Citation: Chen, H. W.; Li, C. PEDOT: fundamentals and its nanocomposites for energy storage. Chinese J. Polym. Sci. 2020, 38, 435–448 doi: 10.1007/s10118-020-2373-2 shu

PEDOT: Fundamentals and Its Nanocomposites for Energy Storage

Figures(12)

  • PEDOT, or poly(3,4-ethylenedioxythiophene), is among the most successful conducting polymer products because of its stable conductivity, colloidal processability, and rich assembly behavior. Since the very first patents on PEDOT filed in 1988, the material has been widely explored for decades in many applications. In this review, a comprehensive summary on the synthesis, processing and post-treatment of PEDOT will be presented for the sake of the discussion on PEDOT and its nanocomposites for energy storage. Knowing what PEDOT lends itself to the electrode materials is of importance to the rational design of energy storage devices that maximize the real-world performance. Based on these discussions, a roadmap for the development of PEDOT as promising multifunctional electrode component is presented.
  • 加载中
    1. [1]

      Letheby, H. On the production of a blue substance by the electrolysis of sulphate of aniline. J. Chem. Soc. 1862, 15, 161−163. doi: 10.1039/JS8621500161

    2. [2]

      Bhadra, S.; Khastgir, D.; Singha, N. K.; Lee, J. H. Progress in preparation, processing and applications of polyaniline. Prog. Polym. Sci. 2009, 34, 783−810. doi: 10.1016/j.progpolymsci.2009.04.003

    3. [3]

      Geniès, E. M.; Boyle, A.; Lapkowski, M.; Tsintavis, C. Polyaniline: a historical survey. Synth. Met. 1990, 36, 139−182. doi: 10.1016/0379-6779(90)90050-U

    4. [4]

      Chiang, C. K.; Fincher, C. R.; Park, Y. W.; Heeger, A. J.; Shirakawa, H.; Louis, E. J.; Gau, S. C.; MacDiarmid, A. G. Electrical conductivity in doped polyacetylene. Phys. Rev. Lett. 1977, 39, 1098−1101. doi: 10.1103/PhysRevLett.39.1098

    5. [5]

      Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. 1977, 578−580.

    6. [6]

      Kanazawa, K. K.; Diaz, A. F.; Geiss, R. H.; Gill, W. D.; Kwak, J. F.; Logan, J. A.; Rabolt, J. F.; Street, G. B. “Organic metals”: polypyrrole, a stable synthetic “metallic” polymer. J. Chem. Soc. Chem. Commun. 1979, 854−855.

    7. [7]

      Tourillon, G.; Garnier, F. New electrochemically generated organic conducting polymers. J. Electroanal. Chem. 1982, 135, 173−178. doi: 10.1016/0022-0728(82)90015-8

    8. [8]

      Kudoh, Y.; Akami, K.; Matsuya, Y. Solid electrolytic capacitor with highly stable conducting polymer as a counter electrode. Synth. Met. 1999, 102, 973−974. doi: 10.1016/S0379-6779(98)01012-1

    9. [9]

      Jonas, F.; Heywang, G.; Schmidtberg, W. 1988, Germany Pat., DE 38 13 589 A1.

    10. [10]

      Jonas, F.; Schrader, L. Conductive modifications of polymers with polypyrroles and polythiophenes. Synth. Met. 1991, 41, 831−836. doi: 10.1016/0379-6779(91)91506-6

    11. [11]

      Elschner, A.; Bruder, F.; Heuer, H. W.; Jonas, F.; Karbach, A.; Kirchmeyer, S.; Thurm, S. PEDT/PSS for efficient hole-injection in hybrid organic light-emitting diodes. Synth. Met. 2000, 111, 139−143.

    12. [12]

      Liu, Y.; Varahramyan, K.; Cui, T. Low-voltage all-polymer field-effect transistor fabricated using an inkjet printing technique. Macromol. Rapid. Commun. 2005, 26, 1955−1959. doi: 10.1002/marc.200500493

    13. [13]

      Pei, Q.; Zuccarello, G.; Ahlskogt, M.; Inganäs, O. Electrochromic and highly stable poly(3,4-ethylenedioxythiophene) switches between opaque blue-black and transparent sky blue. Polymer 1994, 35, 1347−1351. doi: 10.1016/0032-3861(94)90332-8

    14. [14]

      Jonas, F.; Krafft, W. 1990, Europe Pat., EP 440 957.

    15. [15]

      Laforgue, A. All-textile flexible supercapacitors using electrospun poly(3,4-ethylenedioxythiophene) nanofibers. J. Power Sources 2011, 196, 559−564. doi: 10.1016/j.jpowsour.2010.07.007

    16. [16]

      Aasmundtveit, K. E.; Samuelsen, E. J.; Pettersson, L. A. A.; Inganäs, O.; Johansson, T.; Feidenhans'l, R. Structure of thin films of poly(3,4-ethylenedioxythiophene). Synth. Met. 1999, 101, 561−564. doi: 10.1016/S0379-6779(98)00315-4

    17. [17]

      Åsberg, D. P.; Inganäs, O. PEDOT/PSS hydrogel networks as 3-D enzyme electrodes. Synth. Met. 2003, 137, 1403−1404. doi: 10.1016/S0379-6779(02)01060-3

