Conjugated Polymers as Hole Transporting Materials for Solar Cells
-
Corresponding author:
Zhi-Pan Zhang, E-mail: zhipan@bit.edu.cn
Liang-Ti Qu, E-mail: lqu@bit.edu.cn
Citation:
Chiang, C. K.; Fincher Jr, C.; Park, Y. W.; Heeger, A. J.; Shirakawa, H.; Louis, E. J.; Gau, S. C.; MacDiarmid, A. G. Electrical conductivity in doped polyacetylene. Phys. Rev. Lett. 1977, 39, 1098−1101. doi: 10.1103/PhysRevLett.39.1098
Venema, L. Fathers of electronic revolution are rewarded. Nature 2000, 407, 662.
Jia, J. C.; Cai, W. Q.; Liu, S. J.; Huang, F.; Cao, Y. Synthesis of cross-linkable hole-transporting materials based on Diels-Alder reaction and their application in polymer light-emitting diodes. Acta Polymerica Sinica (in Chinese)
Zhang, K.; Huang, F.; Cao, Y. Water/alcohol soluble conjugated polymer interlayer materials and their application in solution processed multilayer organic optoelectronic devices. Acta Polymerica Sinica (in Chinese)
Xiao, Y. J.; He, Q. N.; Zhou, H. Y.; Xu, H. T.; Tan, L. C.; Chen, Y. W. In situ polymerization of PEDOT:pi-conjugated polyelectrolyte and application as hole transport layer in polymer solar cells. Acta Polymerica Sinica (in Chinese)
Zhang, K.; Liu, X. Y.; Xu, B. W.; Cui, Y.; Sun, M. L.; Hou, J. H. High-performance fullerene-free polymer solar cells with solution-processed conjugated polymers as anode interfacial layer. Chinese J. Polym. Sci. 2017, 35, 219−229.
Zhang, W.; Cheng, Y.; Yin, X.; Liu, B. Solid-state dye-sensitized solar cells with conjugated polymers as hole-transporting materials. Macromol. Chem. Phys. 2011, 212, 15−23. doi: 10.1002/macp.201000489
Wu, J.; Lan, Z.; Lin, J.; Huang, M.; Huang, Y.; Fan, L.; Luo, G. Electrolytes in dye-sensitized solar cells. Chem. Rev. 2015, 115, 2136−2173. doi: 10.1021/cr400675m
Calio, L.; Kazim, S.; Grätzel, M.; Ahmad, S. Hole-transport materials for perovskite solar cells. Angew. Chem. Int. Ed. 2016, 55, 14522−14545. doi: 10.1002/anie.201601757
Bakr, Z. H.; Wali, Q.; Fakharuddin, A.; Schmidt-Mende, L.; Brown, T. M.; Jose, R. Advances in hole transport materials engineering for stable and efficient perovskite solar cells. Nano Energy 2017, 34, 271−305. doi: 10.1016/j.nanoen.2017.02.025
Rakstys, K.; Igci, C.; Nazeeruddin, M. K. Efficiency vs stability: dopant-free hole transporting materials towards stabilized perovskite solar cells. Chem. Sci. 2019, 10, 6748−6769.
Gao, P.; Yang, Z.; He, J.; Yu, J.; Liu, P.; Zhu, J.; Ge, Z.; Ye, J. Dopant-free and carrier-selective heterocontacts for silicon solar cells: recent advances and perspectives. Adv. Sci. 2018, 5, 1700547. doi: 10.1002/advs.201700547
Lu, L. Y.; Zheng, T. Y.; Wu, Q. H.; Schneider, A. M.; Zhao, D. L.; Yu, L. P. Recent advances in bulk heterojunction polymer solar cells. Chem. Rev. 2015, 115, 12666−12731. doi: 10.1021/acs.chemrev.5b00098
Chen, J. W.; Cao, Y. Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices. Acc. Chem. Res. 2009, 42, 1709−1718. doi: 10.1021/ar900061z
O'regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737−740. doi: 10.1038/353737a0
Hamann, T. W.; Ondersma, J. W. Dye-sensitized solar cell redox shuttles. Energy Environ. Sci. 2011, 4, 370−381. doi: 10.1039/C0EE00251H
Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M. K.; Grätzel, M. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 2014, 6, 242−247. doi: 10.1038/nchem.1861
Kakiage, K.; Aoyama, Y.; Yano, T.; Oya, K.; Fujisawa, J. I.; Hanaya, M. Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem. Commun. 2015, 51, 15894−15897. doi: 10.1039/C5CC06759F
