Citation: Xu, H. G.; Qu, M. C.; Pan, Y. M.; Schubert, D. W. Conductivity of poly(methyl methacrylate)/polystyrene/carbon black and poly(ethyl methacrylate)/polystyrene/carbon black ternary composite films. Chinese J. Polym. Sci. 2020, 38, 288–297. doi: 10.1007/s10118-020-2349-2 shu

Conductivity of Poly(methyl methacrylate)/Polystyrene/Carbon Black and Poly(ethyl methacrylate)/Polystyrene/Carbon Black Ternary Composite Films

  • Corresponding author: Hua-Gen Xu, E-mail:
  • Received Date: 2019-06-04
    Available Online: 2019-11-07

Figures(8) / Tables(6)

  • Poly(methyl methacrylate) (PMMA)/polystyrene (PS)/carbon black (CB) and poly(ethyl methacrylate) (PEMA)/PS/CB ternary composite films were obtained using solution casting technique to investigate double percolation effect. In both PMMA/PS/CB and PEMA/PS/CB ternary composite films, the CB particles prefer to locate into PS phase based on the results of calculating wetting coefficient, which is also confirmed by SEM images. The conductivity of the films was investigated, and the percolation threshold (ϕc) of both ternary composite films with different polymer blend ratios was determined by fitting the McLachlan GEM equation. Conductivity of PMMA/PS/CB ternary composite films showed a typical double percolation effect. However, due to the double emulsion structure of PEMA/PS polymer blends, the PEMA/PS/CB ternary composite films (PEMA/PS = 50/50) showed a higher ϕc, even CB only located in PS phase, which conflicts with the double percolation effect. A schematic diagram combined with SEM images was proposed to explain this phenomenon.
  • 加载中
    1. [1]

      Liu, X. H.; Li, C. H.; Pan, Y. M.; Schubert, D. W.; Liu, C. T. Shear-induced rheological and electrical properties of molten poly (methyl methacrylate)/carbon black nanocomposites. Compos. Part B Eng. 2019, 164, 37−44. doi: 10.1016/j.compositesb.2018.11.054

    2. [2]

      Gulrez, S. K.; Ali Mohsin, M. E.; Shaikh, H.; Anis, A.; Pulose, A. M.; Yadav, M. K.; Qua, E. H.; Al-Zahrani, S. M. A review on electrically conductive polypropylene and polyethylene. Polym. Compos. 2014, 35, 900−914. doi: 10.1002/pc.22734

    3. [3]

      Krause, B.; Boldt, R.; Häußler, L.; Pötschke, P. Ultralow percolation threshold in polyamide 6.6/MWCNT composites. Compos. Sci. Technol. 2015, 114, 119−125. doi: 10.1016/j.compscitech.2015.03.014

    4. [4]

      Zhang, C.; Liu, X. H.; Liu, H.; Wang, Y. M.; Guo, Z. H.; Liu, C. T. Multi-walled carbon nanotube in a miscible PEO/PMMA blend: thermal and rheological behavior. Polym. Test. 2019, 75, 367−372. doi: 10.1016/j.polymertesting.2019.03.003

    5. [5]

      Zhang, F. F; Liu, X. H.; Zheng, G. Q.; Guo, Z. H.; Liu, C. T.; Shen, C. Y. Facile route to improve the crystalline memory effect: electrospun composite fiber and annealing. Macromol. Chem. Phys. 2018, 219, 1800236. doi: 10.1002/macp.201800236

    6. [6]

      Al-Saleh, M. H.; Sundararaj, U. An innovative method to reduce percolation threshold of carbon black filled immiscible polymer blends. Compos. Part A Appl. S. 2008, 39, 284−293. doi: 10.1016/j.compositesa.2007.10.010

    7. [7]

      Starý, Z.; Krückel, J.; Weck, C.; Schubert, D. W. Rheology and conductivity of carbon fibre composites with defined fibre lengths. Compos. Sci. Technol. 2013, 85, 58−64. doi: 10.1016/j.compscitech.2013.06.006

    8. [8]

      Huang, J. C. Carbon black filled conducting polymers and polymer blends. Adv. Polym. Technol. 2002, 21, 299−313. doi: 10.1002/adv.10025

