请关注微信公众平台

The Role of Mold Temperature on Morphology and Mechanical Properties of PE Pipe Produced by Rotational Shear

Zu-Chen Du Hao Yang Xie-Huai Luo Ze-Xiang Xie Qiang Fu Xue-Qin Gao

引用本文: . doi: 10.1007/s10118-020-2363-4 shu
Citation:  Zu-Chen Du, Hao Yang, Xie-Huai Luo, Ze-Xiang Xie, Qiang Fu and Xue-Qin Gao. The Role of Mold Temperature on Morphology and Mechanical Properties of PE Pipe Produced by Rotational Shear[J]. Chinese J. Polym. Sci, 2020, 38(6): 653-664. doi: 10.1007/s10118-020-2363-4 shu

The Role of Mold Temperature on Morphology and Mechanical Properties of PE Pipe Produced by Rotational Shear

摘要: The role of mold temperature on the morphology and properties of rotational shearing polyethylene (PE) pipes was studied via a self-developed rotational shear system (RSS). The result indicated that when the mold temperature was 150 °C, the hoop tensile strength and Vicat softening temperature were enhanced rapidly, which were 383.6% and 137.9% higher than those of the conventional PE pipes, respectively. Morphology and crystal structure studies by SEM and DSC revealed that once the rotational shear was applied, the shish-kebab structure began to appear. With the increase of the mold temperature, due to the relaxation of most of the oriented molecular chains, the preservation of shish-kebab structure became difficult. When the mold temperature was 190 °C, only the inner layer of the pipes, where the cooling rate was the largest, could preserve the shish-kebab structure. According to WAXD, there was less shish structure, and the growth of kebab was distorted in the inner layer of the pipes at 210 °C. The result of SAXS suggested that the length of shish changed most within the temperature range from 170 °C to 190 °C. The results of DSC and WAXD showed less change in crystallinity and degree of orientation between the two temperatures. It can be concluded that the reduction of shish length leads to a decrease in mechanical properties and heat-resistance.

English

    1. [1]

      Krushelnitzky, R. P.; Brachman, R. W. I. Buried high-density polyethylene pipe deflections at elevated temperatures. Geotext. Geomembr. 2013, 40, 69−77.
      Krushelnitzky, R. P.; Brachman, R. W. I.  Buried high-density polyethylene pipe deflections at elevated temperatures[J]. Geotext. Geomembr., 2013, 40(): 69-77. doi: 10.1016/j.geotexmem.2013.08.001

    2. [2]

      Cai, Z.; Dai, H.; Fu, X. Investigation on the hot melting temperature field simulation of HDPE water supply pipeline in gymnasium pool. Results Phys. 2018, 9, 1050−1056.
      Cai, Z.; Dai, H.; Fu, X.  Investigation on the hot melting temperature field simulation of HDPE water supply pipeline in gymnasium pool[J]. Results Phys., 2018, 9(): 1050-1056. doi: 10.1016/j.rinp.2018.04.019

    3. [3]

      He, X.; Zha, X.; Xiao, Z.; Xin, Q.; Liu, B. J. Effect of short chain branches distribution on fracture behavior of polyethylene pipe resins. Polym. Test. 2018, 68, 219−228.
      He, X.; Zha, X.; Xiao, Z.; Xin, Q.; Liu, B. J.  Effect of short chain branches distribution on fracture behavior of polyethylene pipe resins[J]. Polym. Test., 2018, 68(): 219-228. doi: 10.1016/j.polymertesting.2018.04.017

    4. [4]

      Kmetty, Á.; Bárány, T.; Karger-Kocsis. Self-reinforced polymeric materials: a review. Prog. Polym. Sci. 2010, 35, 1288−1310.
      Kmetty, Á.; Bárány, T.; Karger-Kocsis.  Self-reinforced polymeric materials: a review[J]. Prog. Polym. Sci., 2010, 35(): 1288-1310. doi: 10.1016/j.progpolymsci.2010.07.002

    5. [5]

      Alcock, B.; Peijs, T. Technology and development of self-reinforced polymer composites. Polym. Compos. 2013, 251, 1−76.
      Alcock, B.; Peijs, T.  Technology and development of self-reinforced polymer composites[J]. Polym. Compos., 2013, 251(): 1-76.

    6. [6]

      Li, Y. B.; Shen, K. Z.; Huang, H. Self-toughening and self-reinforcing injection-molded isotactic polypropylene via vibration injection molding. J. Macromol. Sci. Part B-Phys. 2004, 36, 55−58.
      Li, Y. B.; Shen, K. Z.; Huang, H.  Self-toughening and self-reinforcing injection-molded isotactic polypropylene via vibration injection molding[J]. J. Macromol. Sci. Part B-Phys., 2004, 36(): 55-58.