Zhang, L.; Yang, X.; Wang, W.; Gurzadyan, G. G.; Li, J.; Li, X.; An, J.; Yu, Z.; Wang, H.; Cai, B. 13.6% Efficient organic dye-sensitized solar cells by minimizing energy losses of the excited state. ACS Energy Lett. 2019, 4, 943−951. doi: 10.1021/acsenergylett.9b00141
Bach, U.; Lupo, D.; Comte, P.; Moser, J.; Weissörtel, F.; Salbeck, J.; Spreitzer, H.; Grätzel, M. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 1998, 395, 583−585. doi: 10.1038/26936
Murakoshi, K.; Kogure, R.; Wada, Y.; Yanagida, S. Solid state dye-sensitized TiO2 solar cell with polypyrrole as hole transport layer. Chem. Lett. 1997, 26, 471−472. doi: 10.1246/cl.1997.471
Tennakone, K.; Kumara, G.; Kumarasinghe, A.; Wijayantha, K.; Sirimanne, P. A dye-sensitized nano-porous solid-state photovoltaic cell. Semicond. Sci. Technol. 1995, 10, 1689−1693. doi: 10.1088/0268-1242/10/12/020
O'Regan, B.; Schwartz, D. T. Large enhancement in photocurrent efficiency caused by UV illumination of the dye-sensitized heterojunction TiO2/RuLL ‘NCS/CuSCN: initiation and potential mechanisms. Chem. Mater. 1998, 10, 1501−1509. doi: 10.1021/cm9705855
Kitamura, T.; Maitani, M.; Matsuda, M.; Wada, Y.; Yanagida, S. Improved solid-state dye solar cells with polypyrrole using a carbon-based counter electrode. Chem. Lett. 2001, 30, 1054−1055. doi: 10.1246/cl.2001.1054
Cervini, R.; Cheng, Y.; Simon, G. Solid-state Ru-dye solar cells using polypyrrole as a hole conductor. J. Phys. D: Appl. Phys. 2003, 37, 13−20.
Huang, W. S.; Humphrey, B. D.; MacDiarmid, A. G. Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes. J. Chem. Soc., Faraday Trans. 1986, 82, 2385−2400.
Kaneko, M.; Nakamura, H. Photoresponse of a liquid junction polyaniline film. J. Chem. Soc. Chem. Commun. 1985, 346−347.
Tan, S.; Zhai, J.; Wan, M.; Jiang, L.; Zhu, D. Polyaniline as a hole transport material to prepare solid solar cells. Synth. Met. 2003, 137, 1511−1512. doi: 10.1016/S0379-6779(02)01207-9
Tan, S.; Zhai, J.; Xue, B.; Wan, M.; Meng, Q.; Li, Y.; Jiang, L.; Zhu, D. Property influence of polyanilines on photovoltaic behaviors of dye-sensitized solar cells. Langmuir 2004, 20, 2934−2937. doi: 10.1021/la036260m
Tan, S.; Zhai, J.; Wan, M.; Meng, Q.; Li, Y.; Jiang, L.; Zhu, D. Influence of small molecules in conducting polyaniline on the photovoltaic properties of solid-state dye-sensitized solar cells. J. Phys. Chem. B 2004, 108, 18693−18697. doi: 10.1021/jp046574y
Kim, H.-S.; Wamser, C. C. Photoelectropolymerization of aniline in a dye-sensitized solar cell. Photochem. Photobiol. Sci. 2006, 5, 955−960. doi: 10.1039/b610810e
Ameen, S.; Akhtar, M. S.; Kim, G. S.; Kim, Y. S.; Yang, O. B.; Shin, H. S. Plasma-enhanced polymerized aniline/TiO2 dye-sensitized solar cells. J. Alloys Compd. 2009, 487, 382−386. doi: 10.1016/j.jallcom.2009.07.126
Duan, Y.; Tang, Q.; Chen, Y.; Zhao, Z.; Lv, Y.; Hou, M.; Yang, P.; He, B.; Yu, L. Solid-state dye-sensitized solar cells from poly-(ethylene oxide)/polyaniline electrolytes with catalytic and hole-transporting characteristics. J. Mater. Chem. A 2015, 3, 5368−5374. doi: 10.1039/C4TA06393G
Cheng, Y. J.; Yang, S. H.; Hsu, C. S. Synthesis of conjugated polymers for organic solar cell applications. Chem. Rev. 2009, 109, 5868−5923. doi: 10.1021/cr900182s
Gebeyehu, D.; Brabec, C.; Padinger, F.; Fromherz, T.; Spiekermann, S.; Vlachopoulos, N.; Kienberger, F.; Schindler, H.; Sariciftci, N. Solid state dye-sensitized TiO2 solar cells with poly-(3-octylthiophene) as hole transport layer. Synth. Met. 2001, 121, 1549−1550. doi: 10.1016/S0379-6779(00)01239-X
