请关注微信公众平台

Distribution of α-, β-, and γ-Phases in a Multi-flow Injection-molded Hierarchical Structure

Da-Shan Mi Feng-Yi Hou Man Zhou Jie Zhang

引用本文: . doi: 10.1007/s10118-018-2057-3 shu
Citation:  Da-Shan Mi, Feng-Yi Hou, Man Zhou and Jie Zhang. Distribution of α-, β-, and γ-Phases in a Multi-flow Injection-molded Hierarchical Structure[J]. Chinese J. Polym. Sci, 2018, 36(6): 765-775. doi: 10.1007/s10118-018-2057-3 shu

Distribution of α-, β-, and γ-Phases in a Multi-flow Injection-molded Hierarchical Structure

摘要: In the current work, a custom-made vibration injection molding device that can provide oscillatory pressure was utilized to create an injection-molded hierarchical structure. Growth competition among α, β, and γ phases in the injection-molded structure can be studied because of the presence of this hierarchical structure, wherein shish-kebab and spherulite layers were arranged alternately along the thickness direction. The γ crystals only existed in layers subjected to high pressure and shear stress, whereas β crystals formed between the shear layers. The change in trend of the γ fraction was similar to that of parent-to-daughter ratio. In addition, this hierarchical and alternating crystal structure can sharply increase the mechanical properties.

English

    1. [1]

      Lotz, B.; Wittmann, J. C.; Lovinger, A. J. Structure and morphology of poly (propylenes):a molecular analysis. Polymer 1996, 37(22), 4979-4992.
      Lotz, B.; Wittmann, J. C.; Lovinger, A. J. Structure and morphology of poly (propylenes):a molecular analysis. Polymer 1996, 37(22), 4979-4992.

    2. [2]

      And, E. L.; Bartczak, Z. Plastic deformation of the γ phase isotactic polypropylene in plane-strain compression at elevated temperatures. Macromolecules 2007, 40(14), 4933-4941.
      And, E. L.; Bartczak, Z. Plastic deformation of the γ phase isotactic polypropylene in plane-strain compression at elevated temperatures. Macromolecules 2007, 40(14), 4933-4941.

    3. [3]

      Somani, R. H.; Hsiao, B. S.; Nogales, A.; Fruitwala, H.; Srinivas, S.; Tsou, A. H. Structure development during shear flow induced crystallization of i-PP:in situ wide-angle X-ray diffraction study. Macromolecules 2001, 34(17), 5902-5909.
      Somani, R. H.; Hsiao, B. S.; Nogales, A.; Fruitwala, H.; Srinivas, S.; Tsou, A. H. Structure development during shear flow induced crystallization of i-PP:in situ wide-angle X-ray diffraction study. Macromolecules 2001, 34(17), 5902-5909.

    4. [4]

      Mao, Y.; Burger, C.; Zuo, F.; Hsiao, B. S.; Mehta, A.; Mitchell, C.; Tsou, A. H. Wide-angle X-ray scattering study on shear-induced crystallization of propylene-1-butylene random copolymer:experiment and diffraction pattern simulation. Macromolecules 2011, 44(3), 558-565.
      Mao, Y.; Burger, C.; Zuo, F.; Hsiao, B. S.; Mehta, A.; Mitchell, C.; Tsou, A. H. Wide-angle X-ray scattering study on shear-induced crystallization of propylene-1-butylene random copolymer:experiment and diffraction pattern simulation. Macromolecules 2011, 44(3), 558-565.

    5. [5]

      Zhang, Y.; Zhang, L.; Liu, H.; Du, H.; Zhang, J.; Wang, T.; Zhang, X. Novel approach to tune mechanics of β-nucleation agent nucleated polypropylene:role of oriented β spherulite. Polymer 2013, 54(21), 6026-6035.
      Zhang, Y.; Zhang, L.; Liu, H.; Du, H.; Zhang, J.; Wang, T.; Zhang, X. Novel approach to tune mechanics of β-nucleation agent nucleated polypropylene:role of oriented β spherulite. Polymer 2013, 54(21), 6026-6035.

    6. [6]

      Foresta, T.; Piccarolo, S.; Goldbeck-Wood, G. Competition between α and γ phases in isotactic polypropylene:effects of ethylene content and nucleating agents at different cooling rates. Polymer 2001, 42(3), 1167-1176.
      Foresta, T.; Piccarolo, S.; Goldbeck-Wood, G. Competition between α and γ phases in isotactic polypropylene:effects of ethylene content and nucleating agents at different cooling rates. Polymer 2001, 42(3), 1167-1176.

    7. [7]

      Bai, H.; Wang, Y.; Zhang, Z.; Han, L.; Li, Y.; Liu, L.; Zhou, Z.; Men, Y. Influence of annealing on microstructure and mechanical properties of isotactic polypropylene with β-phase nucleating agent. Macromolecules 2009, 42(17), 6647-6655.
      Bai, H.; Wang, Y.; Zhang, Z.; Han, L.; Li, Y.; Liu, L.; Zhou, Z.; Men, Y. Influence of annealing on microstructure and mechanical properties of isotactic polypropylene with β-phase nucleating agent. Macromolecules 2009, 42(17), 6647-6655.

