Citation: Ti, D.; Gao, K.; Zhang, Z. P.; Qu, L. T. Conjugated polymers as hole transporting materials for solar cells. Chinese J. Polym. Sci. 2020, 38, 449–458 doi: 10.1007/s10118-020-2369-y shu

Conjugated Polymers as Hole Transporting Materials for Solar Cells

  • Corresponding author: Zhi-Pan Zhang, E-mail: zhipan@bit.edu.cn
    Liang-Ti Qu, E-mail: lqu@bit.edu.cn
  • Received Date: 2019-09-30
    Available Online: 2019-12-23

Figures(5)

  • In principle, conjugated polymers can work as electron donors and thus as low-cost p-type organic semiconductors to transport holes in photovoltaic devices. With the booming interests in high-efficiency and low-cost solar cells to tackle global climate change and energy shortage, hole transporting materials (HTMs) based on conjugated polymers have received increasing attention in the past decade. In this perspective, recent advances in HTMs for a range of photovoltaic devices including dye-sensitized solar cells (DSSCs), perovskite solar cells (PSCs), and silicon (Si)/organic heterojunction solar cells (HSCs) are summarized and perspectives on their future development are also presented.
  • 加载中
    1. [1]

      Chiang, C. K.; Fincher Jr, C.; Park, Y. W.; Heeger, A. J.; Shirakawa, H.; Louis, E. J.; Gau, S. C.; MacDiarmid, A. G. Electrical conductivity in doped polyacetylene. Phys. Rev. Lett. 1977, 39, 1098−1101. doi: 10.1103/PhysRevLett.39.1098

    2. [2]

      Venema, L. Fathers of electronic revolution are rewarded. Nature 2000, 407, 662.

    3. [3]

      Jia, J. C.; Cai, W. Q.; Liu, S. J.; Huang, F.; Cao, Y. Synthesis of cross-linkable hole-transporting materials based on Diels-Alder reaction and their application in polymer light-emitting diodes. Acta Polymerica Sinica (in Chinese) 2017, 1169−1177.

    4. [4]

      Zhang, K.; Huang, F.; Cao, Y. Water/alcohol soluble conjugated polymer interlayer materials and their application in solution processed multilayer organic optoelectronic devices. Acta Polymerica Sinica (in Chinese) 2017, 1400−1414.

    5. [5]

      Xiao, Y. J.; He, Q. N.; Zhou, H. Y.; Xu, H. T.; Tan, L. C.; Chen, Y. W. In situ polymerization of PEDOT:pi-conjugated polyelectrolyte and application as hole transport layer in polymer solar cells. Acta Polymerica Sinica (in Chinese) 2018, 257−265.

    6. [6]

      Zhang, K.; Liu, X. Y.; Xu, B. W.; Cui, Y.; Sun, M. L.; Hou, J. H. High-performance fullerene-free polymer solar cells with solution-processed conjugated polymers as anode interfacial layer. Chinese J. Polym. Sci. 2017, 35, 219−229.

    7. [7]

      Zhang, W.; Cheng, Y.; Yin, X.; Liu, B. Solid-state dye-sensitized solar cells with conjugated polymers as hole-transporting materials. Macromol. Chem. Phys. 2011, 212, 15−23. doi: 10.1002/macp.201000489

    8. [8]

      Wu, J.; Lan, Z.; Lin, J.; Huang, M.; Huang, Y.; Fan, L.; Luo, G. Electrolytes in dye-sensitized solar cells. Chem. Rev. 2015, 115, 2136−2173. doi: 10.1021/cr400675m

    9. [9]

      Calio, L.; Kazim, S.; Grätzel, M.; Ahmad, S. Hole-transport materials for perovskite solar cells. Angew. Chem. Int. Ed. 2016, 55, 14522−14545. doi: 10.1002/anie.201601757

    10. [10]

      Bakr, Z. H.; Wali, Q.; Fakharuddin, A.; Schmidt-Mende, L.; Brown, T. M.; Jose, R. Advances in hole transport materials engineering for stable and efficient perovskite solar cells. Nano Energy 2017, 34, 271−305. doi: 10.1016/j.nanoen.2017.02.025

    11. [11]

      Rakstys, K.; Igci, C.; Nazeeruddin, M. K. Efficiency vs stability: dopant-free hole transporting materials towards stabilized perovskite solar cells. Chem. Sci. 2019, 10, 6748−6769.