    7. [7]

      Li, Y. T.; Chen, G. S.; Guo, S. Y.; Li, H. L. Studies on rheological behavior and structure development of high-density polyethylene in the presence of ultrasonic oscillations during extrusion. Polym. Compos. 2006, 45, 39−52.
      Li, Y. T.; Chen, G. S.; Guo, S. Y.; Li, H. L.  Studies on rheological behavior and structure development of high-density polyethylene in the presence of ultrasonic oscillations during extrusion[J]. Polym. Compos., 2006, 45(): 39-52.

    8. [8]

      Gao, X, Zhang, J, Chen, C. Effect of vibration extrusion on high-density polyethylene. J. Appl. Polym. Sci 2010, 106, 552−557.
      Gao, X, Zhang, J, Chen, C.  Effect of vibration extrusion on high-density polyethylene[J]. J. Appl. Polym. Sci, 2010, 106(): 552-557.

    9. [9]

      Lei, J.; Jiang, C.; Shen, K. Biaxially self-reinforced high-density polyethylene prepared by dynamic packing injection molding. I. Processing parameters and mechanical properties. J. Appl. Polym. Sci. 2010, 93, 1584−1590.
      Lei, J.; Jiang, C.; Shen, K.  Biaxially self-reinforced high-density polyethylene prepared by dynamic packing injection molding. I. Processing parameters and mechanical properties[J]. J. Appl. Polym. Sci., 2010, 93(): 1584-1590.

    10. [10]

      Martin, J.; Margueron, S.; Fontana, M.; Cochez, M.; Bourson, P. Science study of the molecular orientation heterogeneity in polypropylene injection-molded parts by Raman spectroscopy. Polym. Eng. Sci. 2010, 50, 138−143.
      Martin, J.; Margueron, S.; Fontana, M.; Cochez, M.; Bourson, P.  Science study of the molecular orientation heterogeneity in polypropylene injection-molded parts by Raman spectroscopy[J]. Polym. Eng. Sci., 2010, 50(): 138-143. doi: 10.1002/pen.21524

    11. [11]

      Nie, M.; Wang, Q.; Bai, S. Science morphology and property of polyethylene pipe extruded at the low mandrel rotation. Polym. Eng. Sci. 2010, 50, 1743−1750.
      Nie, M.; Wang, Q.; Bai, S.  Science morphology and property of polyethylene pipe extruded at the low mandrel rotation[J]. Polym. Eng. Sci., 2010, 50(): 1743-1750. doi: 10.1002/pen.21700

    12. [12]

      Haddad, Y, M. Mechanical behaviour of engineering materials. Springer Berlin, Heidelberg, 2000, 55, B107-B108.

    13. [13]

      Groos, B. 1964, UK Pat. 946,371.

    14. [14]

      Chung, B.; Zachariades, A. E. Science morphological and mechanical property studies of polymer extrudates obtained by the rotational extrusion process. Polym. Eng. Sci. 1989, 29, 1511−1515.
      Chung, B.; Zachariades, A. E.  Science morphological and mechanical property studies of polymer extrudates obtained by the rotational extrusion process[J]. Polym. Eng. Sci., 1989, 29(): 1511-1515. doi: 10.1002/pen.760292104

    15. [15]

      Han, R.; Nie, M.; Wang, Q. Control over β-form hybrid shish-kebab crystals in polypropylene pipe via coupled effect of self-assembly β nucleating agent and rotation extrusion. J. Taiwan Inst. Chem. Eng. 2015, 52, 158−164.
      Han, R.; Nie, M.; Wang, Q.  Control over β-form hybrid shish-kebab crystals in polypropylene pipe via coupled effect of self-assembly β nucleating agent and rotation extrusion[J]. J. Taiwan Inst. Chem. Eng., 2015, 52(): 158-164. doi: 10.1016/j.jtice.2015.02.002

    16. [16]

      Long, J.; Shen, K.; Ji, J.; Guan, Q. A mandrel-rotating die to produce high-hoop-strength HDPE pipe by self-reinforcement. J. Appl. Polym. Sci. 2015, 69, 323−328.
      Long, J.; Shen, K.; Ji, J.; Guan, Q.  A mandrel-rotating die to produce high-hoop-strength HDPE pipe by self-reinforcement[J]. J. Appl. Polym. Sci., 2015, 69(): 323-328.