    18. [18]

      Snook, G. A.; Kao, P.; Best, A. S. Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 2011, 196, 1−12. doi: 10.1016/j.jpowsour.2010.06.084

    19. [19]

      Sun, K.; Zhang, S.; Li, P.; Xia, Y.; Zhang, X.; Du, D.; Isikgor, F. H.; Ouyang, J. Review on application of PEDOTs and PEDOT:PSS in energy conversion and storage devices. J. Mater. Sci.: Mater. Electron. 2015, 26, 4438−4462. doi: 10.1007/s10854-015-2895-5

    20. [20]

      Shown, I.; Ganguly, A.; Chen, L. C.; Chen, K. H. Conducting polymer-based flexible supercapacitor. Energy Sci. Eng. 2015, 3, 2−26. doi: 10.1002/ese3.50

    21. [21]

      Meng, Q.; Cai, K.; Chen, Y.; Chen, L. Research progress on conducting polymer-based supercapacitor electrode materials. Nano Energy 2017, 36, 268−285. doi: 10.1016/j.nanoen.2017.04.040

    22. [22]

      Ratha, S.; Samantara, A. K. Supercapacitor: instrumentation, measurement and performance evaluation techniques. Springer Singapore, 2018.

    23. [23]

      Hocker, J.; Wieder, W.; Merten, R.; Witte, J. 1980, Europe Pat., EP 45905.

    24. [24]

      Hocker, J.; Wieder, W.; Dhein, R. 1980, Europe Pat., EP 45908.

    25. [25]

      Elschner, A.; Kirchmeyer, K.; Lövenich, W.; Merker, U.; Reuter, K. PEDOT: principles and applications of an intrinsically conductive polymer. CRC Press, 2011.

    26. [26]

      Feldhues, M.; Kämpf, G.; Litterer, H.; Mecklenburg, T.; Wegener, P. Polyalkoxythiophenes. Soluble electrically conducting polymers. Synth. Met. 1989, 28, C487−C493. doi: 10.1016/0379-6779(89)90563-8

    27. [27]

      Hagiwara, T.; Yamaura, M.; Sato, K.; Hirasaka, M.; Iwata, K. Synthesis and properties of poly(3,4-dimethoxythiophene). Synth. Met. 1989, 32, 367−379. doi: 10.1016/0379-6779(89)90778-9

    28. [28]

      Feldhues, M.; Mecklenburg, T.; Wegener, P.; Kämpf, G. 1987, Europe Pat., EP 257 573.

    29. [29]

      Kämpf, G.; Feldhues, M. 1987, Europe Pat., EP 292 905.

    30. [30]

      Gogte, V. N.; Shah, L. G.; Tilak, B. D.; Gadekar, K. N.; Sahasrabudhe, M. B. Synthesis of potential anticancer agents-I, synthesis of substituted thiophenes. Tetrahedron 1967, 23, 2437−2441. doi: 10.1016/0040-4020(67)80079-6

    31. [31]

      Heywang, G.; Jonas F. Poly(alkylenedioxythiophene)s: new, very stable conducting polymers. Adv. Mater. 1992, 4, 116−118. doi: 10.1002/adma.19920040213

    32. [32]

      Heywang, G.; Jonas, F.; Heinze, J.; Dietrich, M. 1988, Germany Pat., DE 38 43 412.

    33. [33]

      Skotheim T. A.; Reynolds, J. A. Handbook of conducting polymers, 3rd Ed., CRC Press, 2007.

    34. [34]

      Audebert, P.; Catel, J. M.; Duchenet, V.; Guyard, L.; Hapiot, P.; Le Coustumer, G. Redox chemistry of thiophene, pyrrole and thiophene-pyrrole-thiophene oligomers. Synth. Met. 1999, 101, 642−645. doi: 10.1016/S0379-6779(98)00311-7

    35. [35]

      Reuter, K.; Nikanorov, V. A.; Bazhenov, V. M., 2002, Europe Pat., EP 1 375 560.

    36. [36]

      de Leeuw, D. M.; Krakman, P. A.; Bongaerts, P. F. G.; Mutsaers, C. M. J.; Klaassen, D. B. M. Electroplating of conductive polymers for the metallization of insulators. Synth. Met. 1994, 26, 263−273.

    37. [37]

      Winther-Jensen, B.; Breiby, D. W.; West K. Base inhibited oxidative polymerization of 3,4-ethylenedioxythiophene with iron(III)tosylate. Synth. Met. 2005, 152, 1−4. doi: 10.1016/j.synthmet.2005.07.085

    38. [38]

      Ha, Y. H.; Nikolov, N.; Pollack, S. K.; Mastrangelo, J.; Martin, B. D.; Shashidar, R. Towards a transparent, highly conductive poly(3,4-ethylenedioxythiophene). Adv. Funct. Mater. 2004, 14, 615−622. doi: 10.1002/adfm.200305059

    39. [39]

      Im, S. G.; Kusters, D.; Choi, W.; Baxamusa, S. H.; van de Sanden, M. C. M.; Gleason, K. K. Conformal coverage of poly(3,4-ethylenedioxythiophene) films with tunable nanoporosity via oxidative chemical vapor deposition. ACS Nano 2008, 2, 1959−1967. doi: 10.1021/nn800380e

    40. [40]

      Corradi, R.; Armes, S. P. Chemical synthesis of poly(3,4-ethylenedioxythiophene). Synth. Met. 1997, 84, 453−454. doi: 10.1016/S0379-6779(97)80828-4

    41. [41]

      Wolf, G. D.; Jonas, F.; Schomaecker, R. 1994, Europe Pat., EP 707 440.