    12. [12]

      Gao, P.; Yang, Z.; He, J.; Yu, J.; Liu, P.; Zhu, J.; Ge, Z.; Ye, J. Dopant-free and carrier-selective heterocontacts for silicon solar cells: recent advances and perspectives. Adv. Sci. 2018, 5, 1700547. doi: 10.1002/advs.201700547

    13. [13]

      Lu, L. Y.; Zheng, T. Y.; Wu, Q. H.; Schneider, A. M.; Zhao, D. L.; Yu, L. P. Recent advances in bulk heterojunction polymer solar cells. Chem. Rev. 2015, 115, 12666−12731. doi: 10.1021/acs.chemrev.5b00098

    14. [14]

      Chen, J. W.; Cao, Y. Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices. Acc. Chem. Res. 2009, 42, 1709−1718. doi: 10.1021/ar900061z

    15. [15]

      O'regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737−740. doi: 10.1038/353737a0

    16. [16]

      Hamann, T. W.; Ondersma, J. W. Dye-sensitized solar cell redox shuttles. Energy Environ. Sci. 2011, 4, 370−381. doi: 10.1039/C0EE00251H

    17. [17]

      Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M. K.; Grätzel, M. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 2014, 6, 242−247. doi: 10.1038/nchem.1861

    18. [18]

      Kakiage, K.; Aoyama, Y.; Yano, T.; Oya, K.; Fujisawa, J. I.; Hanaya, M. Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem. Commun. 2015, 51, 15894−15897. doi: 10.1039/C5CC06759F

    19. [19]

      Zhang, L.; Yang, X.; Wang, W.; Gurzadyan, G. G.; Li, J.; Li, X.; An, J.; Yu, Z.; Wang, H.; Cai, B. 13.6% Efficient organic dye-sensitized solar cells by minimizing energy losses of the excited state. ACS Energy Lett. 2019, 4, 943−951. doi: 10.1021/acsenergylett.9b00141

    20. [20]

      Bach, U.; Lupo, D.; Comte, P.; Moser, J.; Weissörtel, F.; Salbeck, J.; Spreitzer, H.; Grätzel, M. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 1998, 395, 583−585. doi: 10.1038/26936

    21. [21]

      Murakoshi, K.; Kogure, R.; Wada, Y.; Yanagida, S. Solid state dye-sensitized TiO2 solar cell with polypyrrole as hole transport layer. Chem. Lett. 1997, 26, 471−472. doi: 10.1246/cl.1997.471

    22. [22]

      Tennakone, K.; Kumara, G.; Kumarasinghe, A.; Wijayantha, K.; Sirimanne, P. A dye-sensitized nano-porous solid-state photovoltaic cell. Semicond. Sci. Technol. 1995, 10, 1689−1693. doi: 10.1088/0268-1242/10/12/020

    23. [23]

      O'Regan, B.; Schwartz, D. T. Large enhancement in photocurrent efficiency caused by UV illumination of the dye-sensitized heterojunction TiO2/RuLL ‘NCS/CuSCN: initiation and potential mechanisms. Chem. Mater. 1998, 10, 1501−1509. doi: 10.1021/cm9705855

    24. [24]

      Kitamura, T.; Maitani, M.; Matsuda, M.; Wada, Y.; Yanagida, S. Improved solid-state dye solar cells with polypyrrole using a carbon-based counter electrode. Chem. Lett. 2001, 30, 1054−1055. doi: 10.1246/cl.2001.1054

    25. [25]

      Cervini, R.; Cheng, Y.; Simon, G. Solid-state Ru-dye solar cells using polypyrrole as a hole conductor. J. Phys. D: Appl. Phys. 2003, 37, 13−20.

    26. [26]

      Huang, W. S.; Humphrey, B. D.; MacDiarmid, A. G. Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes. J. Chem. Soc., Faraday Trans. 1986, 82, 2385−2400.

    27. [27]

      Kaneko, M.; Nakamura, H. Photoresponse of a liquid junction polyaniline film. J. Chem. Soc. Chem. Commun. 1985, 346−347.

    28. [28]

      Tan, S.; Zhai, J.; Wan, M.; Jiang, L.; Zhu, D. Polyaniline as a hole transport material to prepare solid solar cells. Synth. Met. 2003, 137, 1511−1512. doi: 10.1016/S0379-6779(02)01207-9

    29. [29]

      Tan, S.; Zhai, J.; Xue, B.; Wan, M.; Meng, Q.; Li, Y.; Jiang, L.; Zhu, D. Property influence of polyanilines on photovoltaic behaviors of dye-sensitized solar cells. Langmuir 2004, 20, 2934−2937. doi: 10.1021/la036260m

    30. [30]

      Tan, S.; Zhai, J.; Wan, M.; Meng, Q.; Li, Y.; Jiang, L.; Zhu, D. Influence of small molecules in conducting polyaniline on the photovoltaic properties of solid-state dye-sensitized solar cells. J. Phys. Chem. B 2004, 108, 18693−18697. doi: 10.1021/jp046574y

    31. [31]

      Kim, H.-S.; Wamser, C. C. Photoelectropolymerization of aniline in a dye-sensitized solar cell. Photochem. Photobiol. Sci. 2006, 5, 955−960. doi: 10.1039/b610810e

    32. [32]

      Ameen, S.; Akhtar, M. S.; Kim, G. S.; Kim, Y. S.; Yang, O. B.; Shin, H. S. Plasma-enhanced polymerized aniline/TiO2 dye-sensitized solar cells. J. Alloys Compd. 2009, 487, 382−386. doi: 10.1016/j.jallcom.2009.07.126

    33. [33]

