Chorsi, M. T.; Curry, E. J.; Chorsi, H. T.; Das, R.; Baroody, J.; Purohit, P. K.; Ilies, H.; Nguyen, T. D. Piezoelectric biomaterials for sensors and actuators. Adv. Mater. 2019, 31, 1802084. doi: 10.1002/adma.201802084

    163. [163]

      Jayathilaka, W.; Qi, K.; Qin, Y.; Chinnappan, A.; Serrano-Garcia, W.; Baskar, C.; Wang, H.; He, J.; Cui, S.; Thomas, S. W.; Ramakrishna, S. Significance of nanomaterials in wearables: a review on wearable actuators and sensors. Adv. Mater. 2019, 31, 1805921. doi: 10.1002/adma.201805921

    164. [164]

      Wang, B.; Facchetti, A. Mechanically flexible conductors for stretchable and wearable e-skin and e-textile devices. Adv. Mater. 2019, 31, 1901408. doi: 10.1002/adma.201901408

    165. [165]

      Yi, F.; Zhang, Z.; Kang, Z.; Liao, Q.; Zhang, Y. Recent advances in triboelectric nanogenerator-based health monitoring. Adv. Funct. Mater. 2019, 29, 1808849. doi: 10.1002/adfm.201808849

    166. [166]

      Yu, G. H.; Han, Q.; Qu, L. T. Graphene fibers: advancing applications in sensor, energy storage and conversion. Chinese J. Polym. Sci. 2019, 37, 535−547. doi: 10.1007/s10118-019-2245-9

    167. [167]

      Jia, T.; Wang, Y.; Dou, Y.; Li, Y.; Jung de Andrade, M.; Wang, R.; Fang, S.; Li, J.; Yu, Z.; Qiao, R.; Liu, Z.; Cheng, Y.; Su, Y.; Minary Jolandan, M.; Baughman, R. H.; Qian, D.; Liu, Z. Moisture sensitive smart yarns and textiles from self-balanced silk fiber muscles. Adv. Funct. Mater. 2019, 29, 1808241. doi: 10.1002/adfm.201808241

    168. [168]

      Kuang, Y.; Chen, C.; Cheng, J.; Pastel, G.; Li, T.; Song, J.; Jiang, F.; Li, Y.; Zhang, Y.; Jang, S. H.; Chen, G.; Li, T.; Hu, L. Selectively aligned cellulose nanofibers towards high-performance soft actuators. Extreme Mech. Lett. 2019, 29, 100463. doi: 10.1016/j.eml.2019.100463

    169. [169]

      Liu, D.; Tarakanova, A.; Hsu, C. C.; Yu, M.; Zheng, S.; Yu, L.; Liu, J.; He, Y.; Dunstan, D.; Buehler, M. J. Spider dragline silk as torsional actuator driven by humidity. Sci. Adv. 2019, 5, eaau9183. doi: 10.1126/sciadv.aau9183

    170. [170]

      Mirabedini, A.; Aziz, S.; Spinks, G. M.; Foroughi, J. Wet-spun biofiber for torsional artificial muscles. Soft Robot. 2017, 4, 421−430. doi: 10.1089/soro.2016.0057

    171. [171]

      Wang, Q.; Ling, S.; Liang, X.; Wang, H.; Lu, H.; Zhang, Y. Self-healable multifunctional electronic tattoos based on silk and graphene. Adv. Funct. Mater. 2019, 29, 1808695. doi: 10.1002/adfm.201808695

    172. [172]

      Zhou, Y.; Wan, C.; Yang, Y.; Yang, H.; Wang, S.; Dai, Z.; Ji, K.; Jiang, H.; Chen, X.; Long, Y. Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics. Adv. Funct. Mater. 2019, 29, 1806220. doi: 10.1002/adfm.201806220

    173. [173]

      Tong, R.; Chen, G.; Pan, D.; Qi, H.; Li, R.; Tian, J.; Lu, F.; He, M. Highly stretchable and compressible cellulose ionic hydrogels for flexible strain sensors. Biomacromolecules 2019, 20, 2096−2104. doi: 10.1021/acs.biomac.9b00322

    174. [174]

      Shao, C.; Wang, M.; Meng, L.; Chang, H.; Wang, B.; Xu, F.; Yang, J.; Wan, P. Mussel-inspired cellulose nanocomposite tough hydrogels with synergistic self-healing, adhesive, and strain-sensitive properties. Chem. Mater. 2018, 30, 3110−3121. doi: 10.1021/acs.chemmater.8b01172

    175. [175]

      Khan, Z. U.; Edberg, J.; Hamedi, M. M.; Gabrielsson, R.; Granberg, H.; Wagberg, L.; Engquist, I.; Berggren, M.; Crispin, X. Thermoelectric polymers and their elastic aerogels. Adv. Mater. 2016, 28, 4556−4562. doi: 10.1002/adma.201505364