    9. [9]

      Chen, J. W.; Cui, X. H.; Sui, K. Y.; Zhu, Y. T.; Jiang, W. Balance the electrical properties and mechanical properties of carbon black filled immiscible polymer blends with a double percolation structure. Compos. Sci. Technol. 2017, 140, 99−105. doi: 10.1016/j.compscitech.2016.12.029

    10. [10]

      Pan, Y. M.; Liu, X. H.; Hao, X. Q.; Starý, Z.; Schubert, D. W. Enhancing the electrical conductivity of carbon black-filled immiscible polymer blends by tuning the morphology. Eur. Polym. J. 2016, 78, 106−115. doi: 10.1016/j.eurpolymj.2016.03.019

    11. [11]

      Sumita, M.; Sakata, K.; Asai, S.; Miyasaka, K.; Nakagawa, H. Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black. Polym. Bull. 1991, 25, 265−271. doi: 10.1007/BF00310802

    12. [12]

      Gubbels, F.; Jérôme, R.; Teyssie, P.; Vanlathem, E.; Deltour, R.; Calderone, A.; Parente, V. Brédas, J. L. Selective localization of carbon black in immiscible polymer blends: a useful tool to design electrical conductive composites. Macromolecules 1994, 27, 1972−1974. doi: 10.1021/ma00085a049

    13. [13]

      Foulger, S. H. Reduced percolation thresholds of immiscible conductive blends of poly(ethylene-co-vinyl acetate) and high density polyethylene. Conference on electrical insulation and dielectric phenomena. IEEE Annual Report. 1998, Vol. 1, p. 282−287.

    14. [14]

      Xu, Z. B.; Zhao, C.; Gu, A. J; Fang, Z. P.; Tong, L. F. Effect of morphology on the electric conductivity of binary polymer blends filled with carbon black. J. Appl. Polym. Sci. 2007, 106, 2008−2017. doi: 10.1002/app.26827

    15. [15]

      Cheah, K.; Forsyth, M.; Simon, G. P. Processing and morphological development of carbon black filled conducting blends using a binary host of poly(styrene-co-acrylonitrile) and poly(styrene). J. Polym. Sci., Part B: Polym. Phys. 2000, 38, 3106−3119.

    16. [16]

      Calberg, C.; Blacher, S.; Gubbels, F.; Brouers, F.; Deltour, R.; Jérôme, R. Electrical and dielectric properties of carbon black filled co-continuous two-phase polymer blends. J. Phys. D Appl. Phys. 1999, 32, 1517. doi: 10.1088/0022-3727/32/13/313

    17. [17]

      Mamunya, Y.; Levchenko, V.; Boiteux, G.; Seytre, G.; Zanoaga, M.; Tanasa, F.; Lebedev, E. Controlling morphology, electrical, and mechanical properties of polymer blends by heterogeneous distribution of carbon nanotubes. Polym. Compos. 2016, 37, 2467−2477. doi: 10.1002/pc.23434

    18. [18]

      Nasti, G.; Gentile, G.; Cerruti, P.; Carfagna, C.; Ambrogi, V. Double percolation of multiwalled carbon nanotubes in polystyrene/polylactic acid blends. Polymer 2016, 99, 193−203. doi: 10.1016/j.polymer.2016.06.058

    19. [19]

      Chen, Y.; Yang, Q.; Huang, Y. J.; Liao, X.; Niu, Y. H. Influence of phase coarsening and filler agglomeration on electrical and rheological properties of MWNTs-filled PP/PMMA composites under annealing. Polymer 2015, 79, 159−170. doi: 10.1016/j.polymer.2015.10.027

    20. [20]

      Dil, E. J.; Favis, B. D. Localization of micro and nano-silica particles in a high interfacial tension poly(lactic acid)/low density polyethylene system. Polymer 2015, 77, 156−166. doi: 10.1016/j.polymer.2015.08.063

    21. [21]

      Harrats, C.; Groeninckx, G.; Thomas, S. Micro-and nanostructured multiphase polymer blend systems: phase morphology and interfaces. CRC press, 2015.