Kudo, N.; Honda, S.; Shimazaki, Y.; Ohkita, H.; Ito, S.; Benten, H. Improvement of charge injection efficiency in organic-inorganic hybrid solar cells by chemical modification of metal oxides with organic molecules. Appl. Phys. Lett. 2007, 90, 183513. doi: 10.1063/1.2736192
Lancelle-Beltran, E.; Prené, P.; Boscher, C.; Belleville, P.; Buvat, P.; Sanchez, C. All-solid-state dye-sensitized nanoporous TiO2 hybrid solar cells with high energy-conversion efficiency. Adv. Mater. 2006, 18, 2579−2582. doi: 10.1002/adma.200502023
Zhu, R.; Jiang, C. Y.; Liu, B.; Ramakrishna, S. Highly efficient nanoporous TiO2-polythiophene hybrid solar cells based on interfacial modification using a metal-free organic dye. Adv. Mater. 2009, 21, 994−1000. doi: 10.1002/adma.200802388
Jiang, K. J.; Manseki, K.; Yu, Y. H.; Masaki, N.; Suzuki, K.; Song, Y. L.; Yanagida, S. Photovoltaics based on hybridization of effective dye-sensitized titanium oxide and hole-conductive polymer P3HT. Adv. Funct. Mater. 2009, 19, 2481−2485. doi: 10.1002/adfm.200900283
Mor, G. K.; Kim, S.; Paulose, M.; Varghese, O. K.; Shankar, K.; Basham, J.; Grimes, C. A. Visible to near-infrared light harvesting in TiO2 nanotube array-P3HT based heterojunction solar cells. Nano Lett. 2009, 9, 4250−4257. doi: 10.1021/nl9024853
Zhang, W.; Zhu, R.; Li, F.; Wang, Q.; Liu, B. High-performance solid-state organic dye sensitized solar cells with P3HT as hole transporter. J. Phys. Chem. C 2011, 115, 7038−7043.
Yang, L.; Cappel, U. B.; Unger, E. L.; Karlsson, M.; Karlsson, K. M.; Gabrielsson, E.; Sun, L.; Boschloo, G.; Hagfeldt, A.; Johansson, E. M. Comparing spiro-OMeTAD and P3HT hole conductors in efficient solid state dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2012, 14, 779−789. doi: 10.1039/C1CP23031J
Liu, Q.; Li, C.; Jiang, K.; Song, Y.; Pei, J. A high-efficiency solid-state dye-sensitized solar cell with P3HT polymer as a hole conductor and an assistant sensitizer. Particuology 2014, 15, 71−76. doi: 10.1016/j.partic.2012.12.005
Wu, J.; Yue, G.; Xiao, Y.; Ye, H.; Lin, J.; Huang, M. Application of a polymer heterojunction in dye-sensitized solar cells. Electrochim. Acta 2010, 55, 5798−5802. doi: 10.1016/j.electacta.2010.05.025
Chen, W. C.; Lee, Y. H.; Chen, C. Y.; Kau, K. C.; Lin, L. Y.; Dai, C. A.; Wu, C. G.; Ho, K. C.; Wang, J. K.; Wang, L. Self-assembled all-conjugated block copolymer as an effective hole conductor for solid-state dye-sensitized solar cells. ACS Nano 2014, 8, 1254−1262. doi: 10.1021/nn404346v
Chevrier, M.; Hawashin, H.; Richeter, S.; Mehdi, A.; Surin, M.; Lazzaroni, R.; Dubois, P.; Ratier, B.; Bouclé, J.; Clément, S. Well-designed poly(3-hexylthiophene) as hole transporting material: a new opportunity for solid-state dye-sensitized solar cells. Synth. Met. 2017, 226, 157−163. doi: 10.1016/j.synthmet.2017.02.015
Groenendaal, L.; Jonas, F.; Freitag, D.; Pielartzik, H.; Reynolds, J. R. Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv. Mater. 2000, 12, 481−494. doi: 10.1002/(SICI)1521-4095(200004)12:7<481::AID-ADMA481>3.0.CO;2-C
Saito, Y.; Fukuri, N.; Senadeera, R.; Kitamura, T.; Wada, Y.; Yanagida, S. Solid state dye sensitized solar cells using in situ polymerized PEDOTs as hole conductor. Electrochem. Commun. 2004, 6, 71−74. doi: 10.1016/j.elecom.2003.10.016
Fukuri, N.; Saito, Y.; Kubo, W.; Senadeera, G. R.; Kitamura, T.; Wada, Y.; Yanagida, S. Performance improvement of solid-state dye-sensitized solar cells fabricated using poly(3,4-ethylenedioxythiophene) and amphiphilic sensitizing dye. J. Electrochem. Soc. 2004, 151, A1745−A1748. doi: 10.1149/1.1793711