      Duan, Y.; Tang, Q.; Chen, Y.; Zhao, Z.; Lv, Y.; Hou, M.; Yang, P.; He, B.; Yu, L. Solid-state dye-sensitized solar cells from poly-(ethylene oxide)/polyaniline electrolytes with catalytic and hole-transporting characteristics. J. Mater. Chem. A 2015, 3, 5368−5374. doi: 10.1039/C4TA06393G

    34. [34]

      Cheng, Y. J.; Yang, S. H.; Hsu, C. S. Synthesis of conjugated polymers for organic solar cell applications. Chem. Rev. 2009, 109, 5868−5923. doi: 10.1021/cr900182s

    35. [35]

      Gebeyehu, D.; Brabec, C.; Padinger, F.; Fromherz, T.; Spiekermann, S.; Vlachopoulos, N.; Kienberger, F.; Schindler, H.; Sariciftci, N. Solid state dye-sensitized TiO2 solar cells with poly-(3-octylthiophene) as hole transport layer. Synth. Met. 2001, 121, 1549−1550. doi: 10.1016/S0379-6779(00)01239-X

    36. [36]

      Kudo, N.; Honda, S.; Shimazaki, Y.; Ohkita, H.; Ito, S.; Benten, H. Improvement of charge injection efficiency in organic-inorganic hybrid solar cells by chemical modification of metal oxides with organic molecules. Appl. Phys. Lett. 2007, 90, 183513. doi: 10.1063/1.2736192

    37. [37]

      Lancelle-Beltran, E.; Prené, P.; Boscher, C.; Belleville, P.; Buvat, P.; Sanchez, C. All-solid-state dye-sensitized nanoporous TiO2 hybrid solar cells with high energy-conversion efficiency. Adv. Mater. 2006, 18, 2579−2582. doi: 10.1002/adma.200502023

    38. [38]

      Zhu, R.; Jiang, C. Y.; Liu, B.; Ramakrishna, S. Highly efficient nanoporous TiO2-polythiophene hybrid solar cells based on interfacial modification using a metal-free organic dye. Adv. Mater. 2009, 21, 994−1000. doi: 10.1002/adma.200802388

    39. [39]

      Jiang, K. J.; Manseki, K.; Yu, Y. H.; Masaki, N.; Suzuki, K.; Song, Y. L.; Yanagida, S. Photovoltaics based on hybridization of effective dye-sensitized titanium oxide and hole-conductive polymer P3HT. Adv. Funct. Mater. 2009, 19, 2481−2485. doi: 10.1002/adfm.200900283

    40. [40]

      Mor, G. K.; Kim, S.; Paulose, M.; Varghese, O. K.; Shankar, K.; Basham, J.; Grimes, C. A. Visible to near-infrared light harvesting in TiO2 nanotube array-P3HT based heterojunction solar cells. Nano Lett. 2009, 9, 4250−4257. doi: 10.1021/nl9024853

    41. [41]

      Zhang, W.; Zhu, R.; Li, F.; Wang, Q.; Liu, B. High-performance solid-state organic dye sensitized solar cells with P3HT as hole transporter. J. Phys. Chem. C 2011, 115, 7038−7043.

    42. [42]

      Yang, L.; Cappel, U. B.; Unger, E. L.; Karlsson, M.; Karlsson, K. M.; Gabrielsson, E.; Sun, L.; Boschloo, G.; Hagfeldt, A.; Johansson, E. M. Comparing spiro-OMeTAD and P3HT hole conductors in efficient solid state dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2012, 14, 779−789. doi: 10.1039/C1CP23031J

    43. [43]

      Liu, Q.; Li, C.; Jiang, K.; Song, Y.; Pei, J. A high-efficiency solid-state dye-sensitized solar cell with P3HT polymer as a hole conductor and an assistant sensitizer. Particuology 2014, 15, 71−76. doi: 10.1016/j.partic.2012.12.005

    44. [44]

      Wu, J.; Yue, G.; Xiao, Y.; Ye, H.; Lin, J.; Huang, M. Application of a polymer heterojunction in dye-sensitized solar cells. Electrochim. Acta 2010, 55, 5798−5802. doi: 10.1016/j.electacta.2010.05.025

    45. [45]

      Chen, W. C.; Lee, Y. H.; Chen, C. Y.; Kau, K. C.; Lin, L. Y.; Dai, C. A.; Wu, C. G.; Ho, K. C.; Wang, J. K.; Wang, L. Self-assembled all-conjugated block copolymer as an effective hole conductor for solid-state dye-sensitized solar cells. ACS Nano 2014, 8, 1254−1262. doi: 10.1021/nn404346v

    46. [46]

      Chevrier, M.; Hawashin, H.; Richeter, S.; Mehdi, A.; Surin, M.; Lazzaroni, R.; Dubois, P.; Ratier, B.; Bouclé, J.; Clément, S. Well-designed poly(3-hexylthiophene) as hole transporting material: a new opportunity for solid-state dye-sensitized solar cells. Synth. Met. 2017, 226, 157−163. doi: 10.1016/j.synthmet.2017.02.015

    47. [47]

      Groenendaal, L.; Jonas, F.; Freitag, D.; Pielartzik, H.; Reynolds, J. R. Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv. Mater. 2000, 12, 481−494. doi: 10.1002/(SICI)1521-4095(200004)12:7<481::AID-ADMA481>3.0.CO;2-C