    8. [8]

      Varga, J.; Menyhárd, A. Effect of solubility and nucleating duality of N, N'-dicyclohexyl-2, 6-naphthalenedicarboxamide on the supermolecular structure of isotactic polypropylene. Macromolecules 2007, 40(7), 2422-2431.
      Varga, J.; Menyhárd, A. Effect of solubility and nucleating duality of N, N'-dicyclohexyl-2, 6-naphthalenedicarboxamide on the supermolecular structure of isotactic polypropylene. Macromolecules 2007, 40(7), 2422-2431.

    9. [9]

      Tordjeman, P.; Robert, C.; Marin, G.; Gerard, P. The effect of α, β crystalline structure on the mechanical properties of polypropylene. Eur. Phys. J. E 2001, 4(4), 459-465.
      Tordjeman, P.; Robert, C.; Marin, G.; Gerard, P. The effect of α, β crystalline structure on the mechanical properties of polypropylene. Eur. Phys. J. E 2001, 4(4), 459-465.

    10. [10]

      Meille, S. V.; Bruckner, S.; Porzio, W. γ-Isotactic polypropylene. A structure with nonparallel chain axes. Macromolecules 1990, 23(18), 4114-4121.
      Meille, S. V.; Bruckner, S.; Porzio, W. γ-Isotactic polypropylene. A structure with nonparallel chain axes. Macromolecules 1990, 23(18), 4114-4121.

    11. [11]

      de Rosa, C.; Auriemma, F.; Paolillo, M.; Resconi, L.; Camurati, I. Crystallization behavior and mechanical properties of regiodefective, highly stereoregular isotactic polypropylene:effect of regiodefects versus stereodefects and influence of the molecular mass. Macromolecules 2005, 38(22), 9143-9154.
      de Rosa, C.; Auriemma, F.; Paolillo, M.; Resconi, L.; Camurati, I. Crystallization behavior and mechanical properties of regiodefective, highly stereoregular isotactic polypropylene:effect of regiodefects versus stereodefects and influence of the molecular mass. Macromolecules 2005, 38(22), 9143-9154.

    12. [12]

      De Rosa, C.; Auriemma, F.; Ruiz de Ballesteros, O.; Resconi, L.; Camurati, I. Tailoring the physical properties of isotactic polypropylene through incorporation of comonomers and the precise control of stereo-and regioregularity by metallocene catalysts. Chem. Mater. 2007, 19(21), 5122-5130.
      De Rosa, C.; Auriemma, F.; Ruiz de Ballesteros, O.; Resconi, L.; Camurati, I. Tailoring the physical properties of isotactic polypropylene through incorporation of comonomers and the precise control of stereo-and regioregularity by metallocene catalysts. Chem. Mater. 2007, 19(21), 5122-5130.

    13. [13]

      Polt, G.; Spieckermann, F.; Wilhelm, H.; Kerber, M.; Schafler, E.; Bernstorff, S.; Zehetbauer, M. The role of dislocations in γ-iPP under plastic deformation investigated by X-ray line profile analysis. Mech. Mater.2 013, 67, 126-132.
      Polt, G.; Spieckermann, F.; Wilhelm, H.; Kerber, M.; Schafler, E.; Bernstorff, S.; Zehetbauer, M. The role of dislocations in γ-iPP under plastic deformation investigated by X-ray line profile analysis. Mech. Mater.2 013, 67, 126-132.

    14. [14]

      Meille, S. V.; Ferro, D. R.; Brückner, S.; Lovinger, A. J.; Padden, F. J. Structure of beta.-isotactic polypropylene:a long-standing structural puzzle. Macromolecules 1994, 27(9), 2615-2622.
      Meille, S. V.; Ferro, D. R.; Brückner, S.; Lovinger, A. J.; Padden, F. J. Structure of beta.-isotactic polypropylene:a long-standing structural puzzle. Macromolecules 1994, 27(9), 2615-2622.

    15. [15]

      Asano, T.; Fujiwara, Y.; Yoshida, T. Plastic deformation of oriented lamellae. Ⅱ. Hot rolling of β-phase isotactic polypropylene. Polym. J. 1979, 11(5), 383-390.
      Asano, T.; Fujiwara, Y.; Yoshida, T. Plastic deformation of oriented lamellae. Ⅱ. Hot rolling of β-phase isotactic polypropylene. Polym. J. 1979, 11(5), 383-390.

    16. [16]

      Somani, R. H.; Hsiao, B. S.; Nogales, A.; Srinivas, S.; Tsou, A. H.; Sics, I.; Balta-Calleja, F. J.; Ezquerra, T. A. Structure development during shear flow-induced crystallization of i-PP:in situ small-angle X-ray scattering study. Macromolecules 2000, 33(25), 9385-9394.
      Somani, R. H.; Hsiao, B. S.; Nogales, A.; Srinivas, S.; Tsou, A. H.; Sics, I.; Balta-Calleja, F. J.; Ezquerra, T. A. Structure development during shear flow-induced crystallization of i-PP:in situ small-angle X-ray scattering study. Macromolecules 2000, 33(25), 9385-9394.

    17. [17]

      Luo, B.; Li, H.; Zhou, C.; Zhang, W.; Li, J.; He, X.; Jiang, S. Mechanistic insights into the shear-induced β-form crystal formation of iPP. Macromol. Chem. Phys. 2016, 217(12), 1354-1360.
      Luo, B.; Li, H.; Zhou, C.; Zhang, W.; Li, J.; He, X.; Jiang, S. Mechanistic insights into the shear-induced β-form crystal formation of iPP. Macromol. Chem. Phys. 2016, 217(12), 1354-1360.