    176. [176]

      Han, S.; Alvi, N. U. H.; Granlof, L.; Granberg, H.; Berggren, M.; Fabiano, S.; Crispin, X. A multiparameter pressure-temperature-humidity sensor based on mixed ionic-electronic cellulose aerogels. Adv. Sci. 2019, 6, 1802128. doi: 10.1002/advs.201802128

    177. [177]

      Wang, Y.; Wang, H.; Wang, H.; Zhang, M.; Liang, X.; Xia, K.; Zhang, Y. Calcium gluconate derived carbon nanosheet intrinsically decorated with nanopapillae for multifunctional printed flexible electronics. ACS Appl. Mater. Interfaces 2019, 11, 20272−20280. doi: 10.1021/acsami.9b04060

    178. [178]

      Li, Y.; Samad, Y. A.; Taha, T.; Cai, G.; Fu, S. Y.; Liao, K. Highly flexible strain sensor from tissue paper for wearable electronics. ACS Sustain. Chem. Eng. 2016, 4, 4288−4295. doi: 10.1021/acssuschemeng.6b00783

    179. [179]

      Chen, S.; Song, Y.; Ding, D.; Ling, Z.; Xu, F. Flexible and anisotropic strain sensor based on carbonized crepe paper with aligned cellulose fibers. Adv. Funct. Mater. 2018, 28, 1802547. doi: 10.1002/adfm.201802547

    180. [180]

      Wu, Z. Y.; Li, C.; Liang, H. W.; Chen, J. F.; Yu, S. H. Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose. Angew. Chem. Int. Ed. 2013, 52, 2925−2929. doi: 10.1002/anie.201209676

    181. [181]

      Chyan, Y.; Ye, R.; Li, Y.; Singh, S. P.; Arnusch, C. J.; Tour, J. M. Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food. ACS Nano 2018, 12, 2176−2183. doi: 10.1021/acsnano.7b08539

    182. [182]

      Lee, S.; Jeon, S. Laser-induced graphitization of cellulose nanofiber substrates under ambient conditions. ACS Sustain. Chem. Eng. 2019, 7, 2270−2275. doi: 10.1021/acssuschemeng.8b04955

    183. [183]

      Ye, R.; Chyan, Y.; Zhang, J.; Li, Y.; Han, X.; Kittrell, C.; Tour, J. M. Laser-induced graphene formation on wood. Adv. Mater. 2017, 29, 1702211. doi: 10.1002/adma.201702211

    184. [184]

      Le, T. S. D.; Park, S.; An, J.; Lee, P. S.; Kim, Y. J. Ultrafast laser pulses enable one-step graphene patterning on woods and leaves for green electronics. Adv. Funct. Mater. 2019, 29, 1902771. doi: 10.1002/adfm.201902771

    185. [185]

      Wang, C.; Xia, K.; Zhang, M.; Jian, M.; Zhang, Y. An all-silk-derived dual-mode e-skin for simultaneous temperature-pressure detection. ACS Appl. Mater. Interfaces 2017, 9, 39484−39492. doi: 10.1021/acsami.7b13356

    186. [186]

      Wang, C.; Zhang, M.; Xia, K.; Gong, X.; Wang, H.; Yin, Z.; Guan, B.; Zhang, Y. Intrinsically stretchable and conductive textile by a scalable process for elastic wearable electronics. ACS Appl. Mater. Interfaces 2017, 9, 13331−13338. doi: 10.1021/acsami.7b02985

    187. [187]

      Wang, C.; Li, X.; Gao, E.; Jian, M.; Xia, K.; Wang, Q.; Xu, Z.; Ren, T.; Zhang, Y. Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors. Adv. Mater. 2016, 28, 6640−6648. doi: 10.1002/adma.201601572

    188. [188]

      Zhang, M.; Wang, C.; Liang, X.; Yin, Z.; Xia, K.; Wang, H.; Jian, M.; Zhang, Y. Weft-knitted fabric for a highly stretchable and low-voltage wearable heater. Adv. Electron. Mater. 2017, 3, 1700193. doi: 10.1002/aelm.201700193

    189. [189]

      Wang, Q.; Jian, M.; Wang, C.; Zhang, Y. Carbonized silk nanofiber membrane for transparent and sensitive electronic skin. Adv. Funct. Mater. 2017, 27, 1605657. doi: 10.1002/adfm.201605657

    190. [190]

      Zhang, M.; Wang, C.; Wang, H.; Jian, M.; Hao, X.; Zhang, Y. Carbonized cotton fabric for high-performance wearable strain sensors. Adv. Funct. Mater. 2017, 27, 1604795. doi: 10.1002/adfm.201604795

    191. [191]