    42. [42]

      Jonas, F.; Krafft, W.; Muys, B. Poly(3,4-ethylenedioxythiophene): conductive coatings, technical applications and properties. Macromol. Symp. 1995, 100, 169−173. doi: 10.1002/masy.19951000128

    43. [43]

      Reuter K.; Kirchmeyer, S. 2006, Europe Pat., EP 1 979 393.

    44. [44]

      Sakmeche, N.; Aaron, J. J.; Fall, M.; Aeiyach, S.; Jouini, M.; Lacroix, J. C.; Lacaze, P. C. Anionic micelles; a new aqueous medium for electropolymerization of poly(3,4-ethylenedioxythiophene) films on Pt electrodes. Chem. Commun. 1996, 2723−2724.

    45. [45]

      Lima, A.; Schottland, P.; Sadki, S.; Chevrot, C. Electropolymerization of 3,4-ethylenedioxythiophene and 3,4-ethylenedioxythiophene methanol in the presence of dodecylbenzenesulfonate. Synth. Met. 1998, 93, 33−41. doi: 10.1016/S0379-6779(98)80129-X

    46. [46]

      Jonas, F.; Heywang, G.; Schmidtberg, W.; Heinze, J.; Dietrich, M. 1988, Europe Pat., EP 339 340.

    47. [47]

      Lock, J. P.; Im, S. G.; Gleason, K. K. Oxidative chemical vapor deposition of electrically conducting poly(3,4-ethylenedioxythiophene) films. Macromolecules 2006, 39, 5326−5329. doi: 10.1021/ma060113o

    48. [48]

      Kim, J. Y.; Kwon, M. H.; Min, Y. K.; Kwon, S.; Ihm, D. W. Self-assembly and crystalline growth of poly(3,4-ethylenedioxythiophene) nanofilms. Adv. Mater. 2007, 19, 3501−3506. doi: 10.1002/adma.200602163

    49. [49]

      Wang, X.; Zhang, X.; Sun, L.; Lee, D.; Lee, S.; Wang, M.; Zhao, J.; Shao-Horn, Y.; Dincă, M.; Palacios, T.; Gleason, K. K. High electrical conductivity and carrier mobility in oCVD PEDOT thin films by engineered crystallization and acid treatment. Sci. Adv. 2018, 4, eaat5780. doi: 10.1126/sciadv.aat5780

    50. [50]

      Zhang, C.; Higgins, T. M.; Park, S. H.; O'Brien, S. E.; Long, D.; Coleman, J. N.; Nicolosi, V. Highly flexible and transparent solid-state supercapacitors based on RuO2/PEDOT:PSS conductive ultrathin films. Nano Energy 2016, 28, 495−505. doi: 10.1016/j.nanoen.2016.08.052

    51. [51]

      Zhang, M.; Zhou, Q.; Chen, J.; Yu, X.; Huang, L.; Li, Y.; Li, C.; Shi, G. An ultrahigh-rate electrochemical capacitor based on solution-processed highly conductive PEDOT:PSS films for ac line-filtering. Energy Environ. Sci. 2016, 9, 2005−2010. doi: 10.1039/C6EE00615A

    52. [52]

      Worfolk, B. J.; Andrews, S. C.; Park, S.; Reinspach, J.; Liu, N.; Toney, M. F.; Mannsfeld, S. C. B.; Bao, Z. Ultrahigh electrical conductivity in solution-sheared polymeric transparent films. Proc. Natl. Acad. Sci. USA 2015, 112, 14138−14143. doi: 10.1073/pnas.1509958112

    53. [53]

      Yoshioka, Y.; Jabbour, G. E. Desktop inkjet printer as a tool to print conducting polymers. Synth. Met. 2006, 11, 779−783.

    54. [54]

      Cho, S.; Kim, M.; Jang, J. Screen-printable and flexible RuO2 nanoparticle-decorated PEDOT:PSS/graphene nanocomposite with enhanced electrical and electrochemical performances for high-capacity supercapacitor. ACS Appl. Mater. Interfaces 2015, 7, 10213−10227. doi: 10.1021/acsami.5b00657

    55. [55]

      Yao, B.; Wang, H.; Zhou, Q.; Wu, M.; Zhang, M.; Li, C.; Shi, G. Ultrahigh-conductivity polymer hydrogels with arbitrary structures. Adv. Mater. 2017, 29, 1700974. doi: 10.1002/adma.201700974

    56. [56]

      Lu, B.; Yuk, H.; Lin, S.; Jian, N.; Qu, K.; Xu, J.; Zhao, X. Pure PEDOT:PSS hydrogels. Nat. Commun. 2019, 10, 1043. doi: 10.1038/s41467-019-09003-5