Xia, J.; Masaki, N.; Lira-Cantu, M.; Kim, Y.; Jiang, K.; Yanagida, S. Influence of doped anions on poly(3,4-ethylenedioxythiophene) as hole conductors for iodine-free solid-state dye-sensitized solar cells. J. Am. Chem. Soc. 2008, 130, 1258−1263. doi: 10.1021/ja075704o
Liu, X.; Zhang, W.; Uchida, S.; Cai, L.; Liu, B.; Ramakrishna, S. An efficient organic-dye-sensitized solar cell with in situ polymerized poly(3,4-ethylenedioxythiophene) as a hole-transporting material. Adv. Mater. 2010, 22, E150−E155. doi: 10.1002/adma.200904168
Zhang, J.; Vlachopoulos, N.; Hao, Y.; Holcombe, T. W.; Boschloo, G.; Johansson, E. M.; Grätzel, M.; Hagfeldt, A. Efficient blue-colored solid-state dye-sensitized solar cells: enhanced charge collection by using an in situ photoelectrochemically generated conducting polymer hole conductor. ChemPhysChem 2016, 17, 1441−1445. doi: 10.1002/cphc.201600064
Zhang, J.; Vlachopoulos, N.; Jouini, M.; Johansson, M. B.; Zhang, X.; Nazeeruddin, M. K.; Boschloo, G.; Johansson, E. M.; Hagfeldt, A. Efficient solid-state dye sensitized solar cells: the influence of dye molecular structures for the in-situ photoelectrochemically polymerized PEDOT as hole transporting material. Nano Energy 2016, 19, 455−470. doi: 10.1016/j.nanoen.2015.09.010
National Renewable Energy Laboratory, Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html
Yang, W. S.; Park, B. W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.; Seo, J.; Kim, E. K.; Noh, J. H. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 2017, 356, 1376−1379. doi: 10.1126/science.aan2301
Jung, E. H.; Jeon, N. J.; Park, E. Y.; Moon, C. S.; Shin, T. J.; Yang, T. Y.; Noh, J. H.; Seo, J. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 2019, 567, 511−515. doi: 10.1038/s41586-019-1036-3
Chiang, C. H.; Nazeeruddin, M. K.; Grätzel, M.; Wu, C. G. The synergistic effect of H2O and DMF towards stable and 20% efficiency inverted perovskite solar cells. Energy Environ. Sci. 2017, 10, 808−817. doi: 10.1039/C6EE03586H
Ning, Z.; Tian, H. Triarylamine: a promising core unit for efficient photovoltaic materials. Chem. Commun. 2009, 5483−5495.
Heo, J. H.; Im, S. H.; Noh, J. H.; Mandal, T. N.; Lim, C. S.; Chang, J. A.; Lee, Y. H.; Kim, H. J.; Sarkar, A.; Nazeeruddin, M. K. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photon. 2013, 7, 486−491. doi: 10.1038/nphoton.2013.80
Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897−903. doi: 10.1038/nmat4014
Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 476−480. doi: 10.1038/nature14133
Bi, C.; Wang, Q.; Shao, Y.; Yuan, Y.; Xiao, Z.; Huang, J. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun. 2015, 6, 7747. doi: 10.1038/ncomms8747
Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348, 1234−1237. doi: 10.1126/science.aaa9272
Zheng, X.; Chen, B.; Dai, J.; Fang, Y.; Bai, Y.; Lin, Y.; Wei, H.; Zeng, X. C.; Huang, J. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2017, 2, 17102. doi: 10.1038/nenergy.2017.102
Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 2013, 13, 1764−1769. doi: 10.1021/nl400349b
Wang, K.; Jin, Z.; Liang, L.; Bian, H.; Bai, D.; Wang, H.; Zhang, J.; Wang, Q.; Shengzhong, L. All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15%. Nat. Commun. 2018, 9, 4544. doi: 10.1038/s41467-018-06915-6