      Wang, C.; Xia, K.; Jian, M.; Wang, H.; Zhang, M.; Zhang, Y. Carbonized silk georgette as an ultrasensitive wearable strain sensor for full-range human activity monitoring. J. Mater. Chem. C 2017, 5, 7604−7611. doi: 10.1039/C7TC01962A

    192. [192]

      Lu, W.; Jian, M.; Wang, Q.; Xia, K.; Zhang, M.; Wang, H.; He, W.; Lu, H.; Zhang, Y. Hollow core-sheath nanocarbon spheres grown on carbonized silk fabrics for self-supported and nonenzymatic glucose sensing. Nanoscale 2019, 11, 11856−11863. doi: 10.1039/C9NR01791G

    193. [193]

      Ye, R.; James, D. K.; Tour, J. M. Laser-induced graphene: from discovery to translation. Adv. Mater. 2019, 31, 1803621. doi: 10.1002/adma.201803621

    194. [194]

      Huang, L.; Lin, S.; Xu, Z.; Zhou, H.; Duan, J.; Hu, B.; Zhou, J. Fiber-based energy conversion devices for human-body energy harvesting. Adv. Mater. 2019. doi: 10.1002/adma.201902034

    195. [195]

      Liu, J.; Cao, H.; Jiang, B.; Xue, Y.; Fu, L. Newborn 2D materials for flexible energy conversion and storage. Sci. China Mater. 2016, 59, 459−474.

    196. [196]

      Li, S.; Huang, D.; Zhang, B.; Xu, X.; Wang, M.; Yang, G.; Shen, Y. Flexible supercapacitors based on bacterial cellulose paper electrodes. Adv. Energy Mater. 2014, 4, 1301655. doi: 10.1002/aenm.201301655

    197. [197]

      Chen, Y.; Cai, K.; Liu, C.; Song, H.; Yang, X. High-performance and breathable polypyrrole coated air-laid paper for flexible all-solid-state supercapacitors. Adv. Energy Mater. 2017, 7, 1701247. doi: 10.1002/aenm.201701247

    198. [198]

      Liu, L.; Yu, Y.; Yan, C.; Li, K.; Zheng, Z. Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene-metallic textile composite electrodes. Nat. Commun. 2015, 6, 7260. doi: 10.1038/ncomms8260

    199. [199]

      Zhang, C. J.; Kremer, M. P.; Seral-Ascaso, A.; Park, S. H.; McEvoy, N.; Anasori, B.; Gogotsi, Y.; Nicolosi, V. Stamping of flexible, coplanar micro-supercapacitors using Mxene inks. Adv. Funct. Mater. 2018, 28, 1705506. doi: 10.1002/adfm.201705506

    200. [200]

      Huang, Q.; Wang, D.; Zheng, Z. Textile-based electrochemical energy storage devices. Adv. Energy Mater. 2016, 6, 1600783. doi: 10.1002/aenm.201600783

    201. [201]

      Li, P.; Zhang, Y.; Zheng, Z. Polymer-assisted metal deposition (PAMD) for flexible and wearable electronics: principle, materials, printing, and devices. Adv. Mater. 2019, 31, 1902987. doi: 10.1002/adma.201902987

    202. [202]

      Das, C.; Krishnamoorthy, K. Flexible microsupercapacitors using silk and cotton substrates. ACS Appl. Mater. Interfaces 2016, 8, 29504−29510. doi: 10.1021/acsami.6b10431

    203. [203]

      Jost, K.; Durkin, D. P.; Haverhals, L. M.; Brown, E. K.; Langenstein, M.; de Long, H. C.; Trulove, P. C.; Gogotsi, Y.; Dion, G. Natural fiber welded electrode yarns for knittable textile supercapacitors. Adv. Energy Mater. 2015, 5, 1401286. doi: 10.1002/aenm.201401286

    204. [204]

      Yang, Y.; Huang, Q.; Niu, L.; Wang, D.; Yan, C.; She, Y.; Zheng, Z. Waterproof, ultrahigh areal-capacitance, wearable supercapacitor fabrics. Adv. Mater. 2017, 29, 1606679. doi: 10.1002/adma.201606679

    205. [205]

      Weng, Z.; Su, Y.; Wang, D. W.; Li, F.; Du, J.; Cheng, H. M. Graphene-cellulose paper flexible supercapacitors. Adv. Energy Mater. 2011, 1, 917−922. doi: 10.1002/aenm.201100312

    206. [206]

      Ko, Y.; Kwon, M.; Bae, W. K.; Lee, B.; Lee, S. W.; Cho, J. Flexible supercapacitor electrodes based on real metal-like cellulose papers. Nat. Commun. 2017, 8, 536. doi: 10.1038/s41467-017-00550-3

    207. [207]

      Zhang, L.; Zhu, P.; Zhou, F.; Zeng, W.; Su, H.; Li, G.; Gao, J.; Sun, R.; Wong, C. P. Flexible asymmetrical solid-state supercapacitors based on laboratory filter paper. ACS Nano 2016, 10, 1273−1282. doi: 10.1021/acsnano.5b06648