    57. [57]

      Feig, V. R.; Tran, H.; Lee, M.; Liu, K.; Huang, Z.; Beker, L.; Mackanic, D. G.; Bao, Z. An electrochemical gelation method for patterning conductive PEDOT:PSS hydrogels. Adv. Mater. 2019. doi: 10.1002/adma.201902869

    58. [58]

      Ma, T.; Zhao, Q.; Wang, J.; Pan, Z.; Chen, J. A sulfur heterocyclic quinone cathode and a multifunctional binder for a high-performance rechargeable lithium-ion battery. Angew. Chem. Int. Ed. 2016, 55, 6428−6432. doi: 10.1002/anie.201601119

    59. [59]

      Hwang, J.; Tanner, D. B.; Schwendeman, I.; Reynolds, J. R. Optical properties of nondegenerate ground-state polymers: three dioxythiophene-based conjugated polymers. Phys. Rev. B 2003, 67, 115205. doi: 10.1103/PhysRevB.67.115205

    60. [60]

      Ouyang, J.; Chu, C. W.; Chen, F. C.; Xu, Q.; Yang, Y. High-conductivity poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) film and its application in polymer optoelectronic devices. Adv. Funct. Mater. 2005, 15, 203−208. doi: 10.1002/adfm.200400016

    61. [61]

      Jönsson, S. K. M.; Birgerson, J.; Crispin, X.; Greczynski, G.; Osikowicz, W.; van der Gon, A. W. D.; Salaneck, W. R.; Fahlman, M. The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT-PSS) films. Synth. Met. 2003, 139, 1−10. doi: 10.1016/S0379-6779(02)01259-6

    62. [62]

      Kim, W. H.; Makinen, A. J.; Nikolov, N.; Shashidhar, R.; Kim, H.; Kafafi, Z. H. Molecular organic light-emitting diodes using highly conducting polymers as anodes. Appl. Phys. Lett. 2002, 80, 3844−3846. doi: 10.1063/1.1480100

    63. [63]

      Ouyang, J.; Xu, Q.; Chu, C. W.; Yang, Y.; Li, G.; Shinar, J. On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment. Polymer 2004, 45, 8443−8450. doi: 10.1016/j.polymer.2004.10.001

    64. [64]

      Timpanaro, S.; Kemerink, M.; Touwslager, F. J.; De Kok, M. M.; Schrader, S. Morphology and conductivity of PEDOT/PSS films studied by scanning tunneling microscopy. Chem. Phys. Lett. 2004, 394, 339−343. doi: 10.1016/j.cplett.2004.07.035

    65. [65]

      Kim, J. Y.; Jung, J. H.; Lee, D. E.; Joo, J. Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents. Synth. Met. 2002, 126, 311−316. doi: 10.1016/S0379-6779(01)00576-8

    66. [66]

      Crispin, X.; Jakobsson, F. L. E.; Crispin, A.; Grim, P. C. M.; Andersson, P.; Volodin, A.; van Haesendonck, C.; van der Auweraer, M.; Salaneck, W. R.; Berggren, M. The origin of the high conductivity of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) plastic electrodes. Chem. Mater. 2006, 18, 4354−4360. doi: 10.1021/cm061032+

    67. [67]

      Nardes, A. M.; Janssen, R. A. J.; Kemerink, M. A morphological model for the solvent-enhanced conductivity of PEDOT:PSS thin films. Adv. Funct. Mater. 2008, 18, 865−871. doi: 10.1002/adfm.200700796

    68. [68]

      Xia, Y.; Sun, K.; Ouyang, J. Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices. Adv. Mater. 2012, 24, 2436−2440. doi: 10.1002/adma.201104795

    69. [69]

      Kim, N.; Kee, S.; Lee, S. H.; Lee, B. H.; Kahng, Y. H.; Jo, Y. R.; Kim, B. J.; Lee, K. Highly conductive PEDOT:PSS nanofibrils induced by solution-processed crystallization. Adv. Mater. 2014, 26, 2268−2272. doi: 10.1002/adma.201304611

    70. [70]

      MacDiarmid, A. G.; Epstein, A. G. The concept of secondary doping as applied to polyaniline. Synth. Met. 1994, 65, 103−116. doi: 10.1016/0379-6779(94)90171-6

    71. [71]

      Ashizawa, S.; Horikawa, R.; Okuzaki, H. Effects of solvent on carrier transport in poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate). Synth. Met. 2005, 153, 5−8. doi: 10.1016/j.synthmet.2005.07.214

    72. [72]

      Gueye, M. N.; Carella, A.; Massonnet, N.; Yvenou, E.; Brenet, S.; Faure-Vincent, J.; Pouget, S.; Rieutord, F.; Okuno, H.; Benayad, A.; Demadrille, R.; Simonato, J. P. Structure and dopant engineering in PEDOT thin films: practical tools for a dramatic conductivity enhancement. Chem. Mater. 2016, 28, 3462−3468. doi: 10.1021/acs.chemmater.6b01035

    73. [73]

      Menon, R.; Yoon, C. O.; Moses, D.; Heeger, A. J.; Cao, Y. Transport in polyaniline near the critical regime of the metal-insulator transition. Phys. Rev. B: Condens. Matter Mater. Phys. 1993, 48, 17685−17694. doi: 10.1103/PhysRevB.48.17685