    48. [48]

      Saito, Y.; Fukuri, N.; Senadeera, R.; Kitamura, T.; Wada, Y.; Yanagida, S. Solid state dye sensitized solar cells using in situ polymerized PEDOTs as hole conductor. Electrochem. Commun. 2004, 6, 71−74. doi: 10.1016/j.elecom.2003.10.016

    49. [49]

      Fukuri, N.; Saito, Y.; Kubo, W.; Senadeera, G. R.; Kitamura, T.; Wada, Y.; Yanagida, S. Performance improvement of solid-state dye-sensitized solar cells fabricated using poly(3,4-ethylenedioxythiophene) and amphiphilic sensitizing dye. J. Electrochem. Soc. 2004, 151, A1745−A1748. doi: 10.1149/1.1793711

    50. [50]

      Xia, J.; Masaki, N.; Lira-Cantu, M.; Kim, Y.; Jiang, K.; Yanagida, S. Influence of doped anions on poly(3,4-ethylenedioxythiophene) as hole conductors for iodine-free solid-state dye-sensitized solar cells. J. Am. Chem. Soc. 2008, 130, 1258−1263. doi: 10.1021/ja075704o

    51. [51]

      Liu, X.; Zhang, W.; Uchida, S.; Cai, L.; Liu, B.; Ramakrishna, S. An efficient organic-dye-sensitized solar cell with in situ polymerized poly(3,4-ethylenedioxythiophene) as a hole-transporting material. Adv. Mater. 2010, 22, E150−E155. doi: 10.1002/adma.200904168

    52. [52]

      Zhang, J.; Vlachopoulos, N.; Hao, Y.; Holcombe, T. W.; Boschloo, G.; Johansson, E. M.; Grätzel, M.; Hagfeldt, A. Efficient blue-colored solid-state dye-sensitized solar cells: enhanced charge collection by using an in situ photoelectrochemically generated conducting polymer hole conductor. ChemPhysChem 2016, 17, 1441−1445. doi: 10.1002/cphc.201600064

    53. [53]

      Zhang, J.; Vlachopoulos, N.; Jouini, M.; Johansson, M. B.; Zhang, X.; Nazeeruddin, M. K.; Boschloo, G.; Johansson, E. M.; Hagfeldt, A. Efficient solid-state dye sensitized solar cells: the influence of dye molecular structures for the in-situ photoelectrochemically polymerized PEDOT as hole transporting material. Nano Energy 2016, 19, 455−470. doi: 10.1016/j.nanoen.2015.09.010

    54. [54]

      National Renewable Energy Laboratory, Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html

    55. [55]

      Yang, W. S.; Park, B. W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.; Seo, J.; Kim, E. K.; Noh, J. H. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 2017, 356, 1376−1379. doi: 10.1126/science.aan2301

    56. [56]

      Jung, E. H.; Jeon, N. J.; Park, E. Y.; Moon, C. S.; Shin, T. J.; Yang, T. Y.; Noh, J. H.; Seo, J. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 2019, 567, 511−515. doi: 10.1038/s41586-019-1036-3

    57. [57]

      Chiang, C. H.; Nazeeruddin, M. K.; Grätzel, M.; Wu, C. G. The synergistic effect of H2O and DMF towards stable and 20% efficiency inverted perovskite solar cells. Energy Environ. Sci. 2017, 10, 808−817. doi: 10.1039/C6EE03586H

    58. [58]

      Ning, Z.; Tian, H. Triarylamine: a promising core unit for efficient photovoltaic materials. Chem. Commun. 2009, 5483−5495.

    59. [59]

      Heo, J. H.; Im, S. H.; Noh, J. H.; Mandal, T. N.; Lim, C. S.; Chang, J. A.; Lee, Y. H.; Kim, H. J.; Sarkar, A.; Nazeeruddin, M. K. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photon. 2013, 7, 486−491. doi: 10.1038/nphoton.2013.80

    60. [60]

      Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897−903. doi: 10.1038/nmat4014

    61. [61]

      Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 476−480. doi: 10.1038/nature14133

    62. [62]

      Bi, C.; Wang, Q.; Shao, Y.; Yuan, Y.; Xiao, Z.; Huang, J. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun. 2015, 6, 7747. doi: 10.1038/ncomms8747

    63. [63]

      Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348, 1234−1237. doi: 10.1126/science.aaa9272

    64. [64]

      Zheng, X.; Chen, B.; Dai, J.; Fang, Y.; Bai, Y.; Lin, Y.; Wei, H.; Zeng, X. C.; Huang, J. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2017, 2, 17102. doi: 10.1038/nenergy.2017.102

    65. [65]

      Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 2013, 13, 1764−1769. doi: 10.1021/nl400349b

    66. [66]

      Wang, K.; Jin, Z.; Liang, L.; Bian, H.; Bai, D.; Wang, H.; Zhang, J.; Wang, Q.; Shengzhong, L. All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15%. Nat. Commun. 2018, 9, 4544. doi: 10.1038/s41467-018-06915-6

    67. [67]