    208. [208]

      Chen, C.; Xu, S.; Kuang, Y.; Gan, W.; Song, J.; Chen, G.; Pastel, G.; Liu, B.; Li, Y.; Huang, H.; Hu, L. Nature-inspired tri-pathway design enabling high-performance flexible Li-O2 batteries. Adv. Energy Mater. 2019, 9, 1802964. doi: 10.1002/aenm.201802964

    209. [209]

      Zhu, Y. H.; Yuan, S.; Bao, D.; Yin, Y. B.; Zhong, H. X.; Zhang, X. B.; Yan, J. M.; Jiang, Q. Decorating waste cloth via industrial wastewater for tube-type flexible and wearable sodium-ion batteries. Adv. Mater. 2017, 29, 1603719. doi: 10.1002/adma.201603719

    210. [210]

      Li, M.; Wahyudi, W.; Kumar, P.; Wu, F.; Yang, X.; Li, H.; Li, L. J.; Ming, J. Scalable approach to construct free-standing and flexible carbon networks for lithium-sulfur battery. ACS Appl. Mater. Interfaces 2017, 9, 8047−8054. doi: 10.1021/acsami.6b12546

    211. [211]

      Xu, S.; Chen, C.; Kuang, Y.; Song, J.; Gan, W.; Liu, B.; Hitz, E. M.; Connell, J. W.; Lin, Y.; Hu, L. Flexible lithium-CO2 battery with ultrahigh capacity and stable cycling. Energ. Environ. Sci. 2018, 11, 3231−3237. doi: 10.1039/C8EE01468J

    212. [212]

      Ma, Y.; Xie, X.; Lv, R.; Na, B.; Ouyang, J.; Liu, H. Nanostructured polyaniline-cellulose papers for solid-state flexible aqueous Zn-ion battery. ACS Sustain. Chem. Eng. 2018, 6, 8697−8703. doi: 10.1021/acssuschemeng.8b01014

    213. [213]

      Cheng, Q.; Ye, D.; Yang, W.; Zhang, S.; Chen, H.; Chang, C.; Zhang, L. Construction of transparent cellulose-based nanocomposite papers and potential application in flexible solar cells. ACS Sustain. Chem. Eng. 2018, 6, 8040−8047. doi: 10.1021/acssuschemeng.8b01599

    214. [214]

      Jia, X.; Wang, C.; Zhao, C.; Ge, Y.; Wallace, G. G. Toward biodegradable Mg-air bioelectric batteries composed of silk fibroin-polypyrrole film. Adv. Funct. Mater. 2016, 26, 1454−1462. doi: 10.1002/adfm.201503498

    215. [215]

      Yang, X.; Shi, K.; Zhitomirsky, I.; Cranston, E. D. Cellulose nanocrystal aerogels as universal 3D lightweight substrates for supercapacitor materials. Adv. Mater. 2015, 27, 6104−6109. doi: 10.1002/adma.201502284

    216. [216]

      Zhang, T. W.; Tian, T.; Shen, B.; Song, Y. H.; Yao, H. B. Recent advances on biopolymer fiber based membranes for lithium-ion battery separators. Compos. Commun. 2019, 14, 7−14. doi: 10.1016/j.coco.2019.05.003

    217. [217]

      Waqas, M.; Ali, S.; Feng, C.; Chen, D.; Han, J.; He, W. Recent development in separators for high-temperature lithium-ion batteries. Small 2019, 15, 1901689.

    218. [218]

      Zhang, W.; Tu, Z.; Qian, J.; Choudhury, S.; Archer, L. A.; Lu, Y. Design principles of functional polymer separators for high-energy, metal-based batteries. Small 2018, 14, 1703001. doi: 10.1002/smll.201703001

    219. [219]

      Pereira, R. F. P.; Gonçalves, R.; Fernandes, M.; Costa, C. M.; Silva, M. M.; de Zea Bermudez, V.; Lanceros-Mendez, S. Bombyx mori silkworm cocoon separators for lithium-ion batteries with superior safety and sustainability. Adv. Sustain. Syst. 2018, 2, 1800098. doi: 10.1002/adsu.201800098

    220. [220]

      Tan, X.; Zhao, W.; Mu, T. Controllable exfoliation of natural silk fibers into nanofibrils by protein denaturant deep eutectic solvent: nanofibrous strategy for multifunctional membranes. Green Chem. 2018, 20, 3625−3633. doi: 10.1039/C8GC01609G

    221. [221]

      Pereira, R. F. P.; Brito-Pereira, R.; Goncalves, R.; Silva, M. P.; Costa, C. M.; Silva, M. M.; de Zea Bermudez, V.; Lanceros-Mendez, S. Silk fibroin separators: a step toward lithium-ion batteries with enhanced sustainability. ACS Appl. Mater. Interfaces 2018, 10, 5385−5394. doi: 10.1021/acsami.7b13802