    74. [74]

      Lee, K.; Cho, S.; Park, S. H.; Heeger, A. J.; Lee, C. W.; Lee, S. H. Metallic transport in polyaniline. Nature 2006, 441, 65−68. doi: 10.1038/nature04705

    75. [75]

      Bubnova, O.; Khan, Z. U.; Wang, H.; Braun, S.; Evans, D. R.; Fabretto, M.; Hojati-Talemi, P.; Dagnelund, D.; Arlin, J. B.; Geerts, Y. H.; Desbief, S.; Breiby, D. W.; Andreasen, J. W.; Lazzaroni, R.; Chen, W. M.; Zozoulenko, I.; Fahlman, M.; Murphy, P. J.; Berggren, M.; Crispin, X. Semi-metallic polymers. Nat. Mater. 2013, 13, 190−194.

    76. [76]

      Wang, Y.; Zhu, C.; Pfattner, R.; Yan, H.; Jin, L.; Chen, S.; Molina-Lopez, F.; Lissel, F.; Liu, J.; Rabiah, N. I.; Chen, Z.; Chung, J. W.; Linder, C.; Toney, M. F.; Murmann, B.; Bao, Z. A highly stretchable, transparent, and conductive polymer. Sci. Adv. 2017, 3, e1602076. doi: 10.1126/sciadv.1602076

    77. [77]

      Cho, B.; Park, K. S.; Baek, J.; Oh, H. S.; Koo, Lee Y. E.; Sung, M. M. Single-crystal poly(3,4-ethylenedioxythiophene) nanowires with ultrahigh conductivity. Nano Lett. 2014, 14, 3321−3327. doi: 10.1021/nl500748y

    78. [78]

      Kim, Y. H.; Sachse, C.; Machala, M. L.; May, C.; Müller-Meskamp, L.; Leo, K. Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells. Adv. Funct. Mater. 2011, 21, 1076−1081. doi: 10.1002/adfm.201002290

    79. [79]

      Yano, H.; Kudo, K.; Marumo, K.; Okuzaki, H. Fully soluble self-doped poly(3,4-ethylenedioxythiophene) with an electrical conductivity greater than 1000 S cm−1. Sci. Adv. 2019, 5, eaav9492. doi: 10.1126/sciadv.aav9492

    80. [80]

      Morvant, M. C.; Reynolds, J. R. In situ conductivity studies of poly(3,4-ethylenedioxythiophene). Synth. Met. 2005, 153, 5−8. doi: 10.1016/S0379-6779(98)80023-4

    81. [81]

      Gogotsi, Y.; Simon, P. True performance metrics in electrochemical energy storage. Science 2011, 334, 917−918. doi: 10.1126/science.1213003

    82. [82]

      Volkov, A. V.; Wijeratne, K.; Mitraka, E.; Ail, U.; Zhao, D.; Tybrandt, K.; Andreasen, J. W.; Berggren, M.; Crispin, X.; Zozoulenko, I. V. Understanding the capacitance of PEDOT:PSS. Adv. Funct. Mater. 2017, 27, 1700329. doi: 10.1002/adfm.201700329

    83. [83]

      Tybrandt, K.; Zozoulenko, I. V.; Berggren, M. Chemical potential-electric double layer coupling in conjugated polymer-polyelectrolyte blends. Sci. Adv. 2017, 3, eaao3569.

    84. [84]

      Boota, M.; Gogotsi, Y. MXene—conducting polymer asymmetric pseudocapacitors. Adv. Energy Mater. 2019, 9, 1802917. doi: 10.1002/aenm.201802917

    85. [85]

      Li, W.; Zhang, Q.; Zheng, G.; Seh, Z. W.; Yao, H.; Cui, Y. Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance. Nano Lett. 2013, 13, 5534−5540. doi: 10.1021/nl403130h

    86. [86]

      Su, D.; Cortie, M.; Fan, H.; Wang, G. Prussian blue nanocubes with an open framework structure coated with PEDOT as high-capacity cathodes for lithium-sulfur batteries. Adv. Mater. 2017, 29, 1700587. doi: 10.1002/adma.201700587

    87. [87]

      Yao, Y.; Liu, N.; McDowell, M. T.; Pasta, M.; Cui, Y. Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings. Energy Environ. Sci. 2012, 5, 7927−7930. doi: 10.1039/c2ee21437g

    88. [88]

      Mai, L.; Dong, F.; Xu, X.; Luo, Y.; An, Q.; Zhao, Y.; Pan, J.; Yang, J. Cucumber-like V2O5/poly(3,4-ethylenedioxythiophene)&MnO2 nanowires with enhanced electrochemical cyclability. Nano Lett. 2013, 13, 740−745. doi: 10.1021/nl304434v

    89. [89]

      Yang, H.; Xu, H.; Li, M.; Zhang, L.; Huang, Y.; Hu, X. Assembly of NiO/Ni(OH)2/PEDOT nanocomposites on contra wires for fiber-shaped flexible asymmetric supercapacitors. ACS Appl. Mater. Interfaces 2016, 8, 1774−1779. doi: 10.1021/acsami.5b09526

    90. [90]

      Zhang, G.; Zhao, X. S. Conducting polymers directly coated on reduced graphene oxide sheets as high-performance supercapacitor electrodes. J. Phys. Chem. C 2012, 116, 5420−5426.