    17. [17]

      Han, R.; Nie, M.; Bai, S, B.; Wang, Q. Control over crystalline form in polypropylene pipe via mandrel rotation extrusion. Polym. Bull. 2013, 70, 2083−2096.
      Han, R.; Nie, M.; Bai, S, B.; Wang, Q.  Control over crystalline form in polypropylene pipe via mandrel rotation extrusion[J]. Polym. Bull., 2013, 70(): 2083-2096. doi: 10.1007/s00289-013-0963-7

    18. [18]

      Nie, M.; Li, X.; Hu, X.; Wang, Q. Effect of die temperature on morphology and performance of polyethylene pipe prepared via mandrel rotation extrusion. J. Macromol. Sci. Part B-Phys. 2014, 53, 1442−1452.
      Nie, M.; Li, X.; Hu, X.; Wang, Q.  Effect of die temperature on morphology and performance of polyethylene pipe prepared via mandrel rotation extrusion[J]. J. Macromol. Sci. Part B-Phys., 2014, 53(): 1442-1452. doi: 10.1080/00222348.2014.928161

    19. [19]

      Guo, Y.; Wang, Q.; Bai, S. The effect of rotational extrusion on the structure and properties of HDPE pipes. Polym. Plast. Technol. Eng. 2010, 49, 908−915.
      Guo, Y.; Wang, Q.; Bai, S.  The effect of rotational extrusion on the structure and properties of HDPE pipes[J]. Polym. Plast. Technol. Eng., 2010, 49(): 908-915. doi: 10.1080/03602551003773098

    20. [20]

      Min, N.; Bai, S.; Wang, Q. Effect of the inner wall cooling rate on the structure and properties of a polyethylene pipe extruded at a high rotation speed. J. Appl. Polym. Sci. 2010, 119, 1659−1666.
      Min, N.; Bai, S.; Wang, Q.  Effect of the inner wall cooling rate on the structure and properties of a polyethylene pipe extruded at a high rotation speed[J]. J. Appl. Polym. Sci., 2010, 119(): 1659-1666. doi: 10.1002/app.32840

    21. [21]

      Doufas, A. K.; Dairanieh, I. S.; Mchugh, A. J. A continuum model for flow-induced crystallization of polymer melts. J. Rheol. Macromolecules 1998, 43, 85−109.
      Doufas, A. K.; Dairanieh, I. S.; Mchugh, A. J.  A continuum model for flow-induced crystallization of polymer melts[J]. J. Rheol. Macromolecules, 1998, 43(): 85-109.

    22. [22]

      Coppola, S.; Grizzuti, N.; Maffettone, P. L. Microrheological modeling of flow-induced crystallization. Macromolecules 2001, 34, 5030−5036.
      Coppola, S.; Grizzuti, N.; Maffettone, P. L.  Microrheological modeling of flow-induced crystallization[J]. Macromolecules, 2001, 34(): 5030-5036. doi: 10.1021/ma010275e

    23. [23]

      Dlugosz, J.; Grubb, D. T.; Keller, A.; Rhodes, M. B. Morphological verification of “Row nucleation” in isotactic polystyrene; evidence for single crystals within the bulk. J. Mater. Sci. 1972, 7, 142−147.
      Dlugosz, J.; Grubb, D. T.; Keller, A.; Rhodes, M. B.  Morphological verification of “Row nucleation” in isotactic polystyrene; evidence for single crystals within the bulk[J]. J. Mater. Sci., 1972, 7(): 142-147. doi: 10.1007/BF02403499

    24. [24]

      Ju, J.; Wang, Z.; Su, F.; Ji, Y.; Yang, H.; Chang, J.; Ali, S.; Li, X. Extensional flow-induced dynamic phase transitions in isotactic polypropylene. Macromol. Rapid Commun. 2016, 37, 1441−1445.
      Ju, J.; Wang, Z.; Su, F.; Ji, Y.; Yang, H.; Chang, J.; Ali, S.; Li, X.  Extensional flow-induced dynamic phase transitions in isotactic polypropylene[J]. Macromol. Rapid Commun., 2016, 37(): 1441-1445. doi: 10.1002/marc.201600185

    25. [25]

      Phillips, A. W.; Bhatia, A.; Zhu, P. W.; Edward, G. Shish formation and relaxation in sheared isotactic polypropylene containing nucleating particles. Macromolecules 2011, 44, 3517.
      Phillips, A. W.; Bhatia, A.; Zhu, P. W.; Edward, G.  Shish formation and relaxation in sheared isotactic polypropylene containing nucleating particles[J]. Macromolecules, 2011, 44(): 3517-. doi: 10.1021/ma200040s

    26. [26]