    18. [18]

      Sun, X.; Li, H.; Lieberwirth, I.; Yan, S. α and β interfacial structures of the iPP/PET matrix/fiber systems. Macromolecules 2007, 40(23), 8244-8249.
      Sun, X.; Li, H.; Lieberwirth, I.; Yan, S. α and β interfacial structures of the iPP/PET matrix/fiber systems. Macromolecules 2007, 40(23), 8244-8249.

    19. [19]

      Chen, Y. H.; Mao, Y. M.; Li, Z. M.; Hsiao, B. S. Competitive growth of α-and β-crystals in β-nucleated isotactic polypropylene under shear flow. Macromolecules 2010, 43(16), 6760-6771.
      Chen, Y. H.; Mao, Y. M.; Li, Z. M.; Hsiao, B. S. Competitive growth of α-and β-crystals in β-nucleated isotactic polypropylene under shear flow. Macromolecules 2010, 43(16), 6760-6771.

    20. [20]

      Su, R.; Zhang, Z.; Gao, X.; Ge, Y.; Wang, K.; Fu, Q. Polypropylene injection molded part with novel macroscopic bamboo-like bionic structure. J. Phys. Chem. B 2010, 114(31), 9994-10001.
      Su, R.; Zhang, Z.; Gao, X.; Ge, Y.; Wang, K.; Fu, Q. Polypropylene injection molded part with novel macroscopic bamboo-like bionic structure. J. Phys. Chem. B 2010, 114(31), 9994-10001.

    21. [21]

      Liu, X.; Dai, K.; Hao, X.; Zheng, G.; Liu, C.; Schubert, D. W.; Shen, C. Crystalline structure of injection molded β-isotactic Polypropylene:analysis of the oriented shear zone. Ind. Eng. Chem. Res. 2013, 52(34), 11996-12002.
      Liu, X.; Dai, K.; Hao, X.; Zheng, G.; Liu, C.; Schubert, D. W.; Shen, C. Crystalline structure of injection molded β-isotactic Polypropylene:analysis of the oriented shear zone. Ind. Eng. Chem. Res. 2013, 52(34), 11996-12002.

    22. [22]

      Li, H.; Yan, S. Surface-induced polymer crystallization and the resultant structures and morphologies. Macromolecules 2011, 44(3), 417-428.
      Li, H.; Yan, S. Surface-induced polymer crystallization and the resultant structures and morphologies. Macromolecules 2011, 44(3), 417-428.

    23. [23]

      Qin, Y.; Xu, Y.; Zhang, L.; Zheng, G.; Yan, X.; Dai, K.; Liu, C.; Shen, C.; Guo, Z. Interfacial interaction enhancement by shear-induced β-cylindrite in isotactic polypropylene/glass fiber composites. Polymer 2016, 100, 111-118.
      Qin, Y.; Xu, Y.; Zhang, L.; Zheng, G.; Yan, X.; Dai, K.; Liu, C.; Shen, C.; Guo, Z. Interfacial interaction enhancement by shear-induced β-cylindrite in isotactic polypropylene/glass fiber composites. Polymer 2016, 100, 111-118.

    24. [24]

      Li, H.; Jiang, S.; Wang, J.; Wang, D.; Yan, S. Optical microscopic study on the morphologies of isotactic polypropylene induced by its homogeneity fibers. Macromolecules 2003, 36(8), 2802-2807.
      Li, H.; Jiang, S.; Wang, J.; Wang, D.; Yan, S. Optical microscopic study on the morphologies of isotactic polypropylene induced by its homogeneity fibers. Macromolecules 2003, 36(8), 2802-2807.

    25. [25]

      Sun, X.; Li, H.; Zhang, X.; Wang, J.; Wang, D.; Yan, S. Effect of fiber molecular weight on the interfacial morphology of iPP fiber/matrix single polymer composites. Macromolecules 2006, 39(3), 1087-1092.
      Sun, X.; Li, H.; Zhang, X.; Wang, J.; Wang, D.; Yan, S. Effect of fiber molecular weight on the interfacial morphology of iPP fiber/matrix single polymer composites. Macromolecules 2006, 39(3), 1087-1092.

    26. [26]

      Sun, X.; Li, H.; Wang, J.; Yan, S. Shear-induced interfacial structure of isotactic polypropylene (iPP) in iPP/fiber composites. Macromolecules 2006, 39(25), 8720-8726.
      Sun, X.; Li, H.; Wang, J.; Yan, S. Shear-induced interfacial structure of isotactic polypropylene (iPP) in iPP/fiber composites. Macromolecules 2006, 39(25), 8720-8726.

    27. [27]

      Alamo, R. G.; Kim, M. H.; Galante, M. J.; Isasi, J. R.; Mandelkern, L. Structural and kinetic factors governing the formation of the γ polymorph of isotactic polypropylene, Macromolecules 1999, 32(12), 4050-4064.
      Alamo, R. G.; Kim, M. H.; Galante, M. J.; Isasi, J. R.; Mandelkern, L. Structural and kinetic factors governing the formation of the γ polymorph of isotactic polypropylene, Macromolecules 1999, 32(12), 4050-4064.

    28. [28]

      Addink, E.; Beintema, J. Polymorphism of crystalline polypropylene. Polymer 1961, 2, 185-193.
      Addink, E.; Beintema, J. Polymorphism of crystalline polypropylene. Polymer 1961, 2, 185-193.