Jost, M.; Bertram, T.; Koushik, D.; Marquez, J. A.; Verheijen, M. A.; Heinemann, M. D.; Köhnen, E.; Al-Ashouri, A.; Braunger, S.; Lang, F. 21.6%-Efficient monolithic perovskite/Cu(In,Ga)Se2 tandem solar cells with thin conformal hole transport layers for integration on rough bottom cell surfaces. ACS Energy Lett. 2019, 4, 583−590. doi: 10.1021/acsenergylett.9b00135
Kim, Y.; Jung, E. H.; Kim, G.; Kim, D.; Kim, B. J.; Seo, J. Sequentially fluorinated PTAA polymers for enhancing Voc of high-performance perovskite solar cells. Adv. Energy Mater. 2018, 8, 1801668. doi: 10.1002/aenm.201801668
Coakley, K. M.; Srinivasan, B. S.; Ziebarth, J. M.; Goh, C.; Liu, Y.; McGehee, M. D. Enhanced hole mobility in regioregular polythiophene infiltrated in straight nanopores. Adv. Funct. Mater. 2005, 15, 1927−1932. doi: 10.1002/adfm.200500364
Bi, D.; Yang, L.; Boschloo, G.; Hagfeldt, A.; Johansson, E. M. Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells. J. Phys. Chem. Lett. 2013, 4, 1532−1536. doi: 10.1021/jz400638x
Edri, E.; Kirmayer, S.; Cahen, D.; Hodes, G. High open-circuit voltage solar cells based on organic-inorganic lead bromide perovskite. J. Phys. Chem. Lett. 2013, 4, 897−902. doi: 10.1021/jz400348q
Abrusci, A.; Stranks, S. D.; Docampo, P.; Yip, H. L.; Jen, A. K. Y.; Snaith, H. J. High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers. Nano Lett. 2013, 13, 3124−3128. doi: 10.1021/nl401044q
Conings, B.; Baeten, L.; De, Dobbelaere C.; D'Haen, J.; Manca, J.; Boyen, H. G. Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach. Adv. Mater. 2014, 26, 2041−2046. doi: 10.1002/adma.201304803
Lu, H.; Ma, Y.; Gu, B.; Tian, W.; Li, L. Identifying the optimum thickness of electron transport layers for highly efficient perovskite planar solar cells. J. Mater. Chem. A 2015, 3, 16445−16452. doi: 10.1039/C5TA03686K
Abbas, H. A.; Kottokkaran, R.; Ganapathy, B.; Samiee, M.; Zhang, L.; Kitahara, A.; Noack, M.; Dalal, V. L. High efficiency sequentially vapor grown n-i-p CH3NH3PbI3 perovskite solar cells with undoped P3HT as p-type heterojunction layer. APL Mater. 2015, 3, 016105. doi: 10.1063/1.4905932
Heo, J. H.; Im, S. H. CH3NH3PbI3/poly-3-hexylthiophen perovskite mesoscopic solar cells: Performance enhancement by Li-assisted hole conduction. Phys. Status Solidi RRL 2014, 8, 816−821. doi: 10.1002/pssr.201409330
Guo, Y.; Liu, C.; Inoue, K.; Harano, K.; Tanaka, H.; Nakamura, E. Enhancement in the efficiency of an organic-inorganic hybrid solar cell with a doped P3HT hole-transporting layer on a void-free perovskite active layer. J. Mater. Chem. A 2014, 2, 13827−13830. doi: 10.1039/C4TA02976C
Bi, H.; Zhang, Y. Influence of the additives in poly(3-hexylthiophene) hole transport layer on the performance of perovskite solar cells. Mater. Lett. 2015, 161, 767−769. doi: 10.1016/j.matlet.2015.09.092
Chen, H.; Pan, X.; Liu, W.; Cai, M.; Kou, D.; Huo, Z.; Fang, X.; Dai, S. Efficient panchromatic inorganic-organic heterojunction solar cells with consecutive charge transport tunnels in hole transport material. Chem. Commun. 2013, 49, 7277−7279. doi: 10.1039/c3cc42297f
Cai, M.; Tiong, V. T.; Hreid, T.; Bell, J.; Wang, H. An efficient hole transport material composite based on poly(3-hexylthiophene) and bamboo-structured carbon nanotubes for high performance perovskite solar cells. J. Mater. Chem. A 2015, 3, 2784−2793. doi: 10.1039/C4TA04997G
Xiao, J.; Shi, J.; Liu, H.; Xu, Y.; Lv, S.; Luo, Y.; Li, D.; Meng, Q.; Li, Y. Efficient CH3NH3PbI3 perovskite solar cells based on graphdiyne (GD)-modified P3HT hole-transporting material. Adv. Energy Mater. 2015, 5, 1401943. doi: 10.1002/aenm.201401943