    91. [91]

      Chao, D.; Xia, X.; Liu, J.; Fan, Z.; Ng, C. F.; Lin, J.; Zhang, H.; Shen, Z. X.; Fan, H. J. A V2O5/conductive-polymer core/shell nanobelt array on three-dimensional graphite foam: a high-rate, ultrastable, and freestanding cathode for lithium-ion batteries. Adv. Mater. 2014, 26, 5794−5800. doi: 10.1002/adma.201400719

    92. [92]

      Han, J.; Dou, Y.; Zhao, J.; Wei, M.; Evans, D. G.; Duan, X. Flexible CoAl LDH@PEDOT core/shell nanoplatelet array for high-performance energy storage. Small 2013, 9, 98−106. doi: 10.1002/smll.201201336

    93. [93]

      Liu, R.; Lee, S. B. MnO2/poly(3,4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage. J. Am. Chem. Soc. 2008, 130, 2942−2943. doi: 10.1021/ja7112382

    94. [94]

      Liu, R.; Duay, J.; Lee, S. B. Redox exchange induced MnO2 nanoparticle enrichment in poly(3,4-ethylenedioxythiophene) nanowires for electrochemical energy storage. ACS Nano 2010, 4, 4299−4307. doi: 10.1021/nn1010182

    95. [95]

      Fong, K. D.; Wang, T.; Kim, H.-K.; Kumar, R. V.; Smoukov, S. K. Semi-interpenetrating polymer networks for enhanced supercapacitor electrodes. ACS Energy Lett. 2017, 2, 2014−2020. doi: 10.1021/acsenergylett.7b00466

    96. [96]

      Zeng, Y.; Han, Y.; Zhao, Y.; Zeng, Y.; Yu, M.; Liu, Y.; Tang, H.; Tong, Y.; Lu, X. Advanced Ti-doped Fe2O3@PEDOT core/shell anode for high-energy asymmetric supercapacitors. Adv. Energy Mater. 2015, 5, 1402176. doi: 10.1002/aenm.201402176

    97. [97]

      Mulzer, C. R.; Shen, L.; Bisbey, R. P.; McKone, J. R.; Zhang, N.; Abruña, H. D.; Dichtel, W. R. Superior charge storage and power density of a conducting polymer-modified covalent organic framework. ACS Cent. Sci. 2016, 2, 667−673. doi: 10.1021/acscentsci.6b00220

    98. [98]

      Anothumakkool, B.; Soni, B.; Bhange, S. N.; Kurungot, S. Novel scalable synthesis of highly conducting and robust PEDOT paper for a high performance flexible solid supercapacitor. Energy Environ. Sci. 2015, 8, 1339−1347. doi: 10.1039/C5EE00142K

    99. [99]

      Liu, A.; Kovacik, P.; Peard, N.; Tian, W.; Goktas, H.; Lau, J.; Dunn, B.; Gleason, K. K. Monolithic flexible supercapacitors integrated into single sheets of paper and membrane via vapor printing. Adv. Mater. 2017, 29, 1606091. doi: 10.1002/adma.201606091

    100. [100]

      D’Arcy, J. M.; El-Kady, M. F.; Khine, P. P.; Zhang, L.; Lee, S. H.; Davis, N. R.; Liu, D. S.; Yeung, M. T.; Kim, S. Y.; Turner, C. L.; Lech, A. T.; Hammond, P. T.; Kaner, R. B. Vapor-phase polymerization of nanofibrillar poly(3,4-ethylenedioxythiophene) for supercapacitors. ACS Nano 2014, 8, 1500−1510. doi: 10.1021/nn405595r

    101. [101]

      Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587−603. doi: 10.1021/cm901452z

    102. [102]

      Scrosati, B.; Hassoun, J.; Sun, Y. K. Lithium-ion batteries a look into the future. Energy Environ. Sci. 2011, 4, 3287−3295.

    103. [103]

      Manthiram, A.; Fu, Y.; Chung, S. H.; Zu, C.; Su, Y. S. Rechargeable lithium-sulfur batteries. Chem. Rev. 2014, 114, 11751−11787. doi: 10.1021/cr500062v

    104. [104]

      Xiao, P.; Bu, F.; Yang, G.; Zhang, Y.; Xu, Y. Integration of graphene, nano sulfur, and conducting polymer into compact, flexible lithium-sulfur battery cathodes with ultrahigh volumetric capacity and superior cycling stability for foldable devices. Adv. Mater. 2017, 29, 1703324. doi: 10.1002/adma.201703324

    105. [105]

      Zhang, M.; Yu, X.; Ma, H.; Du, W.; Qu, L.; Li, C.; Shi, G. Robust graphene composite films for multifunctional electrochemical capacitors with an ultrawide range of areal mass loading toward high-rate frequency response and ultrahigh specific capacitance. Energy Environ. Sci. 2018, 11, 559−565. doi: 10.1039/C7EE03349D

    106. [106]