    22. [22]

      Utrachi, L. A. Polymer alloys and blends. 1990, Chapter 3.

    23. [23]

      Paul, D. R.; Barlow, J. W. Polymer blends. J. Macromol. Sci. R. M. C. 1980, 18, 109−168. doi: 10.1080/00222358008080917

    24. [24]

      Kim, J. H.; Park, D. S.; Kim, C. K. Characterization of the interaction energies for polystyrene blends with various methacrylate polymers. J. Polym. Sci., Part B: Polym. Phys. 2000, 38, 2666−2677. doi: 10.1002/1099-0488(20001015)38:20<2666::AID-POLB70>3.0.CO;2-P

    25. [25]

      Schubert, D. W.; Stamm, M.; Müller, A. H. E. Neutron reflectometry studies on the interfacial width between polystyrene and various poly(alkylmethacrylates). Polym. Eng. Sci. 1999, 39, 1501−1507. doi: 10.1002/pen.11542

    26. [26]

      Voulgaris, D.; Petridis, D. Emulsifying effect of dimethyldioctadecylammonium-hectorite in polystyrene/poly(ethyl methacrylate) blends. Polymer 2002, 43, 2213−2218. doi: 10.1016/S0032-3861(02)00039-3

    27. [27]

      Taherian, R. Experimental and analytical model for the electrical conductivity of polymer-based nanocomposites. Compos. Sci. Technol. 2016, 123, 17−31. doi: 10.1016/j.compscitech.2015.11.029

    28. [28]

      Radzuan, N. A. M.; Sulong, A. B.; Sahari, J. A review of electrical conductivity models for conductive polymer composite. Int. J Hydrogen Energ. 2017, 42, 9262−9273. doi: 10.1016/j.ijhydene.2016.03.045

    29. [29]

      McLachlan, D. S.; Blaszkiewicz, M.; Newnham, R. E. Electrical resistivity of composites. J. Am. Ceram. Soc. 1990, 73, 2187−2203. doi: 10.1111/j.1151-2916.1990.tb07576.x

    30. [30]

      Sahini, M.; Sahimi, M. Applications of percolation theory. CRC Press, 2014.

    31. [31]

      Liu, X. H.; Krückel, J.; Zheng, G. Q.; Schubert, D. W. Mapping the electrical conductivity of poly (methyl methacrylate)/carbon black composites prior to and after shear. ACS Appl. Mater. Interfaces 2013, 5, 8857−8860. doi: 10.1021/am4031517

    32. [32]

      Starý, Z. Thermodynamics and morphology and compatibilization of polymer blends. in Characterization of polymer blends. Eds. by Thomas, S.; Grohens, Y.; Jyotishkumar, P. Wiley-VCH Verlag GmbH & Co. KGaA, 2014, 93−132.

    33. [33]

      Pajula, K.; Taskinen, M.; Lehto, V. P.; Ketolainen, J.; Korhonen, O. Predicting the formation and stability of amorphous small molecule binary mixtures from computationally determined Flory-Huggins interaction parameter and phase diagram. Mol. Pharmaceut. 2010, 7, 795−804. doi: 10.1021/mp900304p

    34. [34]

      Gedde, U. W. Polymer physics. Springer Science & Business Media, 2013.

    35. [35]

      Sammler, R. L.; Dion, R. P.; Carriere, C. J.; Cohen, A. Compatibility of high polymers probed by interfacial tension. Rheol. Acta 1992, 31, 554−564. doi: 10.1007/BF00367010

    36. [36]

      Schubert, D. W.; Stamm, M. Influence of chain length on the interface width of an incompatible polymer blend. EPL 1996, 35, 419. doi: 10.1209/epl/i1996-00130-3

    37. [37]

      Wu, S. Polymer interfaces and adhesion. Marcel Dekker, New York, 1982.