      Kanaya, T.; Polec, I. A.; Fujiwara, T.; Inoue, R.; Nishida, K.; Matsuura, T.; Ogawa, H.; Ohta, N. Precursor of shish-kebab above the melting temperature by microbeam X-ray scattering. Macromolecules 2013, 46, 3031−3036.
      Kanaya, T.; Polec, I. A.; Fujiwara, T.; Inoue, R.; Nishida, K.; Matsuura, T.; Ogawa, H.; Ohta, N.  Precursor of shish-kebab above the melting temperature by microbeam X-ray scattering[J]. Macromolecules, 2013, 46(): 3031-3036. doi: 10.1021/ma400061a

    27. [27]

      Azzurri, F.; Alfonso, G. C. Insights into formation and relaxation of shear-induced nucleation precursors in isotactic polystyrene. Macromolecules 2008, 41, 1155−1167.
      Azzurri, F.; Alfonso, G. C.  Insights into formation and relaxation of shear-induced nucleation precursors in isotactic polystyrene[J]. Macromolecules, 2008, 41(): 1155-1167.

    28. [28]

      Somani, R. H.; Yang, L.; Zhu, L. Flow-induced shish-kebab precursor structures in entangled polymer melts. Polymer 2005, 46, 8587−8623.
      Somani, R. H.; Yang, L.; Zhu, L.  Flow-induced shish-kebab precursor structures in entangled polymer melts[J]. Polymer, 2005, 46(): 8587-8623. doi: 10.1016/j.polymer.2005.06.034

    29. [29]

      Zhou, D.; Yang, S. G.; Lei, J.; Hsiao, B. S.; Li, Z. M. Role of stably entangled chain network density in shish-kebab formation in polyethylene under an intense flow field. Macromolecules 2015, 48, 6652−6661.
      Zhou, D.; Yang, S. G.; Lei, J.; Hsiao, B. S.; Li, Z. M.  Role of stably entangled chain network density in shish-kebab formation in polyethylene under an intense flow field[J]. Macromolecules, 2015, 48(): 6652-6661. doi: 10.1021/acs.macromol.5b01402

    30. [30]

      Rathee, V.; Krishnaswamy, R.; Pal, A.; Raghunathan, V. A.; Imperor-Clerc, M.; Pansu, B.; Sood, A. K. Reversible shear-induced crystallization above equilibrium freezing temperature in a lyotropic surfactant system. Proc. Natl. Acad. Sci. 2013, 110, 14849−14854.
      Rathee, V.; Krishnaswamy, R.; Pal, A.; Raghunathan, V. A.; Imperor-Clerc, M.; Pansu, B.; Sood, A. K.  Reversible shear-induced crystallization above equilibrium freezing temperature in a lyotropic surfactant system[J]. Proc. Natl. Acad. Sci., 2013, 110(): 14849-14854. doi: 10.1073/pnas.1304777110

    31. [31]

      Wang, Z.; Ju, J.; Yang, J.; Ma, Z.; Liu, D.; Cui, K.; Yang, H.; Chang, J.; Huang, N.; Li, L. The non-equilibrium phase diagrams of flow-induced crystallization and melting of polyethylene. Sci. Rep. 2016, 6, 32968.
      Wang, Z.; Ju, J.; Yang, J.; Ma, Z.; Liu, D.; Cui, K.; Yang, H.; Chang, J.; Huang, N.; Li, L.  The non-equilibrium phase diagrams of flow-induced crystallization and melting of polyethylene[J]. Sci. Rep., 2016, 6(): 32968-. doi: 10.1038/srep32968

    32. [32]

      Rueda, D. R.; Ania, F. A USAXS study of melt processed PE with a shish-kebab structure: the influence of temperature on the long periods. Polymer 1997, 38, 2027−2032.
      Rueda, D. R.; Ania, F.  A USAXS study of melt processed PE with a shish-kebab structure: the influence of temperature on the long periods[J]. Polymer, 1997, 38(): 2027-2032. doi: 10.1016/S0032-3861(96)00760-4

    33. [33]

      Jiang, Z.; Tang, Y.; Rieger, J.; Enderle, H. F.; Lilge, D.; Roth, S. V.; Gehrke, R.; Wu, Z.; Li, Z. Structural evolution of melt-drawn transparent high-density polyethylene during heating and annealing: synchrotron small-angle X-ray scattering study. Eur. Polym. J. 2010, 46, 1866−1877.
      Jiang, Z.; Tang, Y.; Rieger, J.; Enderle, H. F.; Lilge, D.; Roth, S. V.; Gehrke, R.; Wu, Z.; Li, Z.  Structural evolution of melt-drawn transparent high-density polyethylene during heating and annealing: synchrotron small-angle X-ray scattering study[J]. Eur. Polym. J., 2010, 46(): 1866-1877. doi: 10.1016/j.eurpolymj.2010.06.004

