请关注微信公众平台

Synergistic Effect of Carbon Nanotubes and Layered Double Hydroxides on the Mechanical Reinforcement of Nylon-6 Nanocomposites

Tianxi Liu Hongdan Peng Yue-E Miao Weng Weei Tjiu Lu Shen Chun Wei

引用本文: Tianxi Liu, Hongdan Peng, Yue-E Miao, Weng Weei Tjiu, Lu Shen, Chun Wei. Synergistic Effect of Carbon Nanotubes and Layered Double Hydroxides on the Mechanical Reinforcement of Nylon-6 Nanocomposites[J]. 高分子科学(英文版), 2014, 32(10): 1276-1285. doi: 10.1007/s10118-014-1521-y shu
Citation:  Tianxi Liu, Hongdan Peng, Yue-E Miao, Weng Weei Tjiu, Lu Shen and Chun Wei. Synergistic Effect of Carbon Nanotubes and Layered Double Hydroxides on the Mechanical Reinforcement of Nylon-6 Nanocomposites[J]. Chinese J. Polym. Sci, 2014, 32(10): 1276-1285. doi: 10.1007/s10118-014-1521-y shu

Synergistic Effect of Carbon Nanotubes and Layered Double Hydroxides on the Mechanical Reinforcement of Nylon-6 Nanocomposites

  • 基金项目: This work was financially supported by the National Natural Science Foundation of China (No. 51125011), Guangxi Small Highland Innovation Team of Talents in Colleges and Universities, Guangxi Funds for Specially-appointed Experts, and Guangxi Natural Science Foundation of China (No. 2014GXNSFAA118321).

摘要: Synergistic effect in network formation of nylon-6 (PA6) nanocomposites containing one dimensional (1D) multi-walled carbon nanotubes (CNTs) and two dimensional (2D) layered double hydroxide (LDH) platelets on improving the mechanical properties has been studied. Mechanical tests show that, with incorporation of 1 wt% LDHs and 0.5 wt% CNTs, the tensile modulus, the yield strength as well as the hardness of the ternary composite are greatly improved by about 230%, 128% and 110% respectively, as compared with neat PA6. This is mainly attributed to the unique, strong interactions between the CNTs and the LDHs as well as the jammed network-like structure thus formed between the nanofillers, as confirmed by the morphological observations. As compared with the binary nanocomposites, a much enhanced solid-like behavior in the terminal region of the rheological curves can clearly be observed for the ternary system, which also indicates the formation of a percolating filler network.

English

    1. [1]

      Paul, D.R. and Robeson, L.M., Polymer, 2008, 49(15): 3187

    2. [2]

      Usuki, A., Kojima, M., Okada, A., Fukushima, Y., Kurauchi, T. and Kamigatio, O., J. Mater. Res., 1993, 8(5): 1179

    3. [3]

      Pavlidou, S. and Papaspyides, C.D., Prog. Polym. Sci., 2008, 33(12): 1119

    4. [4]

      Liu, T.X., Chen, D., Phang, I.Y. and Wei, C., Chinese J. Polym. Sci., 2014, 32(1): 115

    5. [5]

      Rajini, N., Winowlin Jappes, J.T., Rajakarunakaran, S. and Bennet, C., Chinese J. Polym. Sci., 2013, 31(8): 1074

    6. [6]

      Nshuti, C.M., Wang, D.Y., Hoessenlopp, J.M. and Wilkie, C.A., J. Mater. Chem., 2008, 18(26): 3091

    7. [7]

      Pradhan, S., Costa, F.R., Wagenknecht, U., Jehnichen, D., Bhowmich, A.K. and Heinrich, G., Eur. Polym. J., 2008, 44(10): 3122

    8. [8]

      Leroux, F. and Besse, J.P., Chem. Mater., 2001, 13(10): 3507

    9. [9]

      Yu, W.W., Fu, H.K., Zhang, D.Z., Du, M. and Zheng, Q., Acta Polymerica Sinica (in Chinese), 2013, (09): 101

    10. [10]

      Costache, M.C., Heidecker, M.J., Manias, E., Camino, G., Frache, A., Beyer, G., Gupta, R.K. and Wilkie, C.A., Polymer, 2007, 48(22): 6532