    222. [222]

      Zhang, L. C.; Sun, X.; Hu, Z.; Yuan, C. C.; Chen, C. H. Rice paper as a separator membrane in lithium-ion batteries. J. Power Sources 2012, 204, 149−154. doi: 10.1016/j.jpowsour.2011.12.028

    223. [223]

      Yu, B. C.; Park, K.; Jang, J. H.; Goodenough, J. B. Cellulose-based porous membrane for suppressing Li dendrite formation in lithium-sulfur battery. ACS Energy Lett. 2016, 1, 633−637. doi: 10.1021/acsenergylett.6b00209

    224. [224]

      Pan, R.; Sun, R.; Wang, Z.; Lindh, J.; Edström, K.; Strømme, M.; Nyholm, L. Sandwich-structured nano/micro fiber-based separators for lithium metal batteries. Nano Energy 2019, 55, 316−326. doi: 10.1016/j.nanoen.2018.11.005

    225. [225]

      Zolin, L.; Destro, M.; Chaussy, D.; Penazzi, N.; Gerbaldi, C.; Beneventi, D. Aqueous processing of paper separators by filtration dewatering: towards Li-ion paper batteries. J. Mater. Chem. A 2015, 3, 14894−14901. doi: 10.1039/C5TA03716F

    226. [226]

      Zhang, T. W.; Chen, J. L.; Tian, T.; Shen, B.; Peng, Y. D.; Song, Y. H.; Jiang, B.; Lu, L. L.; Yao, H. B.; Yu, S. H. Sustainable separators for high-performance lithium ion batteries enabled by chemical modifications. Adv. Funct. Mater. 2019, 29, 1902023. doi: 10.1002/adfm.201902023

    227. [227]

      Zhang, T. W.; Shen, B.; Yao, H. B.; Ma, T.; Lu, L. L.; Zhou, F.; Yu, S. H. Prawn shell derived chitin nanofiber membranes as advanced sustainable separators for Li/Na-ion batteries. Nano Lett. 2017, 17, 4894−4901. doi: 10.1021/acs.nanolett.7b01875

    228. [228]

      Kim, J. K.; Kim, D. H.; Joo, S. H.; Choi, B.; Cha, A.; Kim, K. M.; Kwon, T. H.; Kwak, S. K.; Kang, S. J.; Jin, J. Hierarchical chitin fibers with aligned nanofibrillar architectures: a nonwoven-mat separator for lithium metal batteries. ACS Nano 2017, 11, 6114−6121. doi: 10.1021/acsnano.7b02085

    229. [229]

      Singh, R.; Polu, A. R.; Bhattacharya, B.; Rhee, H. W.; Varlikli, C.; Singh, P. K. Perspectives for solid biopolymer electrolytes in dye sensitized solar cell and battery application. Renew. Sust. Energ. Rev. 2016, 65, 1098−1117. doi: 10.1016/j.rser.2016.06.026

    230. [230]

      Willgert, M.; Leijonmarck, S.; Lindbergh, G.; Malmström, E.; Johansson, M. Cellulose nanofibril reinforced composite electrolytes for lithium ion battery applications. J. Mater. Chem. A 2014, 2, 13556. doi: 10.1039/C4TA01139B

    231. [231]

      Zhao, N.; Wu, F.; Xing, Y.; Qu, W.; Chen, N.; Shang, Y.; Yan, M.; Li, Y.; Li, L.; Chen, R. Flexible hydrogel electrolyte with superior mechanical properties based on poly(vinyl alcohol) and bacterial cellulose for the solid-state zinc-air batteries. ACS Appl. Mater. Interfaces 2019, 11, 15537−15542. doi: 10.1021/acsami.9b00758

    232. [232]

      Buraidah, M. H.; Teo, L. P.; Au, Yong C. M.; Shah, S.; Arof, A. K. Performance of polymer electrolyte based on chitosan blended with poly(ethylene oxide) for plasmonic dye-sensitized solar cell. Opt. Mater. 2016, 57, 202−211. doi: 10.1016/j.optmat.2016.04.028

    233. [233]

      Zhao, D.; Chen, C.; Zhang, Q.; Chen, W.; Liu, S.; Wang, Q.; Liu, Y.; Li, J.; Yu, H. High performance, flexible, solid-state supercapacitors based on a renewable and biodegradable mesoporous cellulose membrane. Adv. Energy Mater. 2017, 7, 1700739. doi: 10.1002/aenm.201700739

    234. [234]

      Jia, X.; Wang, C.; Ranganathan, V.; Napier, B.; Yu, C.; Chao, Y.; Forsyth, M.; Omenetto, F. G.; MacFarlane, D. R.; Wallace, G. G. A biodegradable thin-film magnesium primary battery using silk fibroin-ionic liquid polymer electrolyte. ACS Energy Lett. 2017, 2, 831−836. doi: 10.1021/acsenergylett.7b00012