    34. [34]

      Wang, H.; Song, H. D.; Zou, E. G.; Ge, T. J.; Fang, H. Study on the molecular structure and the performance of PE100 resin for tubing. Adv. Mater. Res. 2014, 850-851, 70−73.
      Wang, H.; Song, H. D.; Zou, E. G.; Ge, T. J.; Fang, H.  Study on the molecular structure and the performance of PE100 resin for tubing[J]. Adv. Mater. Res., 2014, 850-851(): 70-73.

    35. [35]

      Kimata, S.; Sakurai, T.; Nozue, Y.; Kasahara, T.; Yamaguchi, N.; Karino, T.; Shibayama, M. Molecular basis of the shish-kebab morphology in polymer crystallization. Science 2007, 316, 1014−1017.
      Kimata, S.; Sakurai, T.; Nozue, Y.; Kasahara, T.; Yamaguchi, N.; Karino, T.; Shibayama, M.  Molecular basis of the shish-kebab morphology in polymer crystallization[J]. Science, 2007, 316(): 1014-1017. doi: 10.1126/science.1140132

    36. [36]

      Xia, X. C.; Yang, W.; Zhang, Q. P.; Wang, L.; He, S.; Yang, M. Large scale formation of various highly oriented structures in polyethylene/polycarbonate microfibril blends subjected to secondary melt flow. Polymer 2014, 55, 6399−6408.
      Xia, X. C.; Yang, W.; Zhang, Q. P.; Wang, L.; He, S.; Yang, M.  Large scale formation of various highly oriented structures in polyethylene/polycarbonate microfibril blends subjected to secondary melt flow[J]. Polymer, 2014, 55(): 6399-6408. doi: 10.1016/j.polymer.2014.10.013

    37. [37]

      Yang, H. R.; Lei, J.; Li, L.; Fu, Q. Formation of interlinked shish-kebabs in injection-molded polyethylene under the coexistence of lightly cross-linked chain network and oscillation shear flow. Macromolecules 2012, 45, 6600−6610.
      Yang, H. R.; Lei, J.; Li, L.; Fu, Q.  Formation of interlinked shish-kebabs in injection-molded polyethylene under the coexistence of lightly cross-linked chain network and oscillation shear flow[J]. Macromolecules, 2012, 45(): 6600-6610. doi: 10.1021/ma300974w

    38. [38]

      Huang, Y. F.; Xu, J. Z.; Xu, J. Y.; Zhang, Z. C.; Hsiao, B. S.; Xu, L.; Li, Z. M. Self-reinforced polyethylene blend for artificial joint application. J. Mater. Chem. B 2014, 2, 971−980.
      Huang, Y. F.; Xu, J. Z.; Xu, J. Y.; Zhang, Z. C.; Hsiao, B. S.; Xu, L.; Li, Z. M.  Self-reinforced polyethylene blend for artificial joint application[J]. J. Mater. Chem. B, 2014, 2(): 971-980. doi: 10.1039/c3tb21231a

    39. [39]

      Keum, J. K.; Zuo, F.; Hsiao, B. S. J. M. Formation and stability of shear-induced shish-kebab structure in highly entangled melts of UHMWPE/HDPE blends. Macromolecules 2008, 41, 4766−4776.
      Keum, J. K.; Zuo, F.; Hsiao, B. S. J. M.  Formation and stability of shear-induced shish-kebab structure in highly entangled melts of UHMWPE/HDPE blends[J]. Macromolecules, 2008, 41(): 4766-4776. doi: 10.1021/ma800063e

    40. [40]

      Schrauwen, B. A. G.; Breemen, L. C. A. V.; Spoelstra, A. B.; Govaert, L. E.; Peters, G. W. M.; Meijer, H. Structure, deformation, and failure of flow-oriented semicrystalline polymers. Macromolecules 2004, 37, 8618−8633.
      Schrauwen, B. A. G.; Breemen, L. C. A. V.; Spoelstra, A. B.; Govaert, L. E.; Peters, G. W. M.; Meijer, H.  Structure, deformation, and failure of flow-oriented semicrystalline polymers[J]. Macromolecules, 2004, 37(): 8618-8633. doi: 10.1021/ma048884k

    41. [41]