Habisreutinger, S. N.; Leijtens, T.; Eperon, G. E.; Stranks, S. D.; Nicholas, R. J.; Snaith, H. J. Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett. 2014, 14, 5561−5568. doi: 10.1021/nl501982b
Yan, W.; Ye, S.; Li, Y.; Sun, W.; Rao, H.; Liu, Z.; Bian, Z.; Huang, C. Hole-transporting materials in inverted planar perovskite solar cells. Adv. Energy Mater. 2016, 6, 1600474. doi: 10.1002/aenm.201600474
Jeng, J. Y.; Chiang, Y. F.; Lee, M. H.; Peng, S. R.; Guo, T. F.; Chen, P.; Wen, T. C. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 2013, 25, 3727−3732. doi: 10.1002/adma.201301327
Docampo, P.; Ball, J. M.; Darwich, M.; Eperon, G. E.; Snaith, H. J. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat. Commun. 2013, 4, 2761. doi: 10.1038/ncomms3761
Xiao, Z.; Dong, Q.; Bi, C.; Shao, Y.; Yuan, Y.; Huang, J. Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv. Mater. 2014, 26, 6503−6509. doi: 10.1002/adma.201401685
You, J.; Yang, Y.; Hong, Z.; Song, T. B.; Meng, L.; Liu, Y.; Jiang, C.; Zhou, H.; Chang, W. H.; Li, G. Moisture assisted perovite film growth for high performance solar cells. Appl. Phys. Lett. 2014, 105, 183902. doi: 10.1063/1.4901510
Heo, J. H.; Han, H. J.; Kim, D.; Ahn, T. K.; Im, S. H. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ. Sci. 2015, 8, 1602−1608. doi: 10.1039/C5EE00120J
de Jong, M.; van Ijzendoorn, L.; de Voigt, M. Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes. Appl. Phys. Lett. 2000, 77, 2255−2257. doi: 10.1063/1.1315344
Hou, F.; Su, Z.; Jin, F.; Yan, X.; Wang, L.; Zhao, H.; Zhu, J.; Chu, B.; Li, W. Efficient and stable planar heterojunction perovskite solar cells with an MoO3/PEDOT:PSS hole transporting layer. Nanoscale 2015, 7, 9427−9432. doi: 10.1039/C5NR01864A
Sung, H.; Ahn, N.; Jang, M. S.; Lee, J. K.; Yoon, H.; Park, N. G.; Choi, M. Transparent conductive oxide-free graphene-based perovskite solar cells with over 17% efficiency. Adv. Energy Mater. 2016, 6, 1501873. doi: 10.1002/aenm.201501873
Wang, Z. K.; Gong, X.; Li, M.; Hu, Y.; Wang, J. M.; Ma, H.; Liao, L. S. Induced crystallization of perovskites by a perylene underlayer for high-performance solar cells. ACS Nano 2016, 10, 5479−5489. doi: 10.1021/acsnano.6b01904
Sailor, M. J.; Ginsburg, E. J.; Gorman, C. B.; Kumar, A.; Grubbs, R. H.; Lewis, N. S. Thin films of n-Si/poly-(CH3)3Si-cyclooctatetraene: conducting-polymer solar cells and layered structures. Science 1990, 249, 1146−1149. doi: 10.1126/science.249.4973.1146
Williams, E. L.; Jabbour, G. E.; Wang, Q.; Shaheen, S. E.; Ginley, D. S.; Schiff, E. A. Conducting polymer and hydrogenated amorphous silicon hybrid solar cells. Appl. Phys. Lett. 2005, 87, 223504. doi: 10.1063/1.2136409
Wang, W.; Schiff, E. A. Polyaniline on crystalline silicon heterojunction solar cells. Appl. Phys. Lett. 2007, 91, 133504. doi: 10.1063/1.2789785
Avasthi, S.; Lee, S.; Loo, Y. L.; Sturm, J. C. Role of majority and minority carrier barriers silicon/organic hybrid heterojunction solar cells. Adv. Mater. 2011, 23, 5762−5766. doi: 10.1002/adma.201102712
Yu, P.; Tsai, C. Y.; Chang, J. K.; Lai, C. C.; Chen, P. H.; Lai, Y. C.; Tsai, P. T.; Li, M. C.; Pan, H. T.; Huang, Y. Y. 13% Efficiency hybrid organic/silicon-nanowire heterojunction solar cell via interface engineering. ACS Nano 2013, 7, 10780−10787. doi: 10.1021/nn403982b
Zhang, Y.; Zu, F.; Lee, S. T.; Liao, L.; Zhao, N.; Sun, B. Heterojunction with organic thin layers on silicon for record efficiency hybrid solar cells. Adv. Energy Mater. 2014, 4, 1300923. doi: 10.1002/aenm.201300923