    11. [11]

      Coleman, J.N., Khan, U. and Gun'ko, Y.K., Adv. Mater., 2006, 18(6): 689

    12. [12]

      Henley, S.J., Hatton, R.A., Chen, G.Y., Gao, C., Zeng, H.L., Kroto, H.W. and Silva, S.R.P., Small, 2007, 3(11): 1927

    13. [13]

      Gao, Y., Zong G.Y., Bai, H.W. and Fu, Q., Chinese J. Polym. Sci., 2014, 32(2): 245

    14. [14]

      Huang, Z.Z., Song, Y.H., Tan, Y.Q. and Zheng, Q., Acta Polymerica Sinica (in Chinese), 2013,(1): 88

    15. [15]

      Gao, J.B., Itkis, M.E., Yu, A., Bekyarova, E., Zhao, B. and Haddon, R.C., J. Am. Chem. Soc., 2005, 127(11): 3847

    16. [16]

      Gao, J.B., Zhao, B., Itkis, M.E., Bekyarova, E., Hu, H., Kranak, V., Yu, A.P. and Haddon, R.C., J. Am. Chem. Soc., 2006, 128(23): 7492

    17. [17]

      Zhang, W.D., Shen, L., Phang, I.Y. and Liu, T.X., Macromolecules, 2004, 37(2): 256

    18. [18]

      Liu, T.X., Phang, I.Y., Shen, L., Chow, S.Y. and Zhang, W.D., Macromolecules, 2004, 37(12): 7214

    19. [19]

      Meng, H., Sui, G.X., Fang, P.F. and Yang, R., Polymer, 2008, 49(2): 610

    20. [20]

      Chen, G.X., Kim, H.S., Park, B.H. and Yoon, J.S., Polymer, 2006, 47(13): 4760

    21. [21]

      Tang, C.Y., Xiang, L.X., Su, J.X., Wang, K., Yang, C.Y., Zhang, Q. and Fu, Q., J. Phys. Chem. B, 2008, 112(13): 3876

    22. [22]

      Sumfleth, J., Adroher, X. and Schulte, K., J. Mater. Sci., 2009, 44(12): 3241

    23. [23]

      Prasad, K.E., Das, B., Maitra, U., Ramamurty, U. and Rao, C., Proc. Natl. Acad. Sci., 2009, 106(32): 13186

    24. [24]

      Kumar, S., Sun, L., Caceres, S., Li, B., Wood, W., Perugini, A., Maguire, R.G. and Zhong, W.H., Nanotechnology, 2010, 21: 105702

    25. [25]

      Shin, M.K., Lee, B., Kim, S.H., Lee, J.A., Spinks, G.M., Gambhir, S., Wallace, G. G., Kozlov M.E., Baughman R.H. and Kim, S.J., Nat. Commun., 2012, 3: 650

    26. [26]

      Zhang, C., Tjiu, W.W., Liu, T.X., Lui, W.Y., Phang, I.Y. and Zhang, W.D., J. Phys. Chem. B, 2011, 115(13): 3392

    27. [27]

      Peng, H.D., Tjiu, W.C., Shen, L., Huang, S., He, C.B. and Liu, T.X., Compos. Sci. Technol., 2009, 69(7-8): 991

    28. [28]

      Bacsa, R.R., Laurent, C., Peignery, A., Bacsa, W.S., Vaugien, T. and Rousset, A., Chem. Phys. Lett., 2000, 323(5): 566

    29. [29]

      Goh, H.W., Goh, S.H., Xu, G.Q., Pramoda, K.P. and Zhang, W.D., Chem. Phys. Lett., 2003, 379(3-4): 236

    30. [30]

      Liu, Z.P., Ma, R.Z., Osada, M., Iyi, N., Ebina, Y., Takada, K. and Sasaki, T., J. Am. Chem. Soc., 2006, 128(14): 4872

    31. [31]

      Lincoln, D.M., Vaia, R.A., Wang, Z.G. and Hsiao, B.S., Polymer, 2001, 42(4): 1621

    32. [32]

      Cadek, M., Coleman, J.N., Ryan, K.P., Nicolosi, V., Bister, G., Fonseca, A., Nagy, J.B., Szostak, K., Bguin, F. and Blau, W.J., Nano Lett., 2004, 4(2): 353