      Wang, Z.; Mao, Y.; Jarumaneeroj, C.; Thitisak, B.; Tiyapiboonchaiya, P.; Rungswang, W.; Hsiao, B. S. The influence of short chain branch on formation of shish-kebab crystals in bimodal polyethylene under shear at high temperatures. J. Polym. Sci., Part B: Polym. Phys. 2018, 56, 786−794.
      Wang, Z.; Mao, Y.; Jarumaneeroj, C.; Thitisak, B.; Tiyapiboonchaiya, P.; Rungswang, W.; Hsiao, B. S.  The influence of short chain branch on formation of shish-kebab crystals in bimodal polyethylene under shear at high temperatures[J]. J. Polym. Sci., Part B: Polym. Phys., 2018, 56(): 786-794. doi: 10.1002/polb.24592

    42. [42]

      Hsiao, B. S.; Yang, L.; Somani, R. H.; Zhu, L. Unexpected shish-kebab structure in a sheared polyethylene melt. Phys. Rev. Lett. 2005, 94, 117802.
      Hsiao, B. S.; Yang, L.; Somani, R. H.; Zhu, L.  Unexpected shish-kebab structure in a sheared polyethylene melt[J]. Phys. Rev. Lett., 2005, 94(): 117802-. doi: 10.1103/PhysRevLett.94.117802

    43. [43]

      Liu, D.; Tian, N.; Cui, K.; Zhou, W.; Li, X.; Li, L. Correlation between flow-induced nucleation morphologies and strain in polyethylene: from uncorrelated oriented point-nuclei, scaffold-network, and microshish to shish. Macromolecules 2013, 46, 3435−3443.
      Liu, D.; Tian, N.; Cui, K.; Zhou, W.; Li, X.; Li, L.  Correlation between flow-induced nucleation morphologies and strain in polyethylene: from uncorrelated oriented point-nuclei, scaffold-network, and microshish to shish[J]. Macromolecules, 2013, 46(): 3435-3443. doi: 10.1021/ma400024m

    44. [44]

      Balzano, L.; Rastogi, S.; Peters, G. W. M. Crystallization and precursors during fast short-term shear. Macromolecules 2009, 42, 2088−2092.
      Balzano, L.; Rastogi, S.; Peters, G. W. M.  Crystallization and precursors during fast short-term shear[J]. Macromolecules, 2009, 42(): 2088-2092. doi: 10.1021/ma802169t

    1. [1]

      Wei-Chen ZhouZu-Chen DuHao YangJun-Jie LiYing ZhangXue-Qin GaoQiang Fu . Effect of Different Shear Modes on Morphology and Mechanical Properties of Polypropylene Pipes Produced by Rotational Shear. Chinese J. Polym. Sci, 2020, 38(12): 1392-1402. doi: 10.1007/s10118-020-2477-8

    2. [2]

      Zhong-bin XuLiang-yao SuPeng-fei WangMao Peng . Effect of Oscillatory Shear on the Mechanical Properties and Crystalline Morphology of Linear Low Density Polyethylene?. Chinese J. Polym. Sci, 2015, 33(8): 1114-1124. doi: 10.1007/s10118-015-1663-6

    3. [3]

      Zhi-hao ZhaoFei-fei WangMan ZhouKai-zhi ShenJie Zhang . Altering the Hierarchical Morphology Distribution of Injection Molded Polyethylene by the Introduction of Crosslink Network and Periodical Shear. Chinese J. Polym. Sci, 2016, 34(12): 1479-1489. doi: 10.1007/s10118-016-1865-6

    4. [4]

      Chun-xia ZhuRui-yan ZhangYan-hao HuangWei YangZheng-ying LiuJian-ming FengMing-bo Yang . Hierarchical Crystalline Structures Induced by Temperature Profile in HDPE Bars during Melt Penetration Process. Chinese J. Polym. Sci, 2017, 35(1): 108-122. doi: 10.1007/s10118-017-1880-2

    5. [5]

      Min-fang AnHao-jun XuYou LvLi ZhangQun GuFeng TianZong-bao Wang . The Influence of Chitin Nanocrystals on Structural Evolution of Ultra-high Molecular Weight Polyethylene/Chitin Nanocrystal Fibers in Hot-drawing Process. Chinese J. Polym. Sci, 2016, 34(11): 1373-1385. doi: 10.1007/s10118-016-1843-z

    6. [6]

      Da-Shan MiFeng-Yi HouMan ZhouJie Zhang . Distribution of α-, β-, and γ-Phases in a Multi-flow Injection-molded Hierarchical Structure. Chinese J. Polym. Sci, 2018, 36(6): 765-775. doi: 10.1007/s10118-018-2057-3

    7. [7]

      . SYNTHESIS AND CHARACTERIZATION OF NOVEL CHIRAL SMECTIC C(Sc*) PHASE SHISH-KEBAB TYPE LIQUID CRYSTALLINE BLOCK COPOLYMERS*. Chinese J. Polym. Sci, 1999, 17(6): 579-587.