Liu, R.; Lee, S. T.; Sun, B. 13.8% Efficiency hybrid Si/organic heterojunction solar cells with MoO3 film as antireflection and inversion induced layer. Adv. Mater. 2014, 26, 6007−6012. doi: 10.1002/adma.201402076
Wu, S.; Cui, W.; Aghdassi, N.; Song, T.; Duhm, S.; Lee, S. T.; Sun, B. Nanostructured Si/organic heterojunction solar cells with high open-circuit voltage via improving junction quality. Adv. Funct. Mater. 2016, 26, 5035−5041. doi: 10.1002/adfm.201600441
He, J.; Gao, P.; Ling, Z.; Ding, L.; Yang, Z.; Ye, J.; Cui, Y. High-efficiency silicon/organic heterojunction solar cells with improved junction quality and interface passivation. ACS Nano 2016, 10, 11525−11531. doi: 10.1021/acsnano.6b07511
He, J.; Hossain, M. A.; Lin, H.; Wang, W.; Karuturi, S. K.; Hoex, B.; Ye, J.; Gao, P.; Bullock, J.; Wan, Y. 15% Efficiency ultrathin silicon solar cells with fluorine-doped titanium oxide and chemically tailored poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) as asymmetric heterocontact. ACS Nano 2019, 13, 6356−6362. doi: 10.1021/acsnano.9b01754
Yu, J.; Liao, M.; Yan, D.; Wan, Y.; Lin, H.; Wang, Z.; Gao, P.; Zeng, Y.; Yan, B.; Ye, J. Activating and optimizing evaporation-processed magnesium oxide passivating contact for silicon solar cells. Nano Energy 2019, 62, 181−188. doi: 10.1016/j.nanoen.2019.05.015
He, J.; Gao, P.; Yang, Z.; Yu, J.; Yu, W.; Zhang, Y.; Sheng, J.; Ye, J.; Amine, J. C.; Cui, Y. Silicon/organic hybrid solar cells with 16.2% efficiency and improved stability by formation of conformal heterojunction coating and moisture-resistant capping layer. Adv. Mater. 2017, 29, 1606321. doi: 10.1002/adma.201606321
He, J.; Wan, Y.; Gao, P.; Tang, J.; Ye, J. Over 16.7% Efficiency organic-silicon heterojunction solar cells with solution-processed dopant-free contacts for both polarities. Adv. Funct. Mater. 2018, 28, 1802192. doi: 10.1002/adfm.201802192
Mukhamed L. Keshtov , Dmitry V. Marochkin , Ying-ying Fu , Zhi-yuan Xie , Yan-hou Geng , Vitaly S. Kochurov , Alexei R. Khokhlov . Thienopyrazine or Dithiadiazatrindene Containing Low Band Gap Conjugated Polymers for Polymer Solar Cells. Chinese J. Polym. Sci, 2014, 32(7): 844-853. doi: 10.1007/s10118-014-1458-1
Hai-yang Song , Hui Tong , Zhi-yuan Xie , Li-xiang Wang , Fo-song Wang . SYNTHESIS, CHARACTERIZATION AND SOLAR CELL APPLICATION OF A D-A COPOLYMER WITH CYCLOPENTADITHIOPHENE AND FLUORENE AS DONOR UNITS. Chinese J. Polym. Sci, 2013, 31(8): 1117-1126. doi: 10.1007/s10118-013-1302-z
Amjad Islam , Zhi-yang Liu , Rui-xiang Peng , Wei-gang Jiang , Tao Lei , Wang Li , Lei Zhang , Rong-juan Yang , Guan Qian , Zi-yi Ge . Furan-containing Conjugated Polymers for Organic Solar Cells. Chinese J. Polym. Sci, 2017, 35(2): 171-183. doi: 10.1007/s10118-017-1886-9
Xin-Lei Zhang , Lei Wang , Liang Chen , Xiao-Yu Ma , Hang-Xun Xu . Ultrathin 2D Conjugated Polymer Nanosheets for Solar Fuel Generation. Chinese J. Polym. Sci, 2019, 37(2): 101-114. doi: 10.1007/s10118-019-2171-x
Fan Yang , Cheng Li , Gui-tao Feng , Xu-dong Jiang , An-dong Zhang , Wei-wei Li . Bisperylene Bisimide Based Conjugated Polymer as Electron Acceptor for Polymer-Polymer Solar Cellsh. Chinese J. Polym. Sci, 2017, 35(2): 239-248. doi: 10.1007/s10118-017-1870-4
Hui Zhang , Ge Zhang , Jing-kun Xu , Yang-ping Wen , Wan-chuan Ding , Jie Zhang , Shou-li Ming , Shi-jie Zhen . Electrosynthesis, Characterization and Optical Sensing Application of Amino Acid Functionalized Polyfluorene. Chinese J. Polym. Sci, 2016, 34(2): 229-241. doi: 10.1007/s10118-016-1742-3