      Gund, G. S.; Park, J. H.; Harpalsinh, R.; Kota, M.; Shin, J. H.; Kim, T.; Gogotsi, Y.; Park, H. S. MXene/polymer hybrid materials for flexible ac-filtering electrochemical capacitors. Joule 2019, 3, 164−176. doi: 10.1016/j.joule.2018.10.017

    107. [107]

      Hou, Y.; Cheng, Y.; Hobson, T.; Liu, J. Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano Lett. 2010, 10, 2727−2733. doi: 10.1021/nl101723g

    108. [108]

      Higgins, T. M.; Park, S. H.; King, P. J.; Zhang, C.; McEvoy, N.; Berner, N. C.; Daly, D.; Shmeliov, A.; Khan, U.; Duesberg, G.; Nicolosi, V.; Coleman, J. N. A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes. ACS Nano 2016, 10, 3702−3713. doi: 10.1021/acsnano.6b00218

    109. [109]

      Yu, Z.; Li, C.; Abbitt, D.; Thomas, J. Flexible, sandwich-like Ag-nanowire/PEDOT:PSS nanopillar/MnO2 high performance supercapacitors. J. Mater. Chem. A 2014, 2, 10923−10929. doi: 10.1039/C4TA01245C

    110. [110]

      Li, Z.; Ma, G.; Ge, R.; Qin, F.; Dong, X.; Meng, W.; Liu, T.; Tong, J.; Jiang, F.; Zhou, Y.; Li, K.; Min, X.; Huo, K.; Zhou, Y. Free-standing conducting polymer films for high-performance energy devices. Angew. Chem. Int. Ed. 2016, 55, 979−982. doi: 10.1002/anie.201509033

    111. [111]

      Miller, J. R.; Outlaw, R. A.; Holloway, B. C. Graphene double-layer capacitor with ac line-filtering performance. Science 2010, 329, 1637−1639. doi: 10.1126/science.1194372

    112. [112]

      Wang, C.; Wang, C.; Huang, Z.; Xu, S. Materials and structures toward soft electronics. Adv. Mater. 2018, 30, 1801368. doi: 10.1002/adma.201801368

    113. [113]

      Liu, W.; Song, M. S.; Kong, B.; Cui, Y. Flexible and stretchable energy storage: recent advances and future perspectives. Adv. Mater. 2017, 29, 1603436. doi: 10.1002/adma.201603436

    114. [114]

      Blohm, M. L.; Pickett, J. E.; VanDort, P. C. 1991, US Pat. 5 111 327.

    115. [115]

      Wustoni, S.; Combe, C.; Ohayon, D.; Akhtar, M. H.; McCulloch, I.; Inal, S. Membrane-free detection of metal cations with an organic electrochemical transistor. Adv. Funct. Mater. 2019. doi: 10.1002/adfm.201904403

    116. [116]

      Emanuelsson, R.; Sterby, M.; Strømme, M.; Sjödin, M. An all-organic proton battery. J. Am. Chem. Soc. 2017, 139, 4828−4834. doi: 10.1021/jacs.7b00159

  • 加载中
    1. [1]

      Quan-you FengYe-long HanMeng-na YuBin LiYing WeiLing-hai XieWei Huang . A Robust and Soluble Nanopolymer Based on Molecular Grid-based Nanomonomer. Chinese J. Polym. Sci, 2017, 35(1): 87-97. doi: 10.1007/s10118-016-1856-7

    2. [2]

      Guan-Hang YuQing HanLiang-Ti Qu . Graphene Fibers: Advancing Applications in Sensor, Energy Storage and Conversion. Chinese J. Polym. Sci, 2019, 37(6): 535-547. doi: 10.1007/s10118-019-2245-9

    3. [3]

      Hui SunBao-yang LuDu-fen HuXue-min DuanJing-kun XuShi-jie ZhenKai-xin ZhangXiao-fei ZhuLi-qi DongDai-ze Mo . Electrosynthesis and Characterization of Aminomethyl Functionalized PEDOT with Electrochromic Property. Chinese J. Polym. Sci, 2015, 33(11): 1527-1537. doi: 10.1007/s10118-015-1693-0

    4. [4]

      Ian MannXinfei YuWen-Bin ZhangRyan M. Van HornJason J. GeMatthew J. GrahamFrank W. HarrisStephen Z.D. Cheng . Time and Poling History Dependent Energy Storage and Discharge Behaviors in Poly(vinylidene fluoride-CO-hexafluoropropylene) Random Copolymers. Chinese J. Polym. Sci, 2011, 29(1): 65-80. doi: 10.1007/s10118-010-1020-8

    5. [5]

      Hui-Qin CuiRui-Xiang PengWei SongJian-Feng ZhangJia-Ming HuangLi-Qiang ZhuZi-Yi Ge . Optimization of Ethylene Glycol Doped PEDOT:PSS Transparent Electrodes for Flexible Organic Solar Cells by Drop-coating Method. Chinese J. Polym. Sci, 2019, 37(8): 760-766. doi: 10.1007/s10118-019-2257-5

    6. [6]