    38. [38]

      Deng, H.; Lin, L.; Ji, M. Z.; Zhang, S. M.; Yang, M. B.; Fu, Q. Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Prog. Polym. Sci. 2014, 39, 627−655. doi: 10.1016/j.progpolymsci.2013.07.007

    39. [39]

      Baudouin, A. C.; Devaux, J.; Bailly, C. Localization of carbon nanotubes at the interface in blends of polyamide and ethylene-acrylate copolymer. Polymer 2010, 51, 1341−1354. doi: 10.1016/j.polymer.2010.01.050

    40. [40]


    41. [41]

      Cao, Q.; Song, Y. H.; Tan, Y. Q.; Zheng, Q. Conductive and viscoelastic behaviors of carbon black filled polystyrene during annealing. Carbon 2010, 48, 4268−4275. doi: 10.1016/j.carbon.2010.07.036

    42. [42]

      Pan, Y. M.; Liu, X. H.; Kaschta, J.; Liu, C. T.; Schubert, D. W. Reversal phenomena of molten immiscible polymer blends during creep-recovery in shear. J. Rheol. 2017, 61, 759−767. doi: 10.1122/1.4985005

    43. [43]

      Liu, T.; Huang, K. Q.; Li, L. W.; Gu, Z. P.; Liu, X. H.; Peng, X. F.; Kuang, T. R. High performance high-density polyethylene/hydroxyapatite nanocomposites for load-bearing bone substitute: fabrication, in vitro and in vivo biocompatibility evaluation. Compos. Sci. Technol. 2019, 175, 100−110. doi: 10.1016/j.compscitech.2019.03.012

    44. [44]

      Elias, L.; Fenouillot, F.; Majesté, J. C.; Alcouffe, P.; Cassagnau, P. Immiscible polymer blends stabilized with nano-silica particles: rheology and effective interfacial tension. Polymer 2008, 49, 4378−4385. doi: 10.1016/j.polymer.2008.07.018

    45. [45]

      Fenouillot, F.; Cassagnau, P.; Majesté, J. C. Uneven distribution of nanoparticles in immiscible fluids: morphology development in polymer blends. Polymer 2009, 50, 1333−1350. doi: 10.1016/j.polymer.2008.12.029

  • 加载中
    1. [1]

      Guo-dong ZhaoXiao-bo LiuGuang-nan QiuJian-ming XuShi-ping XieXian-feng LiuJian-song YangLan-hang Xu . PREPARATION OF MDPE-g-MAH COPOLYMERS AND THEIR EFFECT ON PROPERTIES OF MDPE/CaCO3 SYSTEMS. Chinese J. Polym. Sci, 2013, 31(9): 1271-1275. doi: 10.1007/s10118-013-1334-4

    2. [2]

      Rabia SattarAyesha KausarMuhammad Siddiq . Thermal, Mechanical and Electrical Studies of Novel Shape Memory Polyurethane/Polyaniline Blends. Chinese J. Polym. Sci, 2015, 33(9): 1313-1324. doi: 10.1007/s10118-015-1680-5

    3. [3]

      Ismail A. AlkskasBashir A. El-gnidiKhadija M. GhalieoFaizul Azam . Synthesis and Characterization of Polyesters Based on Diethylketone Moiety. Chinese J. Polym. Sci, 2014, 32(11): 1450-1459. doi: 10.1007/s10118-014-1531-9

    4. [4]


    5. [5]

      Rafieh-Sadat NorouzianMoslem M. LakourajEhsan N. Zare . Novel Conductive PANI/Hydrophilic Thiacalix[4]arene Nanocomposites:Synthesis, Characterization and Investigation of Properties. Chinese J. Polym. Sci, 2014, 32(2): 218-229. doi: 10.1007/s10118-014-1402-4

    6. [6]

      Ji-Jun WangQiang ZhangXing-Xiang JiLi-Bin Liu . Highly Stretchable, Compressible, Adhesive, Conductive Self-healing Composite Hydrogels with Sensor Capacity

      . Chinese J. Polym. Sci, 2020, 38(11): 1221-1229. doi: 10.1007/s10118-020-2472-0

    7. [7]

      Wei XueMan XuMeng-Na YuHua-Min SunJin-Yi LinRong-Cui JiangLing-Hai XieNai-En ShiWei Huang . Electrospun Supramolecular Hybrid Microfibers from Conjugated Polymers: Color Transformation and Conductivity Evolution. Chinese J. Polym. Sci, 2021, 39(7): 824-830. doi: 10.1007/s10118-021-2542-y