Bin Liu , Fang-lin Huang , Yong-feng Shi , Zhi-qing Ni , Ye Lin , Shou-chun Yin . Synthesis, Characterization and Optical Properties of Poly(aryleneethynylene)s Containing BODIPY. Chinese J. Polym. Sci, 2015, 33(8): 1133-1139. doi: 10.1007/s10118-015-1664-5
Chao Wang , Feng Liu , Qiao-Mei Chen , Cheng-Yi Xiao , Yong-Gang Wu , Wei-Wei Li . Benzothiadiazole-based Conjugated Polymers for Organic Solar Cells. Chinese J. Polym. Sci, 2021, 39(5): 525-536. doi: 10.1007/s10118-021-2537-8
Jie-huan Chen , Shi-da Yang , Wen-qing Liu , Wei-fei Fu , Hong-zheng Chen . Improved Photovoltaic Performance from High Quality Perovskite Thin Film Grown with the Assistance of PC71BM. Chinese J. Polym. Sci, 2017, 35(2): 309-316. doi: 10.1007/s10118-017-1891-z
Feng Liu , Dan Wang , Jun-Yu Li , Cheng-Yi Xiao , Yong-Gang Wu , Wei-Wei Li , Guang-Sheng Fu . Side-chains Engineering of Conjugated Polymers toward Additive-free Non-fullerene Organic Solar Cells. Chinese J. Polym. Sci, 2021, 39(1): 43-50. doi: 10.1007/s10118-020-2490-y
Xun-fan Liao , Jing Wang , Shuang-ying Chen , Lie Chen , Yi-wang Chen . Diketopyrrolopyrrole-based Conjugated Polymers as Additives to Optimize Morphology for Polymer Solar Cells. Chinese J. Polym. Sci, 2016, 34(4): 491-504. doi: 10.1007/s10118-016-1761-0
Xiao-Cheng Liu , Qing-Wu Yin , Zhi-Cheng Hu , Zhen-Feng Wang , Fei Huang , Yong Cao . Perylene Diimide Based Isomeric Conjugated Polymers as Efficient Electron Acceptors for All-polymer Solar Cells. Chinese J. Polym. Sci, 2019, 37(1): 18-27. doi: 10.1007/s10118-019-2188-1
Mei-Jing Li , Bao-Bing Fan , Wen-Kai Zhong , Zhao-Mi-Yi Zeng , Jing-Kun Xu , Lei Ying . Rational Design of Conjugated Polymers for d-Limonene Processed All-polymer Solar Cells with Small Energy Loss. Chinese J. Polym. Sci, 2020, 38(8): 791-796. doi: 10.1007/s10118-020-2429-3
Lin Zhang , Wei Ma . Morphology Optimization in Ternary Organic Solar Cells. Chinese J. Polym. Sci, 2017, 35(2): 184-197. doi: 10.1007/s10118-017-1898-5
Shi-fan Wang , Ya-nan Liu , Jie Yang , You-tian Tao , Yan Guo , Xu-dong Cao , Zhi-guo Zhang , Yong-fang Li , Wei Huang . Orthogonal Solubility in Fully Conjugated Donor-Acceptor Block Copolymers: Compatibilizers for Polymer/Fullerene Bulk-Heterojunction Solar Cells. Chinese J. Polym. Sci, 2017, 35(2): 207-218. doi: 10.1007/s10118-017-1889-6
Jian-fei Qu , Jian Liu , Si-da Li , Zhi-yuan Xie , Yan-hou Geng . DONOR-ACCEPTOR CONJUGATED COOLIGOMERS FOR SINGLE MOLECULE SOLAR CELLS. Chinese J. Polym. Sci, 2013, 31(5): 815-822. doi: 10.1007/s10118-013-1276-x
Quan-xiang Yan , Zhuo-wei Gu , Qi Li , Wei-fei Fu , Xiao-qiang Chen , Wen-qing Liu , Hong-bin Pan , Mang Wang , Hong-zheng Chen . Water Soluble Amino Grafted Silicon Nanoparticles and Their Use in Polymer Solar Cells. Chinese J. Polym. Sci, 2014, 32(4): 395-401. doi: 10.1007/s10118-014-1415-z
Zhen Lu , Cui-hong Li , Chun Du , Xue Gong , Zhi-shan Bo . 6,7-DIALKOXY-2,3-DIPHENYLQUINOXALINE BASED CONJUGATED POLYMERS FOR SOLAR CELLS WITH HIGH OPEN-CIRCUIT VOLTAGE. Chinese J. Polym. Sci, 2013, 31(6): 901-911. doi: 10.1007/s10118-013-1275-y
Kai Zhang , Xiao-yu Liu , Bo-wei Xu , Yong Cui , Ming-liang Sun , Jian-hui Hou . High-performance Fullerene-free Polymer Solar Cells with Solution-processed Conjugated Polymers as Anode Interfacial Layer. Chinese J. Polym. Sci, 2017, 35(2): 219-229. doi: 10.1007/s10118-017-1888-7
Zhi-Guo Zhang , Yang Bai , Yongfang Li . Benzotriazole Based 2D-conjugated Polymer Donors for High Performance Polymer Solar Cells. Chinese J. Polym. Sci, 2021, 39(1): 1-13. doi: 10.1007/s10118-020-2496-5