    235. [235]

      Xu, D.; Wang, B.; Wang, Q.; Gu, S.; Li, W.; Jin, J.; Chen, C.; Wen, Z. High-strength internal cross-linking bacterial cellulose-network-based gel polymer electrolyte for dendrite-suppressing and high-rate lithium batteries. ACS Appl. Mater. Interfaces 2018, 10, 17809−17819. doi: 10.1021/acsami.8b00034

    236. [236]

      Cao, L.; Yang, M.; Wu, D.; Lyu, F.; Sun, Z.; Zhong, X.; Pan, H.; Liu, H.; Lu, Z. Biopolymer-chitosan based supramolecular hydrogels as solid state electrolytes for electrochemical energy storage. Chem. Commun. 2017, 53, 1615−1618. doi: 10.1039/C6CC08658F

    237. [237]

      Wan, S.; Peng, J.; Jiang, L.; Cheng, Q. Bioinspired graphene-based nanocomposites and their application in flexible energy devices. Adv. Mater. 2016, 28, 7862−7898. doi: 10.1002/adma.201601934

    238. [238]

      Shown, I.; Ganguly, A.; Chen, L. C.; Chen, K. H. Conducting polymer-based flexible supercapacitor. Energy Sci. Eng. 2015, 3, 2−26. doi: 10.1002/ese3.50

    239. [239]

      Zhang, X.; Hou, L.; Ciesielski, A.; Samorì, P. 2D materials beyond graphene for high-performance energy storage applications. Adv. Energy Mater. 2016, 6, 1600671. doi: 10.1002/aenm.201600671

    240. [240]

      Wang, X.; Yao, C.; Wang, F.; Li, Z. Cellulose-based nanomaterials for energy applications. Small 2017, 13, 1702240. doi: 10.1002/smll.201702240

    241. [241]

      Heo, J. S.; Eom, J.; Kim, Y. H.; Park, S. K. Recent progress of textile-based wearable electronics: a comprehensive review of materials, devices, and applications. Small 2018, 14, 1703034. doi: 10.1002/smll.201703034

    242. [242]

      Zhao, C. E.; Gai, P.; Song, R.; Chen, Y.; Zhang, J.; Zhu, J. J. Nanostructured material-based biofuel cells: recent advances and future prospects. Chem. Soc. Rev. 2017, 46, 1545−1564. doi: 10.1039/C6CS00044D

    243. [243]

      Kim, H. M.; Sun, H. H.; Belharouak, I.; Manthiram, A.; Sun, Y. K. An alternative approach to enhance the performance of high sulfur-loading electrodes for Li-S batteries. ACS Energy Lett. 2016, 1, 136−141. doi: 10.1021/acsenergylett.6b00104

    244. [244]

      Kuang, Y.; Chen, C.; Pastel, G.; Li, Y.; Song, J.; Mi, R.; Kong, W.; Liu, B.; Jiang, Y.; Yang, K.; Hu, L. Conductive cellulose nanofiber enabled thick electrode for compact and flexible energy storage devices. Adv. Energy Mater. 2018, 8, 1802398. doi: 10.1002/aenm.201802398

    245. [245]

      Chen, C.; Lee, S. H.; Cho, M.; Kim, J.; Lee, Y. Cross-linked chitosan as an efficient binder for Si anode of Li-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 2658−2665. doi: 10.1021/acsami.5b10673

    246. [246]

      Hou, J.; Cao, C.; Idrees, F.; Ma, X. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 2015, 9, 2556−2564. doi: 10.1021/nn506394r

    247. [247]

      Yun, Y. S.; Cho, S. Y.; Shim, J.; Kim, B. H.; Chang, S. J.; Baek, S. J.; Huh, Y. S.; Tak, Y.; Park, Y. W.; Park, S.; Jin, H. J. Microporous carbon nanoplates from regenerated silk proteins for supercapacitors. Adv. Mater. 2013, 25, 1993−1998. doi: 10.1002/adma.201204692

    248. [248]

      Wang, C.; Chen, W.; Xia, K.; Xie, N.; Wang, H.; Zhang, Y. Silk-derived 2D porous carbon nanosheets with atomically-dispersed Fe-Nx-C sites for highly efficient oxygen reaction catalysts. Small 2019, 15, 1804966. doi: 10.1002/smll.201804966

    249. [249]

      Wang, C.; Xie, N. H.; Zhang, Y.; Huang, Z.; Xia, K.; Wang, H.; Guo, S.; Xu, B. Q.; Zhang, Y. Silk-derived highly active oxygen electrocatalysts for flexible and rechargeable Zn-air batteries. Chem. Mater. 2019, 31, 1023−1029. doi: 10.1021/acs.chemmater.8b04572