      Jost, M.; Bertram, T.; Koushik, D.; Marquez, J. A.; Verheijen, M. A.; Heinemann, M. D.; Köhnen, E.; Al-Ashouri, A.; Braunger, S.; Lang, F. 21.6%-Efficient monolithic perovskite/Cu(In,Ga)Se2 tandem solar cells with thin conformal hole transport layers for integration on rough bottom cell surfaces. ACS Energy Lett. 2019, 4, 583−590. doi: 10.1021/acsenergylett.9b00135

    68. [68]

      Kim, Y.; Jung, E. H.; Kim, G.; Kim, D.; Kim, B. J.; Seo, J. Sequentially fluorinated PTAA polymers for enhancing Voc of high-performance perovskite solar cells. Adv. Energy Mater. 2018, 8, 1801668. doi: 10.1002/aenm.201801668

    69. [69]

      Coakley, K. M.; Srinivasan, B. S.; Ziebarth, J. M.; Goh, C.; Liu, Y.; McGehee, M. D. Enhanced hole mobility in regioregular polythiophene infiltrated in straight nanopores. Adv. Funct. Mater. 2005, 15, 1927−1932. doi: 10.1002/adfm.200500364

    70. [70]

      Bi, D.; Yang, L.; Boschloo, G.; Hagfeldt, A.; Johansson, E. M. Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells. J. Phys. Chem. Lett. 2013, 4, 1532−1536. doi: 10.1021/jz400638x

    71. [71]

      Edri, E.; Kirmayer, S.; Cahen, D.; Hodes, G. High open-circuit voltage solar cells based on organic-inorganic lead bromide perovskite. J. Phys. Chem. Lett. 2013, 4, 897−902. doi: 10.1021/jz400348q

    72. [72]

      Abrusci, A.; Stranks, S. D.; Docampo, P.; Yip, H. L.; Jen, A. K. Y.; Snaith, H. J. High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers. Nano Lett. 2013, 13, 3124−3128. doi: 10.1021/nl401044q

    73. [73]

      Conings, B.; Baeten, L.; De, Dobbelaere C.; D'Haen, J.; Manca, J.; Boyen, H. G. Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach. Adv. Mater. 2014, 26, 2041−2046. doi: 10.1002/adma.201304803

    74. [74]

      Lu, H.; Ma, Y.; Gu, B.; Tian, W.; Li, L. Identifying the optimum thickness of electron transport layers for highly efficient perovskite planar solar cells. J. Mater. Chem. A 2015, 3, 16445−16452. doi: 10.1039/C5TA03686K

    75. [75]

      Abbas, H. A.; Kottokkaran, R.; Ganapathy, B.; Samiee, M.; Zhang, L.; Kitahara, A.; Noack, M.; Dalal, V. L. High efficiency sequentially vapor grown n-i-p CH3NH3PbI3 perovskite solar cells with undoped P3HT as p-type heterojunction layer. APL Mater. 2015, 3, 016105. doi: 10.1063/1.4905932

    76. [76]

      Heo, J. H.; Im, S. H. CH3NH3PbI3/poly-3-hexylthiophen perovskite mesoscopic solar cells: Performance enhancement by Li-assisted hole conduction. Phys. Status Solidi RRL 2014, 8, 816−821. doi: 10.1002/pssr.201409330

    77. [77]

      Guo, Y.; Liu, C.; Inoue, K.; Harano, K.; Tanaka, H.; Nakamura, E. Enhancement in the efficiency of an organic-inorganic hybrid solar cell with a doped P3HT hole-transporting layer on a void-free perovskite active layer. J. Mater. Chem. A 2014, 2, 13827−13830. doi: 10.1039/C4TA02976C

    78. [78]

      Bi, H.; Zhang, Y. Influence of the additives in poly(3-hexylthiophene) hole transport layer on the performance of perovskite solar cells. Mater. Lett. 2015, 161, 767−769. doi: 10.1016/j.matlet.2015.09.092

    79. [79]

      Chen, H.; Pan, X.; Liu, W.; Cai, M.; Kou, D.; Huo, Z.; Fang, X.; Dai, S. Efficient panchromatic inorganic-organic heterojunction solar cells with consecutive charge transport tunnels in hole transport material. Chem. Commun. 2013, 49, 7277−7279. doi: 10.1039/c3cc42297f

    80. [80]

      Cai, M.; Tiong, V. T.; Hreid, T.; Bell, J.; Wang, H. An efficient hole transport material composite based on poly(3-hexylthiophene) and bamboo-structured carbon nanotubes for high performance perovskite solar cells. J. Mater. Chem. A 2015, 3, 2784−2793. doi: 10.1039/C4TA04997G

    81. [81]

      Xiao, J.; Shi, J.; Liu, H.; Xu, Y.; Lv, S.; Luo, Y.; Li, D.; Meng, Q.; Li, Y. Efficient CH3NH3PbI3 perovskite solar cells based on graphdiyne (GD)-modified P3HT hole-transporting material. Adv. Energy Mater. 2015, 5, 1401943. doi: 10.1002/aenm.201401943

    82. [82]