    1. [1]

      Tanveer ul Haq ZiaAhmad Nawaz KhanMajid HussainIbrar HassanIftikhar Hussain Gul . Enhancing Dielectric and Mechanical Behaviors of Hybrid Polymer Nanocomposites Based on Polystyrene, Polyaniline and Carbon Nanotubes Coated with Polyaniline. Chinese J. Polym. Sci, 2016, 34(12): 1500-1509. doi: 10.1007/s10118-016-1867-4

    2. [2]

      Gao-feng LiWen-han LuoMin XiaoShuan-jin WangYue-zhong Meng . Biodegradable Poly(propylene carbonate)/Layered Double Hydroxide Composite Films with Enhanced Gas Barrier and Mechanical Properties. Chinese J. Polym. Sci, 2016, 34(1): 13-22. doi: 10.1007/s10118-016-1720-9

    3. [3]

      Chen BinChen JiaLi Jing-yuTong XinZhao Hai-chaoWang Li-ping . Oligoaniline Assisted Dispersion of Carbon Nanotubes in Epoxy Matrix for Achieving the Nanocomposites with Enhanced Mechanical, Thermal and Tribological Properties. Chinese J. Polym. Sci, 2017, 35(3): 446-454. doi: 10.1007/s10118-017-1911-z

    4. [4]

      Zhi-xin DongTao FengChao ZhengGuo-min LiFang-fang LiuXue-peng Qiu . Mechanical Properties of Polyimide/Multi-walled Carbon Nanotube Composite Fibers. Chinese J. Polym. Sci, 2016, 34(11): 1386-1395. doi: 10.1007/s10118-016-1841-1

    5. [5]

      Ying-jie TanYu-rong LiangGuo-sheng HuYi-qing WangYong-lai LuLi-qun Zhang . STRUCTURE AND PROPERTIES OF ISOBUTYLENE-ISOPRENE RUBBER/SWOLLEN ORGANOCLAY NANOCOMPOSITES PREPARED BY SHEAR MIXING. Chinese J. Polym. Sci, 2011, 29(2): 225-231. doi: 10.1007/s10118-011-1029-7

    6. [6]

      Yi-lei ZhuXiao-hong ZhangMei-fang GuoWen-qing HuangJin YangZhong-wei LiangJin-liang Qiao . CONDUCTIVE POLYMER NANOCOMPOSITES CONTAINING IN SITU ULTRA-FINE METAL PARTICLES. Chinese J. Polym. Sci, 2013, 31(8): 1061-1065. doi: 10.1007/s10118-013-1316-6

    7. [7]

      Yao GaoGui-ying ZongHong-wei BaiQiang Fu . Combined Effects of Stretching and Nanofillers on the Crystalline Structure and Mechanical Properties of Polypropylene and Single-walled Carbon Nanotube Composite Fibers. Chinese J. Polym. Sci, 2014, 32(2): 245-254. doi: 10.1007/s10118-014-1397-x

    8. [8]

      Susan AziziMansor Bin AhmadNor Azow IbrahimMohd Zobir HusseinFarideh Namvar . Preparation and Properties of Poly(vinyl alcohol)/Chitosan Blend Bio-nanocomposites Reinforced by Cellulose Nanocrystals. Chinese J. Polym. Sci, 2014, 32(12): 1620-1627. doi: 10.1007/s10118-014-1548-0

    9. [9]

      Zhi-liang WangJia-li XuQian YuanMahmoud H. M. A. ShibraenJian XuShu-guang Yang . Hydrothermal Treatment of Polyamide 6 with Presence of Lanthanum Chloride. Chinese J. Polym. Sci, 2016, 34(4): 399-406. doi: 10.1007/s10118-016-1764-x

    10. [10]

      Zhi-liang WangJia-li XuLian-jia WuXin ChenShu-guang YangHui-chao LiuXian-ju Zhou . Dissolution, Hydrolysis and Crystallization Behavior of Polyamide 6 in Superheated Water. Chinese J. Polym. Sci, 2015, 33(9): 1334-1343. doi: 10.1007/s10118-015-1682-3

    11. [11]