    250. [250]

      Zhou, B.; Zhang, M.; He, W.; Wang, H.; Jian, M.; Zhang, Y. Blue rose-inspired approach towards highly graphitic carbons for efficient electrocatalytic water splitting. Carbon 2019, 150, 21−26. doi: 10.1016/j.carbon.2019.05.009

    251. [251]

      You, J.; Li, M.; Ding, B.; Wu, X.; Li, C. Crab chitin-based 2D soft nanomaterials for fully biobased electric devices. Adv. Mater. 2017, 29, 1606895. doi: 10.1002/adma.201606895

    252. [252]

      Li, Y.; Hu, Y. S.; Titirici, M. M.; Chen, L.; Huang, X. Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1600659. doi: 10.1002/aenm.201600659

    253. [253]

      Song, H.; Xu, S.; Li, Y.; Dai, J.; Gong, A.; Zhu, M.; Zhu, C.; Chen, C.; Chen, Y.; Yao, Y.; Liu, B.; Song, J.; Pastel, G.; Hu, L. Hierarchically porous, ultrathick, “breathable” wood-derived cathode for lithium-oxygen batteries. Adv. Energy Mater. 2018, 8, 1701203. doi: 10.1002/aenm.201701203

    254. [254]

      Shen, F.; Zhu, H.; Luo, W.; Wan, J.; Zhou, L.; Dai, J.; Zhao, B.; Han, X.; Fu, K.; Hu, L. Chemically crushed wood cellulose fiber towards high-performance sodium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 23291−23296. doi: 10.1021/acsami.5b07583

    255. [255]

      Xia, T.; Zhang, X.; Zhao, J.; Li, Q.; Ao, C.; Hu, R.; Zheng, Z.; Zhang, W.; Lu, C.; Deng, Y. Flexible and conductive carbonized cotton fabrics coupled with a nanostructured Ni(OH)2 coating for high performance aqueous symmetric supercapacitors. ACS Sustain. Chem. Eng. 2019, 7, 5231−5239. doi: 10.1021/acssuschemeng.8b06150

    256. [256]

      Xu, X.; Zhou, J.; Nagaraju, D. H.; Jiang, L.; Marinov, V. R.; Lubineau, G.; Alshareef, H. N.; Oh, M. Flexible, highly graphitized carbon aerogels based on bacterial cellulose/lignin: catalyst-free synthesis and its application in energy storage devices. Adv. Funct. Mater. 2015, 25, 3193−3202. doi: 10.1002/adfm.201500538

    257. [257]

      Ding, B.; Huang, S.; Pang, K.; Duan, Y.; Zhang, J. Nitrogen-enriched carbon nanofiber aerogels derived from marine chitin for energy storage and environmental remediation. ACS Sustain. Chem. Eng. 2018, 6, 177−185. doi: 10.1021/acssuschemeng.7b02164

    258. [258]

      Bao, L.; Li, X. Towards textile energy storage from cotton T-shirts. Adv. Mater. 2012, 24, 3246−3252. doi: 10.1002/adma.201200246

    259. [259]

      Gao, Z.; Zhang, Y.; Song, N.; Li, X. Towards flexible lithium-sulfur battery from natural cotton textile. Electrochim. Acta 2017, 246, 507−516. doi: 10.1016/j.electacta.2017.06.069

    260. [260]

      Ma, D. L.; Ma, Y.; Chen, Z. W.; Hu, A. M. A silk fabric derived carbon fibre net for transparent capacitive touch pads and all-solid supercapacitors. J. Mater. Chem. A 2017, 5, 20608−20614. doi: 10.1039/C7TA05383E

    261. [261]

      Gao, Z.; Song, N.; Zhang, Y.; Li, X. Cotton-textile-enabled, flexible lithium-ion batteries with enhanced capacity and extended lifespan. Nano Lett. 2015, 15, 8194−8203. doi: 10.1021/acs.nanolett.5b03698

    262. [262]

      Kim, H. J.; Kim, J. H.; Jun, K. W.; Kim, J. H.; Seung, W. C.; Kwon, O. H.; Park, J. Y.; Kim, S. W.; Oh, I. K. Silk nanofiber-networked bio-triboelectric generator: silk bio-TEG. Adv. Energy Mater. 2016, 6, 1502329. doi: 10.1002/aenm.201502329

    263. [263]

      He, X.; Zou, H.; Geng, Z.; Wang, X.; Ding, W.; Hu, F.; Zi, Y.; Xu, C.; Zhang, S. L.; Yu, H.; Xu, M.; Zhang, W.; Lu, C.; Wang, Z. L. A hierarchically nanostructured cellulose fiber-based triboelectric nanogenerator for self-powered healthcare products. Adv. Funct. Mater. 2018, 28, 1802398.