      Habisreutinger, S. N.; Leijtens, T.; Eperon, G. E.; Stranks, S. D.; Nicholas, R. J.; Snaith, H. J. Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett. 2014, 14, 5561−5568. doi: 10.1021/nl501982b

    83. [83]

      Yan, W.; Ye, S.; Li, Y.; Sun, W.; Rao, H.; Liu, Z.; Bian, Z.; Huang, C. Hole-transporting materials in inverted planar perovskite solar cells. Adv. Energy Mater. 2016, 6, 1600474. doi: 10.1002/aenm.201600474

    84. [84]

      Jeng, J. Y.; Chiang, Y. F.; Lee, M. H.; Peng, S. R.; Guo, T. F.; Chen, P.; Wen, T. C. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 2013, 25, 3727−3732. doi: 10.1002/adma.201301327

    85. [85]

      Docampo, P.; Ball, J. M.; Darwich, M.; Eperon, G. E.; Snaith, H. J. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat. Commun. 2013, 4, 2761. doi: 10.1038/ncomms3761

    86. [86]

      Xiao, Z.; Dong, Q.; Bi, C.; Shao, Y.; Yuan, Y.; Huang, J. Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv. Mater. 2014, 26, 6503−6509. doi: 10.1002/adma.201401685

    87. [87]

      You, J.; Yang, Y.; Hong, Z.; Song, T. B.; Meng, L.; Liu, Y.; Jiang, C.; Zhou, H.; Chang, W. H.; Li, G. Moisture assisted perovite film growth for high performance solar cells. Appl. Phys. Lett. 2014, 105, 183902. doi: 10.1063/1.4901510

    88. [88]

      Heo, J. H.; Han, H. J.; Kim, D.; Ahn, T. K.; Im, S. H. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ. Sci. 2015, 8, 1602−1608. doi: 10.1039/C5EE00120J

    89. [89]

      de Jong, M.; van Ijzendoorn, L.; de Voigt, M. Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes. Appl. Phys. Lett. 2000, 77, 2255−2257. doi: 10.1063/1.1315344

    90. [90]

      Hou, F.; Su, Z.; Jin, F.; Yan, X.; Wang, L.; Zhao, H.; Zhu, J.; Chu, B.; Li, W. Efficient and stable planar heterojunction perovskite solar cells with an MoO3/PEDOT:PSS hole transporting layer. Nanoscale 2015, 7, 9427−9432. doi: 10.1039/C5NR01864A

    91. [91]

      Sung, H.; Ahn, N.; Jang, M. S.; Lee, J. K.; Yoon, H.; Park, N. G.; Choi, M. Transparent conductive oxide-free graphene-based perovskite solar cells with over 17% efficiency. Adv. Energy Mater. 2016, 6, 1501873. doi: 10.1002/aenm.201501873

    92. [92]

      Wang, Z. K.; Gong, X.; Li, M.; Hu, Y.; Wang, J. M.; Ma, H.; Liao, L. S. Induced crystallization of perovskites by a perylene underlayer for high-performance solar cells. ACS Nano 2016, 10, 5479−5489. doi: 10.1021/acsnano.6b01904

    93. [93]

      Sailor, M. J.; Ginsburg, E. J.; Gorman, C. B.; Kumar, A.; Grubbs, R. H.; Lewis, N. S. Thin films of n-Si/poly-(CH3)3Si-cyclooctatetraene: conducting-polymer solar cells and layered structures. Science 1990, 249, 1146−1149. doi: 10.1126/science.249.4973.1146

    94. [94]

      Williams, E. L.; Jabbour, G. E.; Wang, Q.; Shaheen, S. E.; Ginley, D. S.; Schiff, E. A. Conducting polymer and hydrogenated amorphous silicon hybrid solar cells. Appl. Phys. Lett. 2005, 87, 223504. doi: 10.1063/1.2136409

    95. [95]

      Wang, W.; Schiff, E. A. Polyaniline on crystalline silicon heterojunction solar cells. Appl. Phys. Lett. 2007, 91, 133504. doi: 10.1063/1.2789785

    96. [96]

      Avasthi, S.; Lee, S.; Loo, Y. L.; Sturm, J. C. Role of majority and minority carrier barriers silicon/organic hybrid heterojunction solar cells. Adv. Mater. 2011, 23, 5762−5766. doi: 10.1002/adma.201102712

    97. [97]

      Yu, P.; Tsai, C. Y.; Chang, J. K.; Lai, C. C.; Chen, P. H.; Lai, Y. C.; Tsai, P. T.; Li, M. C.; Pan, H. T.; Huang, Y. Y. 13% Efficiency hybrid organic/silicon-nanowire heterojunction solar cell via interface engineering. ACS Nano 2013, 7, 10780−10787. doi: 10.1021/nn403982b

    98. [98]

      Zhang, Y.; Zu, F.; Lee, S. T.; Liao, L.; Zhao, N.; Sun, B. Heterojunction with organic thin layers on silicon for record efficiency hybrid solar cells. Adv. Energy Mater. 2014, 4, 1300923. doi: 10.1002/aenm.201300923

    99. [99]