    8. [8]

      Kun ZhaoJin-tao WangCheng-zi WangKai LiShi-jun ZhengKun WangTakaomi Kobayashi . LINEARLY POLARIZED WHITE FLUORESCENCE FROM SHISH-KEBAB TYPE LIQUID CRYSTALLINE POLY(P-PHENYLENEVINVLENE)S WITH (P-PHENYLENE)S AS KEBAB. Chinese J. Polym. Sci, 2012, 30(2): 209-216. doi: 10.1007/s10118-012-1110-x

    9. [9]

      Shi-jun ZhengKazuo AkagiQun XuZi-fa LiShao-kui CaoQi-feng Zhou . SYNTHESIS AND PROPERITIES OF SHISH-KEBAB-TYPE LIQUID CRYSTALLINE POLY(p-PHENYLENE)S. Chinese J. Polym. Sci, 2006, 24(3): 265-271.

    10. [10]

      Yan-hui ChenHao-qing YangSong YangQiu-yu ZhangZhong-ming Li . Temperature-dependent β-Crystal Growth in Isotactic Polypropylene with β-Nucleating Agent after Shear Flow. Chinese J. Polym. Sci, 2017, 35(12): 1540-1551. doi: 10.1007/s10118-017-1990-x

    11. [11]

      Zhong-chuan PengQian LiHua-yi LiYou-liang Hu . Layered Nanoparticles Modified by Chain End Functional PE and Their Nanocomposites with PE. Chinese J. Polym. Sci, 2017, 35(7): 897-908. doi: 10.1007/s10118-017-1931-8

    12. [12]

      . CRYSTALLIZATION SEGREGATION DSC STUDIES OF PP/PE COPOLYMERS. Chinese J. Polym. Sci, 2001, 19(1): 93-96.

    13. [13]

      HE Tianbai . CORRELATION BETWEEN GLASS TRANSITION OF POLYMERS AND ENERGY OF ROTATIONAL ISOMERIZATION OF MOLECULAR CHAINS*. Chinese J. Polym. Sci, 1984, 2(2): 209-212.

    14. [14]

      XU YangZHOU EnleYU FushengQIAN Baogong . MORPHOLOGY OF POLYBUTADIENE “SHISH KEBABS”. Chinese J. Polym. Sci, 1989, 7(1): 1-8.

    15. [15]

      Dan-hui WangQi DongYu-xi Jia . Mathematical Modelling and Numerical Simulation of the Non-isothermal In-mold Vulcanization of Natural Rubber. Chinese J. Polym. Sci, 2015, 33(3): 395-403. doi: 10.1007/s10118-015-1594-2

    16. [16]

      Yan-Qin HuangQing-Long ZhangXiao-Ying LuYi-Bin GongHao ZhouJia-Chun Feng . Comparative Investigation on Step-cycle Tensile Behaviors of Two Bimodal Pipe-grade Polyethylene with Different Slow Crack Growth Resistance. Chinese J. Polym. Sci, 2020, 38(6): 611-619. doi: 10.1007/s10118-020-2364-3

    17. [17]

      . FILLED POLYOLEFIN COMPOSITES PREPARED FROM IN-SITU POLYMERIZATION VIA A CATALYST-SUPPORTED APPROACH——Ⅰ.MORPHOLOGY OF PE IN CARBON BLACK(CB)/PE IN-SITU COMPOSITES. Chinese J. Polym. Sci, 2003, 21(3): 333-338.

    18. [18]

      Zhen-yu DengDong ZhangLin-xi Zhang . Dynamics of Attractive Vesicles in Shear Flow. Chinese J. Polym. Sci, 2016, 34(5): 623-636. doi: 10.1007/s10118-016-1785-5

    19. [19]

      . GRAFTING OF PEROXIDE-INITIATED MALEIC ANHYDRIDE ON SPHERICAL PE/PPIN-REACTOR BLEND GRANULES*. Chinese J. Polym. Sci, 2004, 22(3): 231-238.

    20. [20]

      Jun-li ShiHao LiLi-feng FangZhi-ying LiangBao-ku Zhu . IMPROVING THE PROPERTIES OF HDPE BASED SEPARATORS FOR LITHIUM ION BATTERIES BY BLENDING BLOCK WITH COPOLYMER PE-b-PEG. Chinese J. Polym. Sci, 2013, 31(2): 309-317. doi: 10.1007/s10118-013-1222-y

  • Figure 1.  Schematic diagram of the rotational shear system (RSS) consisting of a rotational shear unit, a temperature control and pressure monitoring unit, and a plasticization unit. 1-Motor, 2-mold, 3-mandrel, 4-coupling, 5-heater, 6-electric box, 7-cooling control, and 8-extruder. The inset shows the cross-section view of the rotational shear unit.