    29. [29]

      Meille, S. V.; Phillips, P. J.; Mezghani, K.; Brückner, S. α-γ disorder in isotactic polypropylene crystallized under high pressure. Macromolecules 1996, 29(2), 795-797.
      Meille, S. V.; Phillips, P. J.; Mezghani, K.; Brückner, S. α-γ disorder in isotactic polypropylene crystallized under high pressure. Macromolecules 1996, 29(2), 795-797.

    30. [30]

      Mezghani, K.; Phillips, P. J. The γ-phase of high molecular weight isotactic polypropylene:Ⅲ. The equilibrium melting point and the phase diagram, Polymer 1998, 39(16), 3735-3744.
      Mezghani, K.; Phillips, P. J. The γ-phase of high molecular weight isotactic polypropylene:Ⅲ. The equilibrium melting point and the phase diagram, Polymer 1998, 39(16), 3735-3744.

    31. [31]

      van Erp, T. B.; Balzano, L.; Peters, G. W. Oriented gamma phase in isotactic polypropylene homopolymer. ACS Macro Lett. 2012, 1(5), 618-622.
      van Erp, T. B.; Balzano, L.; Peters, G. W. Oriented gamma phase in isotactic polypropylene homopolymer. ACS Macro Lett. 2012, 1(5), 618-622.

    32. [32]

      van Erp, T. B.; Balzano, L.; Spoelstra, A. B.; Govaert, L. E.; Peters, G. W. Quantification of non-isothermal, multi-phase crystallization of isotactic polypropylene:The influence of shear and pressure. Polymer 2012, 53, (25), 5896-5908.
      van Erp, T. B.; Balzano, L.; Spoelstra, A. B.; Govaert, L. E.; Peters, G. W. Quantification of non-isothermal, multi-phase crystallization of isotactic polypropylene:The influence of shear and pressure. Polymer 2012, 53, (25), 5896-5908.

    33. [33]

      Yang, S. G.; Zhang, Z.; Zhang, L. Q.; Zhou, D.; Wang, Y.; Lei, J.; Li, L.; Li, Z. M. Unexpected shear dependence of pressure-induced γ-crystals in isotactic polypropylene. Polym. Chem. 2015, 6(25), 4588-4596.
      Yang, S. G.; Zhang, Z.; Zhang, L. Q.; Zhou, D.; Wang, Y.; Lei, J.; Li, L.; Li, Z. M. Unexpected shear dependence of pressure-induced γ-crystals in isotactic polypropylene. Polym. Chem. 2015, 6(25), 4588-4596.

    34. [34]

      An, Y.; Gu, L.; Wang, Y.; Li, Y. M.; Yang, W.; Xie, B. H.; Yang, M. B. Morphologies of injection molded isotactic polypropylene/ultra high molecular weight polyethylene blends. Mater. Design 2012, 35, 633-639.
      An, Y.; Gu, L.; Wang, Y.; Li, Y. M.; Yang, W.; Xie, B. H.; Yang, M. B. Morphologies of injection molded isotactic polypropylene/ultra high molecular weight polyethylene blends. Mater. Design 2012, 35, 633-639.

    35. [35]

      Liu, X.; Pan, Y.; Peng, C.; Hao, X.; Zheng, G.; Schubert, D. W.; Liu, C.; Shen, C. Twisted lamellae in water-assisted injection molded high density polyethylene. Mater. Lett. 2016, 172, 19-22.
      Liu, X.; Pan, Y.; Peng, C.; Hao, X.; Zheng, G.; Schubert, D. W.; Liu, C.; Shen, C. Twisted lamellae in water-assisted injection molded high density polyethylene. Mater. Lett. 2016, 172, 19-22.

    36. [36]

      Kalay, G.; Bevis, M. J. Processing and physical property relationships in injection-molded isotactic polypropylene. 1. Mechanical properties. J. Polym. Sci., Part B:Polym. Phys. 1997, 35(2), 241-263.
      Kalay, G.; Bevis, M. J. Processing and physical property relationships in injection-molded isotactic polypropylene. 1. Mechanical properties. J. Polym. Sci., Part B:Polym. Phys. 1997, 35(2), 241-263.

    37. [37]

      Chen, Y. H.; Zhong, G. J.; Wang, Y.; Li, Z. M.; Li, L. Unusual tuning of mechanical properties of isotactic polypropylene using counteraction of shear flow and β-nucleating agent on β-form nucleation. Macromolecules 2009, 42(12), 4343-4348.
      Chen, Y. H.; Zhong, G. J.; Wang, Y.; Li, Z. M.; Li, L. Unusual tuning of mechanical properties of isotactic polypropylene using counteraction of shear flow and β-nucleating agent on β-form nucleation. Macromolecules 2009, 42(12), 4343-4348.

    38. [38]

      Zhou, M.; Li, X. P.; Jin, M.; Xia, C.; Shen, K. Z.; Zhang, J.Simultaneously improving the tensile and impact properties of isotactic polypropylene with the cooperation of co-PP and β-nucleating agent through pressure vibration injection molding. Chinese J. Polym. Sci. 2016, 34(8), 1001-1013.
      Zhou, M.; Li, X. P.; Jin, M.; Xia, C.; Shen, K. Z.; Zhang, J.Simultaneously improving the tensile and impact properties of isotactic polypropylene with the cooperation of co-PP and β-nucleating agent through pressure vibration injection molding. Chinese J. Polym. Sci. 2016, 34(8), 1001-1013.