      Liu, R.; Lee, S. T.; Sun, B. 13.8% Efficiency hybrid Si/organic heterojunction solar cells with MoO3 film as antireflection and inversion induced layer. Adv. Mater. 2014, 26, 6007−6012. doi: 10.1002/adma.201402076

    100. [100]

      Wu, S.; Cui, W.; Aghdassi, N.; Song, T.; Duhm, S.; Lee, S. T.; Sun, B. Nanostructured Si/organic heterojunction solar cells with high open-circuit voltage via improving junction quality. Adv. Funct. Mater. 2016, 26, 5035−5041. doi: 10.1002/adfm.201600441

    101. [101]

      He, J.; Gao, P.; Ling, Z.; Ding, L.; Yang, Z.; Ye, J.; Cui, Y. High-efficiency silicon/organic heterojunction solar cells with improved junction quality and interface passivation. ACS Nano 2016, 10, 11525−11531. doi: 10.1021/acsnano.6b07511

    102. [102]

      He, J.; Hossain, M. A.; Lin, H.; Wang, W.; Karuturi, S. K.; Hoex, B.; Ye, J.; Gao, P.; Bullock, J.; Wan, Y. 15% Efficiency ultrathin silicon solar cells with fluorine-doped titanium oxide and chemically tailored poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) as asymmetric heterocontact. ACS Nano 2019, 13, 6356−6362. doi: 10.1021/acsnano.9b01754

    103. [103]

      Yu, J.; Liao, M.; Yan, D.; Wan, Y.; Lin, H.; Wang, Z.; Gao, P.; Zeng, Y.; Yan, B.; Ye, J. Activating and optimizing evaporation-processed magnesium oxide passivating contact for silicon solar cells. Nano Energy 2019, 62, 181−188. doi: 10.1016/j.nanoen.2019.05.015

    104. [104]

      He, J.; Gao, P.; Yang, Z.; Yu, J.; Yu, W.; Zhang, Y.; Sheng, J.; Ye, J.; Amine, J. C.; Cui, Y. Silicon/organic hybrid solar cells with 16.2% efficiency and improved stability by formation of conformal heterojunction coating and moisture-resistant capping layer. Adv. Mater. 2017, 29, 1606321. doi: 10.1002/adma.201606321

    105. [105]

      He, J.; Wan, Y.; Gao, P.; Tang, J.; Ye, J. Over 16.7% Efficiency organic-silicon heterojunction solar cells with solution-processed dopant-free contacts for both polarities. Adv. Funct. Mater. 2018, 28, 1802192. doi: 10.1002/adfm.201802192

  • 加载中
    1. [1]

      Mukhamed L. KeshtovDmitry V. MarochkinYing-ying FuZhi-yuan XieYan-hou GengVitaly S. KochurovAlexei R. Khokhlov . Thienopyrazine or Dithiadiazatrindene Containing Low Band Gap Conjugated Polymers for Polymer Solar Cells. Chinese J. Polym. Sci, 2014, 32(7): 844-853. doi: 10.1007/s10118-014-1458-1

    2. [2]

      Hai-yang SongHui TongZhi-yuan XieLi-xiang WangFo-song Wang . SYNTHESIS, CHARACTERIZATION AND SOLAR CELL APPLICATION OF A D-A COPOLYMER WITH CYCLOPENTADITHIOPHENE AND FLUORENE AS DONOR UNITS. Chinese J. Polym. Sci, 2013, 31(8): 1117-1126. doi: 10.1007/s10118-013-1302-z

    3. [3]

      Amjad IslamZhi-yang LiuRui-xiang PengWei-gang JiangTao LeiWang LiLei ZhangRong-juan YangGuan QianZi-yi Ge . Furan-containing Conjugated Polymers for Organic Solar Cells. Chinese J. Polym. Sci, 2017, 35(2): 171-183. doi: 10.1007/s10118-017-1886-9

    4. [4]

      Xin-Lei ZhangLei WangLiang ChenXiao-Yu MaHang-Xun Xu . Ultrathin 2D Conjugated Polymer Nanosheets for Solar Fuel Generation. Chinese J. Polym. Sci, 2019, 37(2): 101-114. doi: 10.1007/s10118-019-2171-x

    5. [5]

      Fan YangCheng LiGui-tao FengXu-dong JiangAn-dong ZhangWei-wei Li . Bisperylene Bisimide Based Conjugated Polymer as Electron Acceptor for Polymer-Polymer Solar Cellsh. Chinese J. Polym. Sci, 2017, 35(2): 239-248. doi: 10.1007/s10118-017-1870-4

    6. [6]

      Hui ZhangGe ZhangJing-kun XuYang-ping WenWan-chuan DingJie ZhangShou-li MingShi-jie Zhen . Electrosynthesis, Characterization and Optical Sensing Application of Amino Acid Functionalized Polyfluorene. Chinese J. Polym. Sci, 2016, 34(2): 229-241. doi: 10.1007/s10118-016-1742-3

    7. [7]

      Bin LiuFang-lin HuangYong-feng ShiZhi-qing NiYe LinShou-chun Yin . Synthesis, Characterization and Optical Properties of Poly(aryleneethynylene)s Containing BODIPY. Chinese J. Polym. Sci, 2015, 33(8): 1133-1139. doi: 10.1007/s10118-015-1664-5