    Figure 2.  Mold temperature and rotation speed during rotational pipe preparation. I-Plasticization stage, II-filling stage, III-shear stage, and IV-solidification stage.

    Figure 3.  Schematic diagram of specimen sampling from the pipe for various tests.

    Figure 4.  Hoop tensile strength and tensile modulus of rotational PE Pipes fabricated at different mold temperatures.

    Figure 5.  Fracture specimens of the rotational PE pipes after tension. From left to right are the conventional pipe, the rotational PE pipe at 150 °C, and the rotational PE pipe at 170 °C.

    Figure 6.  Vicat softening temperature of rotational PE pipes fabricated at different mold temperatures.

    Figure 7.  (a) DSC heating curves of the inner layer of rotational PE pipes at different mold temperatures; (b) Average crystallinity of three layers of rotational PE pipes prepared at a different mold temperatures.

    Figure 8.  SEM images of etched inner, core, and outer layers of the PE pipes prepared at different mold temperatures. The arrowhead represents shear direction.

    Figure 9.  Shear rate distribution along the thickness of the pipe at different mold temperatures.

    Figure 10.  2D-WAXD patterns of conventional and rotational PE100 pipes prepared at different mold temperatures. Five spots from the inner surface to the outer surface were investigated (The white arrow indicates the melt flow direction).

    Figure 11.  Azimuth scanning map and orientation factor of crystal plane of PE pipes layers at different mold temperatures: (a) Inner layer; (b) Core layer; (c) Outer layer; (d) Orientation factor.

    Figure 12.  SAXS patterns for rotational PE pipes prepared at different temperatures.

    Figure 13.  One-dimensional SAXS intensity profiles along inner layer of rotational pipes at different temperatures.

    Figure 14.  Guinier plot of ln(I(q)q) versus q2 showing selected lines during rotary shearing at different temperatures (top) and plot of azimuthal integral width (bobs) versus the value of 1/s (bottom).

    Figure 15.  Schematic diagram of shish-kebab structure obtained at different mold temperatures.

    Mold temperature (°C)LocationMelt temperature (°C)Melt enthalpy (J/g)Crystallinity (%)
    CInner130.1150.151.2
    Core130.3154.452.7
    Outer129.7158.654.1
    150Inner132.7158.654.1
    Core131.8170.257.3
    Outer131.4164.353.7
    170Inner132.0165.556.3
    Core131.5165.656.5
    Outer131.6165.156.3
    190Inner130.2168.157.4
    Core130.8155.052.2
    Outer129.7164.956.3
    210Inner130.0162.055.3
    Core130.8152.751.4
    Outer129.5158.454.1

    Table 1.  DSC test results of rotational pipes prepared at different mold temperatures.

    下载: 导出CSV
    Temperature (°C)Knλ
    15013140.24010.022
    1703190.24690.035
    1903150.25410.044
    2109650.27640.016

    Table 2.  Physical properties of PE100.

    下载: 导出CSV
    Temperature (°C)La (nm)Lc (nm)L (nm)LSAXS (nm)
    15011.9220.8432.7738.35
    17011.6720.8832.5545.70
    19011.6019.5931.1948.06
    21011.0118.8329.8425.34

    Table 3.  Kebab structure parameters at different temperatures.

    下载: 导出CSV
    Temperature (°C)DslopeLslopeDshish (nm)Lshish (nm)
    150–23.990.006719.59943.42
    170–34.040.01623.34399.95
    190–23.100.02019.22319.92

    Table 4.  Shish structure parameters at different temperatures.

    下载: 导出CSV
  • 加载中
图(15)表(4)
计量
  • PDF下载量:  9
  • 文章访问数:  826
  • HTML全文浏览量:  268
  • 引证文献数: 0
文章相关
  • 通讯作者:  Xue-Qin Gao, gaoxueqin@scu.edu.cn
  • 收稿日期:  2019-09-07
  • 录用日期:  2019-09-28
  • 网络出版日期:  2019-12-04
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
主管单位: 中国科学院
主办单位: 中国科学院化学研究所

京ICP备05032737 号-2

版权所有:
通讯地址:
工作邮箱:
办公电话: 020-37627489

本系统由北京仁和汇智信息技术有限公司开发 技术支持:info@rhhz.net