    264. [264]

      Zhang, M.; Zhao, M.; Jian, M.; Wang, C.; Yu, A.; Yin, Z.; Liang, X.; Wang, H.; Xia, K.; Liang, X.; Zhai, J.; Zhang, Y. Printable smart pattern for multifunctional energy-management e-textile. Matter 2019, 1, 168−179. doi: 10.1016/j.matt.2019.02.003

  • 加载中
    1. [1]

      Wei ChenQin BinZheng-wu BaiXing-ping ZhouXiao-lin Xie . PARTIAL CARBAMOYLATION OF CELLULOSE MICROSPHERES:A NEW METHOD TO PREPARE ADSORBENTS FOR LIQUID CHROMATOGRAPHY. Chinese J. Polym. Sci, 2013, 31(12): 1725-1732. doi: 10.1007/s10118-013-1312-x

    2. [2]

      Kun-yuan LuoZheng-zhong Shao . A Novel Regenerated Silk Fibroin-based Hydrogels with Magnetic and Catalytic Activities. Chinese J. Polym. Sci, 2017, 35(4): 515-523. doi: 10.1007/s10118-017-1910-0

    3. [3]

      Lin-Lin DuBing-Li JiangXiao-Hong ChenYun-Zhong WangLin-Min ZouYuan-Li LiuYong-Yang GongChun WeiWang-Zhang Yuan . Clustering-triggered Emission of Cellulose and Its Derivatives. Chinese J. Polym. Sci, 2019, 37(4): 409-415. doi: 10.1007/s10118-019-2215-2

    4. [4]


    5. [5]

      Yu DuanXin ChenZheng-Zhong Shao . The Silk Textile Embedded in Silk Fibroin Composite: Preparation and Properties. Chinese J. Polym. Sci, 2018, 36(9): 1043-1046. doi: 10.1007/s10118-018-2117-8

    6. [6]

      Huan ZhouZheng-zhong ShaoXin Chen . Wet-spinning of Regenerated Silk Fiber from Aqueous Silk Fibroin Solutions:Influence of Calcium Ion Addition in Spinning Dope on the Performance of Regenerated Silk Fiber. Chinese J. Polym. Sci, 2014, 32(1): 29-34. doi: 10.1007/s10118-014-1368-2

    7. [7]

      Chun-tao ChenYang HuangChun-lin ZhuYing NieJia-zhi YangDong-ping Sun . Synthesis and Characterization of Hydroxypropyl Cellulose from Bacterial Cellulose. Chinese J. Polym. Sci, 2014, 32(4): 439-448. doi: 10.1007/s10118-014-1419-8

    8. [8]


    9. [9]


    10. [10]

      Zhan-xiong LiFei-fei JinBen-wen CaoXiao-fei Wang . MODIFICATION OF SILK FIBER via EMULSION GRAFT COPOLYMERIZATION WITH FLUOROACRYLATE. Chinese J. Polym. Sci, 2008, 26(3): 353-362.

    11. [11]

      . PROPERTIES OF SILK FIBROIN/POLY(ETHYLENE GLYCOL)400 BLEND FILMS*. Chinese J. Polym. Sci, 2003, 21(1): 87-91.

    12. [12]

      Cong-heng ChenJuan ZhaoZhou YangQing SunPing Zhou . Nanofibers of Silk Fibroin Controlled by the Crystallization of Polyethylene Glycol in Frozen Solution. Chinese J. Polym. Sci, 2017, 35(11): 1373-1380. doi: 10.1007/s10118-017-1974-x

    13. [13]


    14. [14]

      ZHANG LinaLIU HaiqingZHENG LianshuangZHANG JiayaoDU YuminLIU Weili . BIODEGRADATION OF REGENERATED CELLULOSE FILMS BY FUNGI. Chinese J. Polym. Sci, 1996, 14(4): 338-345.

    15. [15]

      . ADSORPTION AND RELEASING PROPERTIES OF BEAD CELLULOSE. Chinese J. Polym. Sci, 2004, 22(5): 417-423.

    16. [16]


    17. [17]

      Jing-xiao HuXuan CaiShao-bo MoLi ChenXin-yu ShenHua Tong . Fabrication and Characterization of Chitosan-Silk Fibroin/Hydroxyapatite Composites via in situ Precipitation for Bone Tissue Engineering. Chinese J. Polym. Sci, 2015, 33(12): 1661-1671. doi: 10.1007/s10118-015-1710-3

    18. [18]

      CHEN QiZHANG Dehe . GRAFTING OF HUMIC ACID ONTO COTTON CELLULOSE (Ⅱ)*. Chinese J. Polym. Sci, 1988, 6(2): 165-171.

    19. [19]


    20. [20]


Article Metrics
  • PDF Downloads(101)
  • Abstract views(3101)
  • HTML views(512)
  • Cited By(0)

通讯作者: 陈斌,
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索


DownLoad:  Full-Size Img  PowerPoint