    39. [39]

      Chen, Y. H.; Huang, Z. Y.; Li, Z. M.; Tang, J. H.; Hsiao, B. S. Simultaneous improvement of strength and toughness in fiber reinforced isotactic polypropylene composites by shear flow and a β-nucleating agent. RSC Adv. 2014, 4(28), 14766-14776.
      Chen, Y. H.; Huang, Z. Y.; Li, Z. M.; Tang, J. H.; Hsiao, B. S. Simultaneous improvement of strength and toughness in fiber reinforced isotactic polypropylene composites by shear flow and a β-nucleating agent. RSC Adv. 2014, 4(28), 14766-14776.

    40. [40]

      Mi, D.; La, R.; Wang, T.; Zhang, X.; Zhang, J. Hierarchic structure and mechanical property of glass fiber reinforced isotactic polypropylene composites molded by multiflow vibration injection molding, Polym. Compos. 2017, 38(12), 2707-2717.
      Mi, D.; La, R.; Wang, T.; Zhang, X.; Zhang, J. Hierarchic structure and mechanical property of glass fiber reinforced isotactic polypropylene composites molded by multiflow vibration injection molding, Polym. Compos. 2017, 38(12), 2707-2717.

    41. [41]

      Mi, D.; Xia, C.; Jin, M.; Wang, F.; Shen, K.; Zhang, J. Quantification of the effect of shish-kebab structure on the mechanical properties of polypropylene samples by controlling shear layer thickness. Macromolecules 2016, 49(12), 4571-4578.
      Mi, D.; Xia, C.; Jin, M.; Wang, F.; Shen, K.; Zhang, J. Quantification of the effect of shish-kebab structure on the mechanical properties of polypropylene samples by controlling shear layer thickness. Macromolecules 2016, 49(12), 4571-4578.

    42. [42]

      Turner-Jones, A.; Cobbold, A. The β crystalline form of isotactic polypropylene. J. Polym. Sci., Part B:Polym. Lett. 1968, 6(8), 539-546.
      Turner-Jones, A.; Cobbold, A. The β crystalline form of isotactic polypropylene. J. Polym. Sci., Part B:Polym. Lett. 1968, 6(8), 539-546.

    43. [43]

      Mezghani, K.; Phillips, P. J. γ-Phase in propylene copolymers at atmospheric pressure. Polymer 1995, 36(12), 2407-2411.
      Mezghani, K.; Phillips, P. J. γ-Phase in propylene copolymers at atmospheric pressure. Polymer 1995, 36(12), 2407-2411.

    44. [44]

      Somani, R. H.; Yang, L.; Hsiao, B. S.; Sun, T.; Pogodina, N. V.; Lustiger, A. Shear-induced molecular orientation and crystallization in isotactic polypropylene:Effects of the deformation rate and strain. Macromolecules 2005, 38(4), 1244-1255.
      Somani, R. H.; Yang, L.; Hsiao, B. S.; Sun, T.; Pogodina, N. V.; Lustiger, A. Shear-induced molecular orientation and crystallization in isotactic polypropylene:Effects of the deformation rate and strain. Macromolecules 2005, 38(4), 1244-1255.

    45. [45]

      Heeley, E. L.; Hughes, D. J.; Crabb, E. M.; Bowen, J.; Bikondoa, O.; Mayoral, B.; Leung, S.; McNally, T. The formation of a nanohybrid shish-kebab (NHSK) structure in melt-processed composites of poly(ethylene terephthalate) (PET) and multi-walled carbon nanotubes (MWCNTs). Polymer 2017, 117, 208-219.
      Heeley, E. L.; Hughes, D. J.; Crabb, E. M.; Bowen, J.; Bikondoa, O.; Mayoral, B.; Leung, S.; McNally, T. The formation of a nanohybrid shish-kebab (NHSK) structure in melt-processed composites of poly(ethylene terephthalate) (PET) and multi-walled carbon nanotubes (MWCNTs). Polymer 2017, 117, 208-219.

    46. [46]

      Liu, K.; Zhang, J.; Liu, H.; Qian, X.; Zhang, Y.; Wang, T.; Shen, K. A multi-layer bioinspired design with evolution of shish-kebab structures induced by controlled periodical shear field. Express Polym. Lett. 2013, 7(4), 355-364.
      Liu, K.; Zhang, J.; Liu, H.; Qian, X.; Zhang, Y.; Wang, T.; Shen, K. A multi-layer bioinspired design with evolution of shish-kebab structures induced by controlled periodical shear field. Express Polym. Lett. 2013, 7(4), 355-364.

    47. [47]

      Balzano, L.; Ma, Z.; Cavallo, D.; van Erp, T. B.; Fernandez-Ballester, L.; Peters, G. W. Molecular aspects of the formation of shish-kebab in isotactic polypropylene. Macromolecules 2016, 49(10), 3799-3809.
      Balzano, L.; Ma, Z.; Cavallo, D.; van Erp, T. B.; Fernandez-Ballester, L.; Peters, G. W. Molecular aspects of the formation of shish-kebab in isotactic polypropylene. Macromolecules 2016, 49(10), 3799-3809.