      Jing-jing ShenDong-ge ZhangXing LiuYu-chang TangYu LinGuo-zhang Wu . Facile Fabrication of High-performance Polyimide Nanocomposites with in situ Formed “Impurity-free” Dispersants. Chinese J. Polym. Sci, 2016, 34(5): 532-541. doi: 10.1007/s10118-016-1771-y

    12. [12]

      Hao ZhangYing SheXue ZhengHe-yu ChenJun-wen Pu . Optical and Mechanical Properties of Polyurethane/Surface-modified Nanocrystalline Cellulose Composites. Chinese J. Polym. Sci, 2014, 32(10): 1363-1372. doi: 10.1007/s10118-014-1526-6

    13. [13]

      Ji-jun TangShi-yun LiYan-hui WangTao Tang . IN SITU ETHYLENE COPOLYMERIZATION WITH AN OLEFIN-TYPE MONOMER FOR ONE-POT SYNTHESIS OF POLYETHYLENE TETHERED ON MULTI-WALLED CARBON NANOTUBES. Chinese J. Polym. Sci, 2013, 31(10): 1329-1333. doi: 10.1007/s10118-013-1338-0

    14. [14]

      Zhuo-yue XiongXiao-yu KongZhao-xia GuoJian Yu . Poly(ethylene terephthalate)/Carbon Black Composite Fibers Prepared by Electrospinning. Chinese J. Polym. Sci, 2015, 33(9): 1234-1244. doi: 10.1007/s10118-015-1674-3

    15. [15]

      Zhong-chuan PengQian LiHua-yi LiYou-liang Hu . Layered Nanoparticles Modified by Chain End Functional PE and Their Nanocomposites with PE. Chinese J. Polym. Sci, 2017, 35(7): 897-908. doi: 10.1007/s10118-017-1931-8

    16. [16]

      Ben-liang LiangYing-qi ShuPeng-gang YinLin Guo . Nacre-inspired Polyglutamic Acid/Layered Double Hydroxide Bionanocomposite Film with High Mechanical, Translucence and UV-blocking Properties. Chinese J. Polym. Sci, 2017, 35(5): 631-640. doi: 10.1007/s10118-017-1924-7

    17. [17]

      Yong ZhuLai-Yun WeiXuan FuJun-Qi ZhangLing-Min KongGuang-Su HuangJin-Rong Wu . Super Strong and Tough Elastomers Enabled by Sacrificial Segregated Network. Chinese J. Polym. Sci, 2021, 39(3): 377-386. doi: 10.1007/s10118-020-2484-9

    18. [18]

      Hojjat Toiserkani . Preparation and Characterization of Poly(amide-imide)/ZnO Nanocomposites Containing Pendent Benzoxazole and Benzimidazole Segments. Chinese J. Polym. Sci, 2016, 34(3): 288-297. doi: 10.1007/s10118-016-1754-z

    19. [19]

      Kai DuAi-hua HeFu-yong BiCharles C. Han . SYNTHESIS OF EXFOLIATED ISOTACTIC POLYPROPYLENE/FUNCTIONAL ALKYL-TRIPHENYLPHOSPHONIUM-MODIFIED CLAY NANOCOMPOSITES BY IN SITU POLYMERIZATION. Chinese J. Polym. Sci, 2013, 31(11): 1501-1508. doi: 10.1007/s10118-013-1351-3

    20. [20]

      Tian-xi LiuDan ChenIn Yee PhangChun Wei . Studies on Crystal Transition of Polyamide 11 Nanocomposites by Variable-temperature X-Ray Diffraction. Chinese J. Polym. Sci, 2014, 32(1): 115-122. doi: 10.1007/s10118-014-1383-3

  • 加载中
计量
  • PDF下载量:  776
  • 文章访问数:  830
  • HTML全文浏览量:  0
  • 引证文献数: 0
文章相关
  • 收稿日期:  2014-04-22
  • 录用日期:  2014-06-11
  • 网络出版日期: 
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
主管单位: 中国科学院
主办单位: 中国科学院化学研究所

京ICP备05032737 号-2

版权所有:
通讯地址:
工作邮箱:
办公电话: 020-37627489

本系统由北京仁和汇智信息技术有限公司开发 技术支持:info@rhhz.net