      Si-Yuan LiuYan-Bin GongShan MaYu-Huan WangLin GanJin Huang . Antistatic Structural Color and Photoluminescent Membranes from Co-assembling Cellulose Nanocrystals and Carbon Nanomaterials for Anti-counterfeiting. Chinese J. Polym. Sci, 2020, 38(10): 1061-1071. doi: 10.1007/s10118-020-2414-x

    7. [7]

      Wei Cai Bibo Wang Xin Wang Yulu Zhu Zhaoxin Li Zhoumei Xu Lei Song Weizhao Hu Yuan Hu . Recent progress in 2D nanomaterials following graphene for improving fire safety of polymer (nano)composites. Chinese J. Polym. Sci, 2021, (): -. doi: 10.1007/s10118-021-2575-2

    8. [8]

      Dao-jun Yang abXiang-kai Fua bYong-feng Gong ab . STUDY ON THE PREPARATION AND PERFORMANCES OF P(VAc-MMA) POLYMER ELECTROLYTES FOR LITHIUM ION BATTERY. Chinese J. Polym. Sci, 2008, 26(4): 375-380.

    9. [9]

      Chao ZhangHong-Qing LiangJun-Ke PiGuang-Peng WuZhi-Kang Xu . Polypropylene Separators with Robust Mussel-inspired Coatings for High Lithium-ion Battery Performances. Chinese J. Polym. Sci, 2019, 37(10): 1015-1022. doi: 10.1007/s10118-019-2310-4

    10. [10]

      Dong-Qing WuDeng LuPeng YangLie MaBiao JiangXin XiFan-Cheng MengWen-Bei ZhangFan ZhangQian-Qian ZhongRui-Li Liu . An Organic Solvent-free Approach towards PDI/Carbon Cloth Composites as Flexible Lithium Ion Battery Cathodes. Chinese J. Polym. Sci, 2020, 38(5): 540-549. doi: 10.1007/s10118-020-2388-8

    11. [11]

      Jing MaoFang-Fang WuWen-Hui ShiWen-Xian LiuXi-Lian XuGang-Feng CaiYi-Wen LiXie-Hong Cao . Preparation of Polyaniline-coated Composite Aerogel of MnO2 and Reduced Graphene Oxide for High-performance Zinc-ion Battery. Chinese J. Polym. Sci, 2020, 38(5): 514-521. doi: 10.1007/s10118-020-2353-6

    12. [12]

      Ding LeiGuan XuQian GeTong WuFeng YangXiang Ming . Effect of Fumed SiO2 on Pore Formation Mechanism and Various Performances of β-iPP Microporous Membrane Used for Lithium-ion Battery Separator. Chinese J. Polym. Sci, 2018, 36(4): 536-545. doi: 10.1007/s10118-018-2029-7

    13. [13]

      Na-na ZhaoWei NieJun MaoWei-cai WangXiang-ling Ji . SYNTHESIS AND PROPERTIES OF BIFUNCTIONAL MAGNETIC-OPTICAL NANOMATERIALS: Fe2O3@PDMAEMA-CAPPED II-VI SEMICONDUCTOR QUANTUM DOTS NANOCOMPOSITES. Chinese J. Polym. Sci, 2013, 31(9): 1233-1241. doi: 10.1007/s10118-013-1318-4

    14. [14]

      . POLYMER SCAFFOLDS BEARING AZOBENZENE-POTENTIAL FOR OPTICAL INFORMATION STORAGE. Chinese J. Polym. Sci, 2001, 19(2): 147-153.

    15. [15]

      LI WeiTONG GangZHOU YiqinQI Zongneng . TSC STUDIES ON SUB-Tg STORAGE OF POLYETHYLENE TEREPHTHALATE. Chinese J. Polym. Sci, 1987, 5(4): 285-291.

    16. [16]

      . CALCULATION OF CONFORMATIONAL ENTROPY AND FREE ENERGY OF POLYSILANE CHAIN. Chinese J. Polym. Sci, 2001, 19(5): 477-481.

    17. [17]

      YU TongyinDU QianguoHU Jiacong . ELASTICITY OF HARD ELASTIC POLYPROPYLENE FIBRE AND SURFACE ENERGY*. Chinese J. Polym. Sci, 1985, 3(1): 35-41.

    18. [18]

      Muqiang JianYingying ZhangZhongfan Liu . Natural Biopolymers for Flexible Sensing and Energy Devices. Chinese J. Polym. Sci, 2020, 38(5): 459-490. doi: 10.1007/s10118-020-2379-9

    19. [19]

      N.C. DafaderM.E. HaqueF. Akhtar . VARIATION OF PHYSICO-CHEMICAL PROPERTIES OF RADIATION CROSS-LINKED RUBBER WITH STORAGE TIME. Chinese J. Polym. Sci, 2005, 23(5): 497-501.

    20. [20]

      YAN Xingzhonga)WEI XiongLUO Tingb)CAI ZhigangLIANG Zhaoxia)YU Zhenxin . OPTICAL STORAGE MECHANISM AND HIGH-ORDER DIFFRACTION PROPERTIES OF NITROAZOBENZENE-CONTAINING POLYESTER FILMS. Chinese J. Polym. Sci, 1998, 16(1): 67-74.

Article Metrics
  • PDF Downloads(58)
  • Abstract views(2182)
  • HTML views(344)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return