    48. [48]

      Schrauwen, B.; von Breemen, L.; Spoelstra, A.; Govaert, L.; Peters, G.; Meijer, H. Structure, deformation, and failure of flow-oriented semicrystalline polymers. Macromolecules 2004, 37(23), 8618-8633.
      Schrauwen, B.; von Breemen, L.; Spoelstra, A.; Govaert, L.; Peters, G.; Meijer, H. Structure, deformation, and failure of flow-oriented semicrystalline polymers. Macromolecules 2004, 37(23), 8618-8633.

    49. [49]

      Tian, Y.; Zhu, C.; Gong, J.; Yang, S.; Ma, J.; Xu, J. Lamellae break induced formation of shish-kebab during hot stretching of ultra-high molecular weight polyethylene precursor fibers investigated by in situ small angle X-ray scattering. Polymer 2014, 55(16), 4299-4306.
      Tian, Y.; Zhu, C.; Gong, J.; Yang, S.; Ma, J.; Xu, J. Lamellae break induced formation of shish-kebab during hot stretching of ultra-high molecular weight polyethylene precursor fibers investigated by in situ small angle X-ray scattering. Polymer 2014, 55(16), 4299-4306.

    50. [50]

      Lotz, B.; Graff, S.; Straupe, C.; Wittmann, J. Single crystals of γ phase isotactic polypropylene:combined diffraction and morphological support for a structure with non-parallel chains. Polymer 1991, 32(16), 2902-2910.
      Lotz, B.; Graff, S.; Straupe, C.; Wittmann, J. Single crystals of γ phase isotactic polypropylene:combined diffraction and morphological support for a structure with non-parallel chains. Polymer 1991, 32(16), 2902-2910.

    51. [51]

      de Rosa, C.; Auriemma, F.; De Ballesteros, O. R.; Resconi, L.; Camurati, I. Crystallization behavior of isotactic propyleneethylene and propylene-butene copolymers:effect of comonomers versus stereodefects on crystallization properties of isotactic polypropylene. Macromolecules 2007, 40(18), 6600-6616.
      de Rosa, C.; Auriemma, F.; De Ballesteros, O. R.; Resconi, L.; Camurati, I. Crystallization behavior of isotactic propyleneethylene and propylene-butene copolymers:effect of comonomers versus stereodefects on crystallization properties of isotactic polypropylene. Macromolecules 2007, 40(18), 6600-6616.

    52. [52]

      Auriemma, F.; De Rosa, C. Crystallization of metallocene-made isotactic polypropylene:disordered modifications intermediate between the α and γ forms. Macromolecules 2002, 35(24), 9057-9068.
      Auriemma, F.; De Rosa, C. Crystallization of metallocene-made isotactic polypropylene:disordered modifications intermediate between the α and γ forms. Macromolecules 2002, 35(24), 9057-9068.

    53. [53]

      de Rosa, C.; Auriemma, F.; Spera, C.; Talarico, G.; Tarallo, O. Comparison between polymorphic behaviors of Ziegler-Natta and metallocene-made isotactic polypropylene:the role of the distribution of defects in the polymer chains. Macromolecules 2004, 37(4), 1441-1454.
      de Rosa, C.; Auriemma, F.; Spera, C.; Talarico, G.; Tarallo, O. Comparison between polymorphic behaviors of Ziegler-Natta and metallocene-made isotactic polypropylene:the role of the distribution of defects in the polymer chains. Macromolecules 2004, 37(4), 1441-1454.

    54. [54]

      de Rosa, C.; Auriemma, F.; Di Capua, A.; Resconi, L.; Guidotti, S.; Camurati, I.; Nifant'ev, I. E.; Laishevtsev, I. P. Structureproperty correlations in polypropylene from metallocene catalysts:stereodefective, regioregular isotactic polypropylene. J. Am. Chem. Soc. 2004, 126(51), 17040-17049.
      de Rosa, C.; Auriemma, F.; Di Capua, A.; Resconi, L.; Guidotti, S.; Camurati, I.; Nifant'ev, I. E.; Laishevtsev, I. P. Structureproperty correlations in polypropylene from metallocene catalysts:stereodefective, regioregular isotactic polypropylene. J. Am. Chem. Soc. 2004, 126(51), 17040-17049.

    55. [55]

      Brückner, S.; Phillips, P. J.; Mezghani, K.; Meille, S. V. On the crystallization of γ-isotactic polypropylene:a high pressure study. Macromol. Rapid Commun. 1997, 18(1), 1-7.
      Brückner, S.; Phillips, P. J.; Mezghani, K.; Meille, S. V. On the crystallization of γ-isotactic polypropylene:a high pressure study. Macromol. Rapid Commun. 1997, 18(1), 1-7.

    56. [56]

      Liu, Z.; Liu, X.; Zheng, G.; Dai, K.; Liu, C.; Shen, C.; Yin, R.; Guo, Z. Mechanical enhancement of melt-stretched β-nucleated isotactic polypropylene:The role of lamellar branching of β-crystal. Polym. Test. 2017, 58, 227-235.
      Liu, Z.; Liu, X.; Zheng, G.; Dai, K.; Liu, C.; Shen, C.; Yin, R.; Guo, Z. Mechanical enhancement of melt-stretched β-nucleated isotactic polypropylene:The role of lamellar branching of β-crystal. Polym. Test. 2017, 58, 227-235.