    8. [8]

      Li DangXue-ying NaiXin LiuDong-hai ZhuYa-ping DongWu Li . Effects of Different Compatibilizing Agents on the Interfacial Adhesion Properties of Polypropylene/Magnesium Oxysulfate Whisker Composites. Chinese J. Polym. Sci, 2017, 35(9): 1143-1155. doi: 10.1007/s10118-017-1953-2

    9. [9]

      Ling ZhaoShi-Ling JiaZe-Peng WangYun-Jing ChenJun-Jia BianLi-Jing HanHui-Liang ZhangLi-Song Dong . Thermal, Rheological and Mechanical Properties of Biodegradable Poly(propylene carbonate)/Epoxidized Soybean Oil Blends. Chinese J. Polym. Sci, 2021, (): 1-9. doi: 10.1007/s10118-021-2590-3

    10. [10]

      Hui-Qin CuiRui-Xiang PengWei SongJian-Feng ZhangJia-Ming HuangLi-Qiang ZhuZi-Yi Ge . Optimization of Ethylene Glycol Doped PEDOT:PSS Transparent Electrodes for Flexible Organic Solar Cells by Drop-coating Method. Chinese J. Polym. Sci, 2019, 37(8): 760-766. doi: 10.1007/s10118-019-2257-5

    11. [11]

      Yi SunYong-Yuan RenQi LiRong-Wei ShiYin HuJiang-Na GuoZhe SunFeng Yan . Conductive, Stretchable, and Self-healing Ionic Gel Based on Dynamic Covalent Bonds and Electrostatic Interaction. Chinese J. Polym. Sci, 2019, 37(11): 1053-1059. doi: 10.1007/s10118-019-2325-x

    12. [12]

      Xia-Chao ChenPei-Ru SunHong-Liang Liu . Hierarchically Crosslinked Gels Containing Hydrophobic Ionic Liquids towards Reliable Sensing Applications. Chinese J. Polym. Sci, 2020, 38(4): 332-341. doi: 10.1007/s10118-020-2357-2

    13. [13]

      Mahnaz M. AbdiH.N.M. Ekramul MahmudLuqman Chuah AbdullahAnuar KassimMohamad Zaki Ab. RahmanJosephine Liew Ying Chyi . OPTICAL BAND GAP AND CONDUCTIVITY MEASUREMENTS OF POLYPYRROLE-CHITOSAN COMPOSITE THIN FILMS. Chinese J. Polym. Sci, 2012, 30(1): 93-100. doi: 10.1007/s10118-012-1093-7

    14. [14]


    15. [15]


    16. [16]


    17. [17]

      WAN MeixiangZHOU WeixiaLI Yongfang . STUDIES ON THE ELECTRICAL CONDUCTIVITY OF FREE-STANDING FILMS OF POLYANILINE. Chinese J. Polym. Sci, 1991, 9(4): 307-313.

    18. [18]

      ZHANG ChiLU Fengcai . EFFECT OF WATER ON THE CONDUCTIVITY OF PPQ (ClO4-) COMPLEX. Chinese J. Polym. Sci, 1993, 11(1): 8-15.

    19. [19]

      Xiang ZhangYu WangRu XiaBin WuPeng ChenJia-Sheng QianHao-Jun Liang . Effect of Chain Configuration on Thermal Conductivity of Polyethylene—A Molecular Dynamic Simulation Study. Chinese J. Polym. Sci, 2020, 38(12): 1418-1425. doi: 10.1007/s10118-020-2466-y

    20. [20]

      Yi-lan GuoRun-zhi ZhangKai WuFeng ChenQiang Fu . Preparation of Nylon MXD6/EG/CNTs Ternary Composites with Excellent Thermal Conductivity and Electromagnetic Interference Shielding Effectiveness. Chinese J. Polym. Sci, 2017, 35(12): 1497-1507. doi: 10.1007/s10118-017-1985-7

Article Metrics
  • PDF Downloads(26)
  • Abstract views(1362)
  • HTML views(379)
  • Cited By(0)

通讯作者: 陈斌,
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索


DownLoad:  Full-Size Img  PowerPoint