    8. [8]

      Chao WangFeng LiuQiao-Mei ChenCheng-Yi XiaoYong-Gang WuWei-Wei Li . Benzothiadiazole-based Conjugated Polymers for Organic Solar Cells. Chinese J. Polym. Sci, 2021, 39(5): 525-536. doi: 10.1007/s10118-021-2537-8

    9. [9]

      Jie-huan ChenShi-da YangWen-qing LiuWei-fei FuHong-zheng Chen . Improved Photovoltaic Performance from High Quality Perovskite Thin Film Grown with the Assistance of PC71BM. Chinese J. Polym. Sci, 2017, 35(2): 309-316. doi: 10.1007/s10118-017-1891-z

    10. [10]

      Feng LiuDan WangJun-Yu LiCheng-Yi XiaoYong-Gang WuWei-Wei LiGuang-Sheng Fu . Side-chains Engineering of Conjugated Polymers toward Additive-free Non-fullerene Organic Solar Cells. Chinese J. Polym. Sci, 2021, 39(1): 43-50. doi: 10.1007/s10118-020-2490-y

    11. [11]

      Xun-fan LiaoJing WangShuang-ying ChenLie ChenYi-wang Chen . Diketopyrrolopyrrole-based Conjugated Polymers as Additives to Optimize Morphology for Polymer Solar Cells. Chinese J. Polym. Sci, 2016, 34(4): 491-504. doi: 10.1007/s10118-016-1761-0

    12. [12]

      Xiao-Cheng LiuQing-Wu YinZhi-Cheng HuZhen-Feng WangFei HuangYong Cao . Perylene Diimide Based Isomeric Conjugated Polymers as Efficient Electron Acceptors for All-polymer Solar Cells. Chinese J. Polym. Sci, 2019, 37(1): 18-27. doi: 10.1007/s10118-019-2188-1

    13. [13]

      Mei-Jing LiBao-Bing FanWen-Kai ZhongZhao-Mi-Yi ZengJing-Kun XuLei Ying . Rational Design of Conjugated Polymers for d-Limonene Processed All-polymer Solar Cells with Small Energy Loss. Chinese J. Polym. Sci, 2020, 38(8): 791-796. doi: 10.1007/s10118-020-2429-3

    14. [14]

      Lin ZhangWei Ma . Morphology Optimization in Ternary Organic Solar Cells. Chinese J. Polym. Sci, 2017, 35(2): 184-197. doi: 10.1007/s10118-017-1898-5

    15. [15]

      Shi-fan WangYa-nan LiuJie YangYou-tian TaoYan GuoXu-dong CaoZhi-guo ZhangYong-fang LiWei Huang . Orthogonal Solubility in Fully Conjugated Donor-Acceptor Block Copolymers: Compatibilizers for Polymer/Fullerene Bulk-Heterojunction Solar Cells. Chinese J. Polym. Sci, 2017, 35(2): 207-218. doi: 10.1007/s10118-017-1889-6

    16. [16]

      Jian-fei QuJian LiuSi-da LiZhi-yuan XieYan-hou Geng . DONOR-ACCEPTOR CONJUGATED COOLIGOMERS FOR SINGLE MOLECULE SOLAR CELLS. Chinese J. Polym. Sci, 2013, 31(5): 815-822. doi: 10.1007/s10118-013-1276-x

    17. [17]

      Quan-xiang YanZhuo-wei GuQi LiWei-fei FuXiao-qiang ChenWen-qing LiuHong-bin PanMang WangHong-zheng Chen . Water Soluble Amino Grafted Silicon Nanoparticles and Their Use in Polymer Solar Cells. Chinese J. Polym. Sci, 2014, 32(4): 395-401. doi: 10.1007/s10118-014-1415-z

    18. [18]

      Zhen LuCui-hong LiChun DuXue GongZhi-shan Bo . 6,7-DIALKOXY-2,3-DIPHENYLQUINOXALINE BASED CONJUGATED POLYMERS FOR SOLAR CELLS WITH HIGH OPEN-CIRCUIT VOLTAGE. Chinese J. Polym. Sci, 2013, 31(6): 901-911. doi: 10.1007/s10118-013-1275-y

    19. [19]

      Kai ZhangXiao-yu LiuBo-wei XuYong CuiMing-liang SunJian-hui Hou . High-performance Fullerene-free Polymer Solar Cells with Solution-processed Conjugated Polymers as Anode Interfacial Layer. Chinese J. Polym. Sci, 2017, 35(2): 219-229. doi: 10.1007/s10118-017-1888-7

    20. [20]

      Zhi-Guo ZhangYang BaiYongfang Li . Benzotriazole Based 2D-conjugated Polymer Donors for High Performance Polymer Solar Cells. Chinese J. Polym. Sci, 2021, 39(1): 1-13. doi: 10.1007/s10118-020-2496-5

Article Metrics
  • PDF Downloads(36)
  • Abstract views(2297)
  • HTML views(380)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return