    1. [1]

      Ya-Di LiuQiang ZhangXin-Hong YuJian-Gang LiuYan-Chun Han . Increasing the Content of β Phase of Poly(9,9-dioctylfluorene) by Synergistically Controlling Solution Aggregation and Extending Film-forming Time. Chinese J. Polym. Sci, 2019, 37(7): 664-673. doi: 10.1007/s10118-019-2259-3

    2. [2]

      Zhong-bin XuLiang-yao SuPeng-fei WangMao Peng . Effect of Oscillatory Shear on the Mechanical Properties and Crystalline Morphology of Linear Low Density Polyethylene?. Chinese J. Polym. Sci, 2015, 33(8): 1114-1124. doi: 10.1007/s10118-015-1663-6

    3. [3]

      . SYNTHESIS AND CHARACTERIZATION OF NOVEL CHIRAL SMECTIC C(Sc*) PHASE SHISH-KEBAB TYPE LIQUID CRYSTALLINE BLOCK COPOLYMERS*. Chinese J. Polym. Sci, 1999, 17(6): 579-587.

    4. [4]

      Zu-Chen DuHao YangXie-Huai LuoZe-Xiang XieQiang FuXue-Qin Gao . The Role of Mold Temperature on Morphology and Mechanical Properties of PE Pipe Produced by Rotational Shear. Chinese J. Polym. Sci, 2020, 38(6): 653-664. doi: 10.1007/s10118-020-2363-4

    5. [5]

      Min-fang AnHao-jun XuYou LvLi ZhangQun GuFeng TianZong-bao Wang . The Influence of Chitin Nanocrystals on Structural Evolution of Ultra-high Molecular Weight Polyethylene/Chitin Nanocrystal Fibers in Hot-drawing Process. Chinese J. Polym. Sci, 2016, 34(11): 1373-1385. doi: 10.1007/s10118-016-1843-z

    6. [6]

      Zhi-hao ZhaoFei-fei WangMan ZhouKai-zhi ShenJie Zhang . Altering the Hierarchical Morphology Distribution of Injection Molded Polyethylene by the Introduction of Crosslink Network and Periodical Shear. Chinese J. Polym. Sci, 2016, 34(12): 1479-1489. doi: 10.1007/s10118-016-1865-6

    7. [7]

      Wei-Chen ZhouZu-Chen DuHao YangJun-Jie LiYing ZhangXue-Qin GaoQiang Fu . Effect of Different Shear Modes on Morphology and Mechanical Properties of Polypropylene Pipes Produced by Rotational Shear. Chinese J. Polym. Sci, 2020, 38(12): 1392-1402. doi: 10.1007/s10118-020-2477-8

    8. [8]

      Hong-ge Tan aZi-yu Wang bWen-fang Zhu aQing-gong Song aHui Li cCui-qin Bai a . STRUCTURE EVOLUTION OF THE CYLINDRICAL PHASE OF DIBLOCK COPOLYMERS IN FILMS. Chinese J. Polym. Sci, 2008, 26(6): 759-766.

    9. [9]

      SHI GuanyiCAO YouhongZHANG XiaodongHONG JieHUA Xiaogang . MULTIPLE MELTING BEHAVIOR OF β-CRYSTALLINE PHASE POLYPROPYLENE. Chinese J. Polym. Sci, 1992, 10(4): 319-327.

    10. [10]

      Lin-li He aLin-xi Zhang b . THE EFFECTS OF PATTERNED SURFACES ON THE PHASE SEPARATION FOR DIBLOCK COPOLYMERS. Chinese J. Polym. Sci, 2009, 27(3): 307-315.

    11. [11]

      YANG ZhenzhongZHAO DeluXU YuanzeXU Mao . DETERMINATION OF PHASE INVERSION POINT IN THE EMULSIFICATION OF POLYMERS*. Chinese J. Polym. Sci, 1997, 15(4): 373-378.

    12. [12]

      Ning Xu . Phase Behaviors of Soft-core Particle Systems. Chinese J. Polym. Sci, 2019, 37(11): 1065-1082. doi: 10.1007/s10118-019-2304-2

    13. [13]

      Hong-qing LiangHao-nan LiHao-hao YuYong-ting ZhouZhi-kang Xu . Polysulfone Membranes via Thermally Induced Phase Separation. Chinese J. Polym. Sci, 2017, 35(7): 846-856. doi: 10.1007/s10118-017-1943-4

    14. [14]

      Xing-xun LiuYan-fei WangNuo-zi ZhangRobert A. ShanksHong-sheng LiuZhen TongLing ChenLong Yu . Morphology and Phase Composition of Gelatin-Starch Blends. Chinese J. Polym. Sci, 2014, 32(1): 108-114. doi: 10.1007/s10118-014-1377-1

    15. [15]

      Gen-liang JiLi-ping ZhuBao-ku ZhuYou-yi Xu . EFFECT OF DILUENTS ON CRYSTALLIZATION OF POLY(VINYLIDENE FLUORIDE) AND PHASE SEPARATED STRUCTURE IN A TERNARY SYSTEM via THERMALLY INDUCED PHASE SEPARATION. Chinese J. Polym. Sci, 2008, 26(3): 291-298.

    16. [16]

      Monika BiernatPaweł DąbczyńskiPaweł BiernatJakub Rysz . Phase Separation in PCDTBT:PCBM Blends: from Flory-Huggins Interaction Parameters to Ternary Phase Diagrams. Chinese J. Polym. Sci, 2020, 38(9): 1025-1033. doi: 10.1007/s10118-020-2424-8

    17. [17]

      Ya-Hui LouYi-Long LiaoLi PanBin WangYue-Sheng LiZhe Ma . Effect of Linear and Ring-like Co-units on the Temperature Dependence of Nucleation and Growth in II-I Phase Transition of Butene-1 Copolymers. Chinese J. Polym. Sci, 2018, 36(11): 1269-1276. doi: 10.1007/s10118-018-2135-6

    18. [18]

      Yuan-ze XuYu-zhe WuJian-mao Yang . HYDRODYNAMIC AND THERMODYNAMIC EFFECTS IN PHASE INVERSION EMULSIFICATION PROCESS OF EPOXY RESIN IN WATER. Chinese J. Polym. Sci, 2006, 24(2): 155-161.

    19. [19]

      . PREPARATION OF BISPHENOL A EPOXY RESIN WATERBORNE DISPERSIONS BY THE PHASE INVERSION EMULSIFICATION TECHNIQUE*. Chinese J. Polym. Sci, 2000, 18(1): 33-38.

    20. [20]

      . SOLID PHASE TRANSITION OF SYNDIOTACTIC POLYSTYRENE IN SUPERCRITICAL CO2. Chinese J. Polym. Sci, 2002, 20(3): 191-196.

  • Figure 1.  Preparation of specimens for tests

    Figure 2.  PLM observation of the multilayer structure of injection-molded sample: (a) CIM, (b) VIM Ⅰ, and (c) VIM Ⅱ samples

    Figure 3.  2D-WAXD patterns of different samples. Shear flow direction is vertical. All samples are cut from the middle area, as shown in Fig. 1.

    Figure 4.  (a) Azimuthal profiles I(φ) taken at the 17° ((040) α and (008) γ) reflection as a function of azimuthal angle φ of VIM Ⅱ in middle zone; (b) Degree of molecular orientation f(H) in the different zones of VIM Ⅱ calculated from the 2θ = 17° (040 and 008 reflections) as a function of distance from surface

    Figure 5.  (a) Plots of integrated WAXD intensity as a function of 2θ for VIM Ⅱ in the middle region (Intensity was calculated from circulated integration of 2D WAXD pattern.); (b) The γ fraction of CIM, VIM Ⅰ and VIM Ⅱ in the mid zone as a function of distance from the surface (The figure is divided into two regions to present a better description of distribution.); (c) The γ fraction of VIM Ⅱ in front, mid and end zones (The figure is also divided into two regions to better illustrate distribution.)

    Figure 6.  Relative content of β and γ crystals in the middle zone of (a) VIM Ⅰ and (b) VIM Ⅱ, respectively (The yellow regions highlight the shear stress areas.)

    Figure 7.  Relative content of α, β, and γ crystals in the middle zone of (a) VIM Ⅰ and (b) VIM Ⅱ

    Figure 8.  Azimuthal scan of (130) lattice plane α-crystal from core to surface layer in the injection-molded: (a) CIM, (b) VIM Ⅰ, and (c) VIM Ⅱ samples; (d) Fraction of γ (fγ) and parent-daughter ratio R as a function of distance from the surface

    Figure 9.  2D SAXS images obtained at different distances from the surface of different samples (Shear flow direction is vertical. All these samples are cut from the mid zone as shown in Fig. 1)

    Figure 10.  (a) Remarkable and unique SAXS image; Intensity profiles of fan-shaped integrated 2D SAXS patterns for VIM Ⅱ sample in (b) meridional, (c) equatorial, and (d) diagonal directions; (e) Long period for different directions as a function of distance from the surface

    Figure 11.  Scattered intensity of shish for VIM Ⅱ at different distances from the surface

    Figure 12.  (A) Hierarchical structure of VIM Ⅱ with (B) and (C) showing the partial enlargement of (A)

    Figure 13.  Notched Izod impact strength and yield strength of CIM, VIM Ⅰ and VIM Ⅱ samples

    Figure 14.  Photographs obtained for the fracture surface of CIM, VIM Ⅰ, and VIM Ⅱ samples

    Melting temperature (℃) Injection/Packing pressure (MPa) Vibration pressure 1 (MPa) Vibration pressure 2 (MPa)
    CIM 220 500 0 0
    VIM Ⅰ 220 500 1400 0
    VIM Ⅱ 220 500 1400 1700

    Table 1.  The main processing parameters of injection molding

    下载: 导出CSV
    R Yield strength (MPa) Impact strength (kJ/m2)
    CIM 0.02 33 6.3
    VIM Ⅰ 0.42 39 17.5
    VIM Ⅱ 0.55 46 32.5

    Table 2.  Content of shish-kebab and yield/impact strength

    下载: 导出CSV
  • 加载中
图(14)表(2)
计量
  • PDF下载量:  11
  • 文章访问数:  708
  • HTML全文浏览量:  141
  • 引证文献数: 0
文章相关
  • 通讯作者:  Jie Zhang, zhangjie@scu.edu.cn
  • 收稿日期:  2017-09-09
  • 网络出版日期:  2018-02-26
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
主管单位: 中国科学院
主办单位: 中国科学院化学研究所

京ICP备05032737 号-2

版权所有:
通讯地址:
工作邮箱:
办公电话: 020-37627489

本系统由北京仁和汇智信息技术有限公司开发 技术支持:info@rhhz.net